
APPLICATIONS OF SINGULAR PERTURBATION METHODS
IN QUEUEING

Charles Knessl and Charles Tier

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago

851 South Morgan St.
Chicago, IL 60607-7045

ABSTRACT

A survey is presented describing the application of singular perturbation techniques to
queueing systems. The goal is to compute performance measures by constructing approximate
solutions to specific problems involving either the Kolmogorov forward or backward equation
which contain a small parameter. These techniques are particularly useful on problems for
which exact solutions are not available. Four different classes of problems are surveyed: (i)
state-dependent queues; (ii) systems with a processor-sharing server; (iii) queueing networks;
(iv) time dependent behavior. For each class, an illustrative example is presented along with
the direction of current research.

1 Introduction

In analyzing queueing models, one would like to compute certain performance measures, such as
the steady state queue length distribution, transient queue length distribution, mean length of a busy
period, unfinished work distribution, sojourn time distribution, time for the queue to reach some
specified number, etc. For a specific model, these quantities may all be characterized as solutions to
certain equations. Thus, computing the performance measures amounts to solving these equations
together with appropriate boundary/initial conditions. Given a Markov process , the transition
probability density 0 0 =Pr[ 0 0] satisfies the forward and backward
Kolmogorov equations, which we write in an abstract form as

0 ( 0 0 0) 0 (1.1)

0
0 0 ( 0 0 0 ) 0 (1.2)

Here is a linear operator that involves the variable and time , and is its adjoint. The in
(1.1)-(1.2) is the Kronecker delta if the state space is discrete and the Dirac delta if the state space
is continuous. The precise forms of and depend on whether we are looking at a discrete
model (such as the number of customers in an 1 queue) or a continuous model (such
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as the unfinished work in an 1 queue), or some combination of these. For example, in
considering the joint queue length distribution in a network of Markovian queues, is generally a
multi-dimensional difference operator. If the model is space and time homogeneous, which occurs
say if the arrival and service rates are constant, then is a constant coefficient operator. However,
the form of is generally different near the boundaries of the state space, so that inherent to the
problems (1.1)-(1.2) are complicated sets of boundary conditions. These make it difficult to obtain
simple, exact solutions to (1.1)-(1.2) for all but the simplest of queueing models.

For the unfinished work process , the operator is an integro-differential operator since
the process has non-local transitions. The difficulty in solving (1.1)-(1.2) has led to the introduction
of approximations. A popular tool in queueing theory is the use of diffusion approximations. Here
one replaces the original process by a diffusion process ˜ (time may need to be scaled).
Then, computing ˜, the transition density for ˜ , involves solving (1.1)-(1.2) with now being a
partial differential operator of second order. This may itself be a difficult task since the boundary
conditions associated with the approximate problem are frequently still complicated, especially for
models in more than one space dimension.

We have thus far discussed (1.1)-(1.2) in terms of Markovian models. For models with
general interarrival time and/or service time distributions, the processes of interest are no longer
Markovian but may be imbedded in a (higher-dimensional) Markov process by using the method
of supplementary variables (see [8]). For the new process, we can again obtain (1.1)-(1.2) except
that now depends on , with being the vector of supplementary variables, and is usually
more complicated than the associated with exponential arrivals/service. Even for non-Markovian
models, it is still generally easy to derive the appropriate problems (1.1)-(1.2); the difficult task is
the solution of the equations.

In the queueing literature, exact solutions to (1.1)-(1.2) are generally available only for
steady state problems in one and two dimensions and for time-dependent problems in
one dimension. For example, the steady state distribution of for the 1 queue has a
very simple form, but the form for the transient distribution is a complicated expression involving
an infinite sum of Bessel functions. For the 1 queue, there is an explicit expression for the
Laplace transform of the steady state distribution of (or ), though the transform cannot
be (analytically) inverted for general service time densities. The time dependent distribution is
very complicated. Its double transform (over space and time) can be characterized in terms of
the solution to a functional equation, but there is no hope of inverting the transform. For the

1 model, solving for even the steady state distribution of is equivalent to solving a
Wiener-Hopf integral equation with a general kernel. Solution of this problem can be expressed
in terms of two complex contour integrals, one for inverting a Laplace transform and the other for
the analytical solution of the Wiener-Hopf problem. This shows that even for one-dimensional
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models, one cannot obtain simple analytic expressions for the various performance measures.
For problems in more than one dimension, the situation is even worse. Jackson networks, or,
more generally, “product-form” networks, are an important class of multi-dimensional models for
which one can explicitly obtain the steady state queue length distribution. However, obtaining
time-dependent information for these models is much harder. Even for Jackson networks, it is
difficult to analyze the busy period and various other “first-passage time” problems. Solutions to
non-product form networks are complicated even in two dimensions underMarkovian assumptions.
Using transforms and function-theoretic arguments, these models ([6]) may be reduced to solving
certain classic problems in the theory of singular integral equations such as Dirichlet and Riemann-
Hilbert problems. However, one is again left with inverting a two-dimensional transform, which
itself is often characterized in a form that is not particularly explicit.

From the above (brief and incomplete) summary of exactly solvable models, it is clear
that approximations must play a major role in the analysis of queues. Here we examine a set of
methods called “asymptotic and singular perturbation techniques”. Their role in queueing theory
is basically twofold. First, they can be used to simplify exact solutions when these are available.
Since the exact solutions discussed above are extremely complicated, it is useful to evaluate these
expressions in certain limiting cases, in order to gain more insight into the qualitative structure of
the particular model. Asymptotic formulas often clearly show the dependence of the solutions on
the various variables/parameters in the problem, whereas the full exact expressions may be difficult
to interpret in terms of the underlying model. Of course, an asymptotic formula can never contain
as much quantitative (numerical) information as an exact answer, but it can provide reasonably
accurate numerical results at a greatly reduced computational cost. Also, a queueing model is itself
an approximation to a physical system. Thus, we believe that obtaining qualitative information is
just as important as obtaining accurate numerical values.

A second, and we believe more important, aspect of using perturbation methods is to make
progress on problems for which exact solutions are not available. Since it is likely that most models
in queueing theory (and indeed in any other area of applied mathematics) will never be solved
exactly, obtaining useful approximations is very important. What do we mean by “useful?” The
two main criteria for the usefulness of an asymptotic approximation are (i) its numerical accuracy
and (ii) its ability to make transparent qualitative properties of the solution. It is desirable to have
both (i) and (ii), but it is much better to have either (i) or (ii) than to have nothing. The verification
of (i) can only be obtained by comparing the approximation to exact results or to numerical
approximations, assuming the latter are reliable. Deciding on (ii) is somewhat harder as what looks
complicated to one person may look simple to another. We believe that if an asymptotic result
can be expressed in terms of elementary functions (sines, exponentials, Gaussians) or well-studied
special functions (Bessel, parabolic cylinder), it can be called “simple” enough to be useful. In
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deciding whether an asymptotic answer is simple, it is also appropriate to view this result in terms
of the exact answer, and how complicated it is, or would be (if it could be obtained at all).

Using asymptotics to simplify exact expressions usually involves the approximate evaluation
of sums and integrals, using ideas such as Laplace’s method, the method of steepest descent (saddle
pointmethod), the Euler-MacLaurin formula, Poisson summation, integral representations of sums,
etc. These have been used to good effect in queueing theory; examples are [49], where the authors
obtained asymptotic expansions for product-form networks for large population sizes, and [54],
where integral representations and subsequent asymptotics were used on processor-sharingmodels.
Of course, these methods assume that one has an exact (and sufficiently explicit) representation for
the quantity to be evaluated.

Many other asymptotic methods exist which may be applied directly to the equation(s)
satisfied by the given performance measure. They do not rely on having an exact solution so that
they are clearly applicable to a much wider class of problems. These methods include the
method, “boundary layer” techniques, the ray method, and the method of matched asymptotic
expansions. They are called “singular perturbation” techniques (general references are [1,15]). To
see what is meant by singular, consider a function ; which depends on the variable(s) and
an additional (small) parameter . If is an analytic function of , i.e. if the series

0
converges for sufficiently small, then such a series is called a “regular” perturbation series.
If either the series diverges (but is still asymptotic for 0) or the expansion involves a more
complicated asymptotic sequence than powers of , then the perturbation series is called “singular”.
Most interesting problems in applied mathematics are of singular perturbation type, and this we
believe is also true in queueing theory. An important example of a singular perturbation series is
the form

0
, which we shall show arises naturally even in very elementary

queueing models. Such a series is generally divergent, but even the leading term ( 0 )
is usually an excellent approximation to the quantity that is to be computed.

Another important feature of singular perturbation methods is that such problems tend to
contain several scales, which must be treated separately. This leads to several different asymptotic
expansions which must be related to one another, and this is usually done by the “asymptotic
matching principle”. For example, if we consider the -server queue in the limit

1 , it is necessary to construct different asymptotic expansions for and
1 , which corresponds respectively to having a finite fraction of the servers occupied

and to having just a few occupied servers.
The methods discussed above have usually been developed in the context of second order

equations (ODEs and PDEs). Also, an individual method was usually introduced and developed
in the context of a particular scientific application. The method was first used as an
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approximation tool for solving the Schrödinger equation in quantum mechanics; the ray method
was developed to solve problems in high frequency wave propagation; boundary layer ideas were
first used in the study of viscous flow past obstacles. From our point of view, however, we consider
these methods as mathematical techniques for approximately solving equations. They are useful
for analyzing queueing models for which the operators and in (1.1)-(1.2) depend upon a small
parameter; call it . The size of can be used to simplify the equations in a systematic way, and
thus to obtain explicit, approximate formulas. Typically, measures the reciprocal of the size the
system; e.g. 1 where is the number of servers in an server queue, or may be the
inverse of the customer population in a large, closed Jackson network. The most commonly used
asymptotic approximations in queueing theory are light traffic and heavy traffic. For these, may
be taken as the arrival rate and the difference between arrival and service rates, respectively.

For most models in queueing theory (1.1)-(1.2) involve difference equations, integral equa-
tions, delay equations and various combinations of these. This is because takes on discrete
values and has jumps (non-local transitions) at arrival times. For these types of problems, sin-
gular perturbation methods are not as well developed as they are for ordinary and partial differential
equations. Thus, developingmethods for solving (1.1)-(1.2) will also enhance the scope of singular
perturbation techniques, as they can now be applied to integral and other equations, and these arise
naturally is many fields of science and engineering. Our primary goal is to compute solutions
to specific problems that arise in queueing theory and in other stochastic models. However, the
mathematical methodology should also be useful in other areas.

In the sections that follow, we will apply perturbation methods to some specific queueing
models. We show that they are useful for several different classes of problems. In section 2, we
consider queues which have state-dependent parameters. State-dependent (and time-dependent)
queues lead to an operator in (1.1)-(1.2) that is not “constant coefficient,” and such problems are
difficult (or impossible) to tackle using transformmethods. In section 3, we consider several queues
which have a processor-sharing server. We shall obtain approximations to the sojourn time through
such systems. In section 4, we consider queuing networks. For product-form networks, there exist
explicit expressions for the joint, steady state queue length distribution. We show how to compute
this asymptotically, from a recursion which is satisfied by the normalization constant (partition
function). We also show in section 4 how to use perturbation methods to analyze bottlenecks
in networks. For the simplest Jackson network consisting of two 1 queues in tandem,
we compute the time until the network population becomes large, and then the time needed to
settle back to its equilibrium state. For these first passage time problems, there seem to be no
exact expressions available. In section 5, we show how to use the ray method to compute the
time-dependent behavior of queueing models. As an example, we consider the Erlang loss model
( queue).
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2 State-dependent Queues

We shall first consider the classic repairman problem, which corresponds to the finite source (finite
population) 1 queue. Then we extend our results to systems which have a general service
time distribution. We also consider an 1 queue characterized by the unfinished work ,
and which has state-dependent arrivals and service.

2.1 Repairman problems

Denote the service rate by 0 and let Pr[ ] with . If is the total
number of customers that are in the population, then this model corresponds to a queue with a
state-dependent arrival rate equal to ( ). The steady state balance equations are

( 0 ) 1 1 0 1; 1 (2.1)

0 0 1 (2.2)

with 1 0. Solving (2.1)-(2.2) and normalizing the probabilities, we easily obtain

0
!
! 0

0 1
0

!
! 0

(2.3)

Now consider the asymptotic limit , 0 which corresponds to systems
with many customers and a fast server. Letting 0 1 and approximating
! and ! by Stirling’s formula we obtain

0

1
(2.4)

log
1

1 log 1

This approximation is valid for all 0 1 as . It ceases to be valid when 1
(i.e. 1 ) but by then is exponentially small. Next we use the integral representation

1 0
0
exp [ log 1 ] (2.5)

to obtain the expansion for 0. The integral in (2.5) is a Laplace type integral whose asymptotic
expansion is easily obtained, and is different for 1, 1 and 1. We have

0 1 ; 1 (2.6)

2 ; 1
1
2

exp [1
1

log(
1
)] ; 1
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We could also obtain a result for 1, valid for 1 1 2 , which will asymptotically
match between thefirst and third formulas in (2.6). From (2.4) and (2.6)we observe that is peaked
at 0 if 1 and at 1 1 if 1. Also, the probability that the system is empty has the
asymptotic orders of magnitude 1 , 1 2 , and 1 2 1 1 log 0
when 1, 1, and 1, respectively. This shows that the asymptotic structure of this
problem is very sensitive to the value of .

Now we present an alternate approach to the asymptotics, which uses only (2.1). We scale
with to get

(1 1 ) 1 (2.7)

where 1. This is a difference equation with small differences which resembles a singularly
perturbed ODE, as can be seen by expanding the right side of (2.7) for small . We seek solutions
of (2.7) in the form

[ 0 1 ] (2.8)

The constant will be determined by normalization and we set 0 . Using (2.8) in
(2.7) and expanding for small , we obtain, at the first two orders, the equations

1 1 1 (2.9)

and

0 [ 1 (
1
2

)] [
1
2

] (2.10)

Equation (2.9) is a nonlinear ODE for , but it is very easy to solve since it is a quadratic
equation for . One root of this quadratic is clearly 0 and the other is

log log 1

which integrates to
log 1 log 1 (2.11)

where we have chosen 0 0, since 0 can be incorporated into the constant in (2.8).
With (2.11), (2.10) is a linear, first order ODE for . It is easily solved (up to a multiplicative
constant) to yield

1 1 2 (2.12)

The solution 0 must be rejected since it would lead to a non-integrable . Now we have
the approximation and it remains only to determine the constant , which
can be done from the normalization

1

0
[ 1 ] 1
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This sum may be approximated for 0 using Laplace’s method for sums and the Euler-
MacLaurin formula. Using (2.11)-(2.12) we would find that 0 is again asymptotically
given by (2.6) for the 3 cases of .

Expressions (2.11)-(2.12) agree precisely with (2.4), which we obtained using the exact
result and Stirling’s formula. To obtain corrections to this leading order approximation we could
use the full Stirling series to approximate ! and ! in (2.3), and then obtain the full
asymptotic series for the integral in (2.5) using Laplace’s method. Alternately, we could continue
the expansion of (2.7) using (2.8). The correction terms , for 1, will satisfy linear ODEs
of the same form as (2.10), and these are easy to solve.

What have we gained from our direct approach of using (2.1) (or (2.7)) instead of the full
solution? Equation (2.1) is a linear second order difference equation whereas (2.9) is non-linear and
first order and (2.10) is linear and first order. It turns out to be slightly easier to solve (2.9)-(2.10)
than (2.1). The simplification is not so dramatic for this simple model, but the advantages of the
direct approach will be much more apparent when we deal with general service time distributions,
transient problems, and problems in more than one dimension. It turns out that it is frequently
much easier to solve PDEs of the first order than it is to solve PDEs or difference equations of
second order. This is true even if the first order problems are non-linear.

Next we consider the samemodel but with a general service time distribution, whose density
we denote by ˜ Pr[service time ]. We allow ˜ to be a delta function so that
this analysis also applies to 1 models. Now is no longer Markov, so we consider the
process ( ), where the supplementary variable measures the elapsed service time of
the customer presently being served. We let

Pr[ ] 1

0 Pr[ 0]

and denote the steady-state limits by , 0; and the marginal (steady-state) queue length
distribution by 0 1 . The balance equations are now

1 1 [ ˜ ] ; 2 (2.13)

0
0

1 ˜ ; 2 1 (2.14)

where ˜ ˜ ˜ is the service rate, conditioned on the elapsed service time. The
boundary conditions turn out to be

1 [ 1 ˜ ] 1 (2.15)

0
0

1 ˜ (2.16)

8



1 0 0
0

2 ˜ (2.17)

0 0 (2.18)

0
1 0

1 (2.19)

To solve this system asymptotically, we again assume that is large and that service times
tend to be small. To make the latter more precise we write the service density in the scaled form
˜ so that themean service time is 1 . Setting ˜ , we introduce
into (2.13)-(2.19) the scaled variables , , 1 with
and obtain the scaled problem

1 [ 1 ] (2.20)

0
0

(2.21)

For the moment we ignore the boundary conditions (2.15)-(2.19).
When service times were exponential, we needed two expansions for , valid on the

respective scales 0 1 and 1 ( 1 ). For the present model it is
necessary to consider 3 scales:
(i) 0 1 (ii) ( 1 ) (iii) 1 ( 1 ). The third scale is
again unimportant, since the distribution is exponentially small there for any value of

0
˜

0
1

We proceed to asymptotically solve the problem on scales (i) and (ii), and then relate the two
expansions by asymptotic matching. After we have covered the entire state space, there will remain
one undetermined constant, and this is obtained by normalization (2.19).

When 0 1 and , we set

0 exp
1

0 1 2 (2.22)

The first factor is included for convenience. The form (2.22) is asymptotically equivalent to (2.8)
if we identify 0 1, 1 0 2, etc. We shall only compute the leading term in (2.22),
which means that we must compute 0 and 1. Using (2.22) in (2.20) and expanding for 0
we obtain at the first two orders

0 0 (2.23)

1 1 0 1 (2.24)
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Thus 0 is independent of and we write 0 0 . Then the right side of (2.24) depends on
only, which we denote by , and then

1 (2.25)

where , are as yet undetermined. Using (2.22) with (2.25) in (2.21), we obtain at leading order
the following equation for

1
1 0

(2.26)

which is a transcendental equation that involves the scaled service density . Explicit solutions
to (2.26) can be obtained for exponential, 2, and 2 servers. In the general case (2.26) is easily
solved numerically, and a convexity argument shows that (2.26) has a unique non-zero solution.

To determine (and hence 1), we must examine the third term in the expansion of (2.20)
and then use the result in (2.21). Omitting the details, the final result is a linear ODE for :

[1 1 1 ]
1
2 0 [1

1
2
1 0 ] 1

1
2

1 2 ; (2.27)

0

Since 0, , 1, 2 are known via (2.26), (2.27) is easily integrated. After some algebra, we find
that the leading term in (2.22) is

0 0 (2.28)
0

1
1

1 2
exp

1
0
log 1

1

This expansion is not valid for ( 1 ) since it does not satisfy the boundary equations
(2.15)-(2.18).

To obtain an appropriate expansion for 1 , we go back to the discrete space variable
and consider (2.13)-(2.14) for 1 . Since , the upper boundary disappears. If we

expand for 1 ,

[ 1 2 2 ]

then at the leading order we get

1 [ ] ; 2 (2.29)

0
0

1 ; 2 (2.30)
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Now we must consider the boundary equations (2.15)-(2.17), which imply that

1 [ ] 1 (2.31)

0
0

1

1 0 0
0

2

The problem (2.29)-(2.31) is simpler than the original problem (2.13)-(2.18) in two respects. First,
the domain of (2.29)-(2.31) is 0, so that we have a problem on an infinite interval rather
than the finite interval 0 . Second, for 1 , we can to leading order approximate
quantities such as so that (2.29)-(2.31) is basically a “constant coefficient”
problem in , which is easy to solve using transforms (generating functions). If 1, then the
equations (2.29)-(2.31) are precisely those satisfied by the steady-state probabilities in the standard
( population) 1 queue. If 1, the 1 model is transient so that can no
longer be interpreted probabilistically. It is simply an approximation to the finite source model
valid on the scale 1 . The correction terms 1 will satisfy inhomogeneous
versions of the problem (2.29)-(2.31), and these can also be solved using generating functions. For
the leading term we obtain

0

2
1 1

[ ]
0 (2.32)

Here 0 and is a small loop about 0 in the complex plane.
Now, the expansions for 1 and 0 1 contain the hitherto undetermined

constants , . One of these can be determined by normalization, but we need one additional
condition. This is obtained by requiring that the two expansions “asymptotically match.” This
means that they should agree on an intermediate scale where 1, which corresponds to

, 0. Symbolically the matching condition may be written as

exp
1

0 1 0 1
0 (2.33)

and must hold to all orders in . The left side of (2.33) is evaluated by expanding (2.28) as 0.
To leading order this gives

0 0
0

1 2
1

0
(2.34)

where we have used . From (2.32), the large behavior is determined by the singularity
of the integrand that is closest to 0. This is a simple pole at , which satisfies 1
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( 1) according as 1 ( 1). Computing the residue at this pole we see that to leading
order the right side of (2.33) becomes

0
1 1

0
1 1

(2.35)

From the definitions of and , we have

1
0

so that the forms of (2.34) and (2.35) agree and the constants , are related by

0 0 [ 0 ] 1 2 (2.36)

Our final step is to determine (or ) from normalization (2.19). This requires that we
asymptotically evaluate the sum in (2.19) for 0 . The expansion of the sum depends
on whether 1 or 1. Below we summarize our final results for the marginal probabilities

0

(a) 0 1

1
1 2

1
;

0
log 1

1
;

1
1 0

;

1 0 0 1 2 1 ;

2
1 ;

2
exp 1

1
1

(b) 1 i.e. 1

1
2

1
0 0 1 2 1

0
0 0 1 2

We remark that if then 1 and (a), (b) reduce to (2.4) with (2.6).
When 1 we have

1 1 0 and 1 1 2 2
2
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Figure 1: Graphs of = , = , and = —, with 3 0 and 20.

where 2 is the second moment of the (scaled) service time density . Thus, if we expand our
approximation for 1 for close to 1 1, we obtain the Gaussian form

3 2
exp 3 2

2 (2.37)

which corresponds to the “diffusion approximation” to the process . Expression (2.37) is
only valid for 1 2 , whereas that in (a) is valid for all except 0 (where (b)
is valid) and 1. Thus the results obtained by the approach are much more uniform
than those from a diffusion approximation. They are also more accurate numerically. In Figure
1 we give graphs of the exact probabilities , the approximation and the
diffusion approximation when 3 0 and 20 for . In this case it is
easy to obtain the exact answer and demonstrate the accuracy of the approximation. Let
us review the procedure we have used. We started from a complicated system ((2.13)-(2.19)) of
differential-difference equations, with global transitions in the variable, and linear (non-constant)
coefficients in . Then, using perturbation methods, we reduced the problem to solving a set of
simpler equations. To obtain the approximation we need to solve only the transcendental
equation (2.26) and then a sequence of linear first order ODEs to get the functions for 1. To
get the “boundary layer” approximation, valid for 1 , it was necessary to solve the “constant
coefficient version” of (2.13)-(2.17), which is easy to do using transforms. Using this approach
we could also treat more complicated queues, e.g. ones with a general state dependent arrival rate
˜ . For such problems transform methods are not applicable.

The details of the analysis presented here appear in [28]. These results were extended to the
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finite source 2 queue in [33] and to problems with more general state-dependent parameters
in [25], and a similar analysis was done for the queue in [20].

2.2 State-dependent queues described by the unfinished work

Consider an 1 model with an arrival rate that depends on the workload, i.e. ˜ ( ).
Also, we consider a state-dependent service density that is allowed to depend on the value of
when that particular customer entered the system, hence Pr[service time
] ˜ where is the arrival time of the customer that requests units of service.

The forward equation for this state-dependent model is a generalization of the equation for the
distribution of the unfinished work formulated by Takács (see equation (1.2) in [23]). We assume
that the arrivals are fast and service times (jumps in ) are small, so that we write ˜ , ˜ in the
scaled forms

˜ 1 ˜ 1
( )

where may be defined, say, as (˜ 0 ) 1. Denoting by the unfinished work density for
0 and by the probability that the system is empty, the forward equation is

1 1
0

0
2 0 (2.38)

with the boundary condition
0

0

Also, if is the mean residual busy period (i.e. time to empty the system given 0 ), it
satisfies the backward equation

1 1
0

1 (2.39)

with 0 0. It is also of interest to compute the time needed for the workload to exceed a
certain value; call it . Letting be the mean time for to exceed given 0 , it
satisfies

1 1
0 1 0 (2.40)

1 0 0 1 0 0 0 1

with 0 for .
We have analyzed the problems (2.38)-(2.40) using perturbation methods in [23]. Again

the WKB method and asymptotic matching proved useful in analyzing this integro-differential
equation, which cannot be solved exactly. Finite capacity queues, in which is not allowed
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to exceed a given level, were analyzed in [24,26]. In [31,32] we analyzed Markov-modulated
state-dependent queues, in [30] we obtained the distribution of the maximum value of during
a busy period, and in [29] we obtained the (time-dependent) busy period distribution for the model
described here. State-dependent 1 queues were considered in [35].

We close this section by mentioning the work of Keller on time-dependent queues ([14])
that is similar in approach to that discussed here. Time-dependent queues also lead to non-constant
coefficient equations, where and in (1.1)-(1.2) now explicitly involve time. State-dependent
and time-dependent queues are qualitatively very different, but the analysis of each usually involves
several different (space/time) scales, and asymptotic matching allows us to relate the various scales
to one another.

3 Processor-shared Queues

Processor-shared (PS) queues are used to model time-sharing computer systems. In some respects
their analysis is more difficult than that for FIFO queues. For PS queues, one wishes to compute
the sojourn time. This is the time period from when a “tagged” customer enters the system, to
when that customer leaves (after obtaining the required service).

Consider a Markovian, state-dependent PS model which has (i) a single server, (ii) a state-
dependent arrival rate and (iii) a state-dependent service rate , where the rates are
conditioned on . We denote the sojourn time by and its conditional density by

Pr[ 0 ] (3.1)

Here is the tagged customer’s required service, and is the number of customers already in the
system as the tagged customer arrives, which is assumed to occur at 0.

The density satisfies the evolution equation

1
1

1

0
1[ 1 ] (3.2)

1 1[ 1 ]; 0 1

for 0, and the initial condition is 0 0 , since a customer with zero service
does not spend any time in the system according to the PS discipline. There are several important
special cases of this model which we summarize below as models :

model : ;
model : ;

model : ;
0

model : general;
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model : ; 0

1

model :
; 0

1
0

.

The exact solution to model was obtained in [5] and asymptotic properties of the sojourn
time were studied in [54]. Model corresponds to a closed network consisting of a PS-server in
series with a set of terminals (IS node). Model is a finite capacity model where at most
customers are allowed into the system (with additional arrivals lost). Model again corresponds
to the closed network of model , with a state-dependent server. The parameter has been used to
model the “switching time,” which is the time needed for the server to switch between individual
customers. Model has a finite capacity and also considers the switching times.

Sometimes it may not be possible to compute the full conditional density . Hence
we define

(a) 0 ; 1 2

(b)

(c) 0 ; 1 2

(d) 0

(e) 0 ; 1 2

which denote respectively the conditional sojourn time moments; the distribution conditioned only
on the service request; the moments conditioned only on the service request; the unconditional
sojourn time distribution; and the unconditional moments. Here is the (steady-state) probability
that the tagged customer finds others at the arrival instant. By multiplying (3.2) by and
integrating with respect to over 0 , we can obtain recursive equations for the conditional
moments, the first two have the form 1, 2 2 where
the operator is that in the right side of (3.2).

The various models were in recent years analyzed using singular perturbation
methods. For model , (d) was computed in [55], (c) was computed in [56] and (b) was computed
in [57]. The asymptotic limit assumes that with fixed, and the structure of the
problem depends on whether 1 (normal usage), 1 1 2 (heavy usage),
or 1 (very heavy usage). Some of these results have been extended to systems with
multiple customer classes in [53,58,59]. For the finite capacity model , (a) was computed in
[16], (d)-(e) were computed in [22] and (b) was considered in [64]. The asymptotics assume
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that and depend on whether 1, 1 1 , 1 1 2 , or
1. For model , the case of a general (but smooth) was considered in [34] and (a), (c)

were computed for a certain scaling of and . Note that model contains model as a special
case. The closed model with switching times was analyzed in [2], where the authors computed
asymptotic approximations to (d). In [41,42] (c) was computed under various assumptions: in the
asymptotic limit , 0 , 1 . The size of the “switching time” parameter
significantly affects the asymptotics, and this shows that the introduction of is an important

consideration in modeling real systems. For model , the conditional moments (c) were computed
asymptotically in [63] for , 1 , and several cases of the parameters where

0, .
We also mention some work on the 1 model, which generalizes model by

allowing for a general (renewal) input. Approximations for (a) and (d) were obtained in [21] and
(b) was analyzed in [65]. For the 1 model with finite capacity (which generalizes
model ), (c) was computed in [68] and (d) appears in [69]. For this model is not known
explicitly, but asymptotic approximations for have been obtained in [70].

There are basically two asymptotic approaches that have been developed to analyze problems
of the form (3.2). The first is to use a generating function to transform over and then analyze the
resulting equation, which may be an ODE, PDE or a functional equation, depending on the specific
model and on the quantity that is to be computed. A second approach is to analyze (3.2) directly
after some appropriate scalings. The first approach was used in [2,55-58] and the second was used
in [16, 34, 41-42, 63-64]. Of course, where both are applicable they yield identical results, as is
shown in [22].

In the next section we also discuss related work on sojourn times in networks, which may
contain PS nodes.

4 Networks

Next we consider networks of queues. We will discuss (i) asymptotic expansions for the partition
function for large product form networks, (ii) the time needed for large queue lengths to build up,
(iii) bottleneck analysis, (iv) sojourn times in networks with overtaking, and (v) approximations
for non-product form networks.

4.1 Partition functions

To illustrate the basic ideas and results, we consider a closed BCMP network which has a single
class (chain) consisting of customers, a single IS (infinite server) node and single-server
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nodes with constant service rates. For this model the steady-state queue length distribution is well
known to have the product form

1
1 !

1 2 !
1
1 (4.1)

where is the number of customers in node , is the relative utilization and is the partition
function (normalizing constant)

1

!
1 2 !

1
1 (4.2)

The performance measures, such as mean queue lengths and throughputs, can be easily calculated
from . The numerical evaluation of is, however, difficult for and/or large. Various
ideas have been introduced to simplify the calculation of , such as computational algorithms (see
[3,7,48]) and asymptotic expansions using integral representation (see [46,49,50,52]).

In [39] we developed an asymptotic approach to treat networks where both the population
and the number of nodes are large. It has been shown in [3] that can be computed from

the recursion

1 1 ; 1 1 (4.3)

0 1; 1

0 1; 1

with . We have obtained asymptotic expansions for using the ray method
and asymptotic matching, applied to the difference equation (4.3). The asymptotics depend on the
relative sizes of the . For example, if each of the is 1 and the utilizations are not much
different from one another, our final result for is

0 1 log 0

1 1 0 0 1 1 2
1 2

(4.4)

where 0 1 is determined by

0
1 1

(4.5)

with 0 1. Equation (4.5) is thefixed-populationmean (FPM) approximation inwhich
the closed network is replaced by an equivalent open network, but with the network population
constrained to be . The unknown constant 0 in (4.5) represents the utilization in the IS node
of this open network. We show in [39] that (4.4) - (4.5), as well as the results derived under other
assumptions on , are very accurate numerically. We have extended this analysis to multi-class
networks with all single-server nodes [40], and to multi-class networks with IS node(s) [51].

18



4.2 Buildup of large queue lengths

The steady-state queue length distribution is easy to obtain for tandem Jackson networks consisting
of 1 queues in series. However, it proves much harder to analyze the busy period or
to compute the time until the network population becomes large. Recently, we have computed
asymptotic approximations to the mean time until the total population reaches for . In
a stable network with 1 1 , this is a rare event and the mean time grows
exponentially with . When 2 our final results take the form ([43])

1
1 1 2 ; (4.6)

1 1
1 3 sinh

1
; 1 2

Here [ ˜ 1 0 2 0 0], ˜ min : 1 2 , queue length in
node , max 1 2 , min 1 2 , 1 2 2, and 1 2 .
The second formula in (4.6) applies to the limit with 2 1

1 , and 0
corresponds to the case of identical nodes. The result (4.6) and the analogous formulae for 2
were obtained by applying singular perturbation methods to a -dimensional recursion equation.
Using such techniques, we have also computed the time until the network population is no longer
large, given a large initial value in [44].

4.3 Bottleneck analysis

Mean value analysis (MVA) computes mean performance measures for product-form networks,
without computing the partition function (see [60]). To illustrate the procedure, consider a single
class, closed network with population size and single-server nodes. Let be the
mean queue length at node for a network with population size . Then MVA corresponds to
the nonlinear iteration

[1 1 ]

1
[1 1 ]

; 1 1 (4.7)

where is the load at node and the initial condition is 0 0. A “bottleneck” node is one
where is largest. Since (4.7) may be difficult to compute if is very large, approximations have
been developed that assume a unique bottleneck ([61,62]). In particular, [62] develops a perturbation
method which scales (4.7) and expands in powers of 1. This approximation method
also applies to multi-class networks. However, it works poorly when there are 2 or more bottleneck
nodes. This is because the perturbation expansion becomes invalid if several of the are nearly
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equal. Recently, we have shown how to treat such non-uniformities. For example, assume that
nodes 1 and 2 are the bottlenecks with 1 2 3 . Then scaling ,

1 2 leads, to leading order in , to the ODE

1 2 1 2 2
1 ; 1 0 0 (4.8)

where 1 is the limit of 1 as 0, 1 2 2, 1 2 ,
and 2 2 1 as 0. (4.8) is a Ricatti equation whose solution is

1 2 1 2 (4.9)

The approximation based on (4.9) leads to accurate numerical results, regardless of the relative
sizes of 1, 2, and contains the single-node bottleneck approximations as limiting cases.

We have extended this approach to networks with many bottleneck nodes. There it is
necessary to solve a system of non-linear ODEs of the type (4.8), but this can nevertheless be
done explicitly. We can also treat multi-class networks near “switch-points,” which correspond to
regions where the bottleneck configuration changes ([45]).

4.4 Networks with overtaking

It is of interest to compute the sojourn time through a network of queues, as a customer goes
through the network along a specified path. This can be easily computed for (paths in) product-
form networks which are “overtake free.” This means that along the specified path, customers
cannot overtake others that are initially in front of them. Most networks are not overtake-free
as service disciplines such as processor-sharing, and also network topologies, allow customers
to overtake one another. The simplest examples of networks with overtaking were studied in
[4,10], but no explicit expressions could be obtained for the sojourn time distribution. In [38] we
considered a two-node network with an 1 PS node in series with a FIFO node. Asymptotic
approximations to the sojourn time moments were obtained, where it was assumed that as the
tagged customer entered the PS node, the number of customers in at least one of the nodes was
large. These results were shown to be in excellent agreement with simulations.

In [36,37] we considered networks with overtaking in the heavy traffic limit. In [37] we
analyzed the sojourn time distribution for tandem PS-FIFO and PS-PS queues, assuming that

1 1 2 . A similar analysis was done in [36] for a 3-node network where
overtaking was caused by the network topology. In each case we derived three-term asymptotic
approximations to the sojourn time density which gave simple quantitative measures of the effects
of overtaking. Our approach involved using generating functions and then analyzing the resulting
functional equations using singular perturbation ideas (e.g. scaling, matching).
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4.5 Non-product form networks

The analysis of these problems is difficult even for two coupled (Markovian) queues. Classic
examples of such problems are the shortest queue problem in [12], the fork-join model in [11],
and two parallel queues where one server helps the other during periods when one of the queues is
empty in [47]. Exact solutions are available ([6,9]) for some of these problems, but their analytic
complexity makes them difficult to interpret.

Multi-dimensional Markovian networks correspond to solving problems of the type (1.1)-
(1.2) with being multi-dimensional difference operators with complicated boundary con-
ditions. Diffusion approximations have been formulated for queueing networks ([13]), but their
solution again involves analyzing (1.1)-(1.2). Now is a partial-differential operator of second
order, but the “oblique-derivative” boundary conditions make these problems difficult.

We have developed a singular perturbation approach for obtaining the tails of the distribu-
tions for multi-dimensionalmodels. Such an approach can be applied either to difference equations
([27,38,44]) or to PDEs ([18,19]). For many of these problems there is no natural large or small
parameter, so that it seems that the only way to obtain simple formulas is to assume that space
and/or time is large. So far this approach has only been applied to two-dimensional models, but
we believe that these ideas can also be used on higher-dimensional networks.

5 Transient Behavior of Queues

It is generally much harder to solve for the transient distribution of a stochastic model than it is
to obtain the steady-state distribution. We show how to use perturbation methods to simplify the
former task. As an example we consider the Erlang loss model (the queue), which is
important in the analysis of blocking in teletraffic.

Let be the number of occupied servers, each with rate , and let 0 be the arrival rate.
Then Pr[ ] satisfies

0 1 1 0 ; 1 1 (5.1)

0 1 0 0 (5.2)

0 1 (5.3)

0 0; 0 0 (5.4)

where we assume that 0 servers are occupied at 0. We assume that the number of servers is
large and that the arrival rate 0 is also large. Thus we scale 0 with 1 as .
Letting , and 1, the scaled version of (5.1) is

(5.5)
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As shown in [17,66], the asymptotic analysis depends on the size of 0 , and we
must consider
(i) 1 (ii) 1 (iii) 1 1 2 .
Also, the problem is very sensitive to the initial condition 0 and we must consider the three cases
(a) 0 1 (b) 0 0 0 1 (c) 0 1
which correspond respectively to starting the process with only a few occupied servers, a fixed
fraction of the servers occupied, and with almost all the servers occupied. Thus there are nine cases
that must be analyzed. In addition, within a particular case of 0 , it is necessary to analyze
several regions in the (or ) plane. All these scales are treated in [17] if 1 and in [66]
if 1 or 1. Here we give a few of the main results.

Assume first that 1 and 0 0 1. We first analyze (5.5) for short times
and localize space near the initial condition by setting 0 0. To leading order
we obtain

0

0

2
(2 0 );

0 (5.6)

where is the modified Bessel function. Relation (5.6) corresponds to a free space birth-death
process with birth rate and death rate 0.

For 0 and 0 1, we obtain the approximation to using the ray method. We
set

[ 1 ] (5.7)

in (5.5) and find that , satisfy the PDEs

1 1 (5.8)

[
1
2

] (5.9)

These are analogous to the “eiconal” and “transport” equations of geometrical optics. They can be
solved using standard methods for PDEs. Both are first order equations, though (5.8) is nonlinear.
To specify uniquely the functions and , we must match the ray approximation to the short time
approximation (5.6). This leads to the final results

log 0 0 1 0 log 1 0 ;

0
1
2

0

1
1 0

1
1

2 4
; (5.10)

1
2 0(

0

1 0
)2

1 2

and . This approximation becomes invalid near the boundaries 0 1. There other
expansions must be constructed (see [17,66]). The latter boundary region is especially important
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if one wants an accurate approximation to the blocking probability . The leading order
approximation to this is

1 1 1
1 0 1
1 0 1

1
0 1

(5.11)

Note that this is different than setting 1 in (5.7), and again indicates the importance
of treating the various scales inherent to the problem.

Now we examine the steady-state limit of the ray approximation by letting . From
(5.10) we have 2 1 2 and log log . The exact stationary
distribution is

! 0 0 1
0 !

(5.12)

If 1, we obtain 0 as . Then expanding ! by Stirling’s formula, we see
that 2 1 2 , which is the same as the limit of the ray expansion as

(recall that 1, ).
When 1, the blocking probability is exponentially small for all times (cf. (5.11)).

Now we consider more heavily loaded systems which have 1 (again taking 0 0 1). For
this case the main result(s) for in [66] are (away from boundary and initial layers)

(5.13)

1 1 1 2

where 1 log log log and are as in (5.10). The second formula in
(5.13) is precisely the expansion of , as when 1 we have 0 1 1 ! .
In (5.13), is defined implicitly be the relation

( ) (5.14)

which defines a curve in the plane which passes through the point 1, log[
0 1 ]. The curve may be viewed as a “front” above which ( ) the process
forgets the initial condition and settles to its steady-state behavior. Below the front ( )
transient effects are still important.

Thus, our analysis of 1 and 1 reveals two mechanisms by which a process
approaches its steady state behavior. If 1, the ray approximation depended on time for all

, and approached the steady state smoothly as . When 1 there was a sharp
transition to the equilibrium distribution at . The case 1 is more complicated and is
treated in detail in [66].

The blocking probability now 1 0 0 1 has the asymptotic expansions

23



(a) log 0

1
1

1 1 1
1 0 1
1 0 1

1
0 1

; (5.15)

(b) log 0

1 1
! ( )

1
1 1

2 !

2 2 1 0 1 2

0 2 ;

(c) log 0

1
1

1

This shows that for times 1 the blocking probability is exponentially small, and
settles to its equilibrium value as passes through the critical time 1 . Note also that if 1,
0(1 1 ) 1, so that (5.15) becomes infinite (and is thus invalid) as 1 .

We believe that the type of structure discussed here (e.g. the front at ) is canonical
to many applied probability models. It has also been observed in the finite capacity 1 queue
and in the infinite capacity 1 queue, if we take the initial condition 0 0 to be large
([67]). These ideas should also apply to models in more than one space dimension; there the PDEs
(5.8)-(5.9) will involve time and, say, 2 space variable 1, 2. They will still be of the general
form (5.8)-(5.9) and can be readily solved.

Finally, we note that in [17,66] detailed numerical comparisons are presented, which show
that the various asymptotic approximations are in very good agreement with the exact (numerical)
values. This is true even for modest size systems which have, say, 10. Since this type of
asymptotics reveals much about the qualitative structure of the models, our results achieve both of
the goals outlined in section 1.

6 Open Problems and Research Directions

We have indicated how to use singular perturbation methods to analyze a variety of queueing
models. We have shown that such methods may be used to obtain asymptotic information for
models with general interarrival/service time distributions, state-dependent and time-dependent
queues, large product-form networks, non-product form networks, and analyzing time-dependent
behavior. Except for the work on large product-form networks, most of our work has involved
computing steady-state behavior for models in one or two dimensions, and transient behavior for
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one-dimensional models. We expect that these techniques may also be used on models in three
or more dimensions. For non-product form networks, very little is known for models in more
than two dimensions, even under Markovian assumptions on the arrival and service processes.
We believe that the “geometric optics” approach outlined in [18,19,66,67] should be useful for
computing asymptotically, steady-state probabilities inmore than twodimensions, and also transient
probabilities in more than one dimension. It should be possible to treat multi-dimensional non-
Markovian models using these methods. We are presently investigating such possibilities.

We have shown that the methods discussed are general enough to be used on many specific
problems in queueing theory. At the same time, our results show that they capture the subtle
structure of the individual model and thus lead to better understanding of the differences between
models. A good applied mathematics technique should be applicable to a large class of problems,
yet it should also be able to lead to an in-depth understanding of specific problems. In this article we
hope that we have demonstrated that perturbation methods satisfy both of these essential criteria.
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