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ABSTRACT

Asymptotic approximations are constructed for the performance measures of product form
queueing networks consisting of single server, fixed rate nodes with large populations. The ap-
proximations are constructed by applying singular perturbation methods to the recursion equa-
tions of Mean Value Analysis. Networks with a single job class are studied first to illustrate the
use of perturbation techniques. The leading term in the approximation is related to bottleneck
analysis, but fails to be accurate if there is more than one bottleneck node. A uniform approx-
imation is constructed which is valid for networks with manybottleneck nodes. The accuracy
of the uniform approximation is demonstrated for both smalland large population sizes. Next,
multiclass networks are considered. The leading term in theasymptotic approximation is again
related to bottleneck analysis but fails to be valid across “switching surfaces”. Across these the
bottleneck nodes of the network change as a function of the fraction of jobs in the different job
classes. A boundary layer correction is constructed near the switching surfaces which provides
an asymptotic connection across the switching surfaces. Numerical examples are presented to
demonstrate the accuracy of the results. We illustrate the asymptotic approach on some simple
networks and indicate how to treat more complicated problems.

1 Introduction

Closed, product form queueing networks are widely used as models for the performance of com-

puter and communications networks. For this class of networks, an exact expression for the sta-

tionary queue length distribution is known. Though the stationary distribution for product form

networks has a simple analytic formula, calculation of performance measures, such as mean queue

lengths, mean response times and throughputs, is computationally difficult for networks with large

populations. To facilitate the calculation of these performance measures, a number of computa-

tional algorithms have been developed which greatly reducethe computational cost.

The computational algorithms can be divided into two general classes: (i) computing the

normalization constant for the product form solution or (ii) computing the performance measures

directly. Algorithms that compute the normalization constant include the Convolution algorithm

by Buzen [?] and the RECAL algorithm developed by Conway and Georganas [?]. Algorithms that
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compute performance measures directly include Mean Value Analysis (MVA) discovered by Reiser

and Lavenberg [?] and the distribution analysis by chain algorithm (DAC) by Souza e Silva and

Lavenberg [?]. Monte Carlo methods were used to compute the performance measures by Ross,

Tsang and Wang [?]. Even though these computational algorithms are improvements over direct

calculation methods, each has disadvantages and often requires a large number of calculations for

networks with large populations.

Another approach is to develop approximations for the normalization constant or the per-

formance measures. Bounds on the performance measures are the simplest approximations to

compute (see Zahorjan, Sevcik , Eager, and Galler [?]). Asymptotic bound analysis (ABA) pro-

vides an upper (lower) bound on the throughput (mean response time) based on the assumption

that either no queues are formed or the bottleneck node has utilization equal to 1. Balanced job

bounds (BJB) provide both upper and lower bounds on the throughput and mean response time.

These bounds are obtained by replacing the original networkby a balanced network with all nodes

identical.

Asymptotic expansions of the normalization constant were obtained by McKenna and Mitra

[?], [?]. They obtain approximations by first developing an integral representation to the normal-

ization constant and then expanding the integral as an asymptotic series in inverse powers of a

large parameter, the total number of jobs circulating in thesystem. Knessl and Tier [?, ?] and Mei

and Tier [?] computed explicitly the leading term in the asymptotic expansion of the normalization

constant when both the number of jobs and the number of nodes in the network are large. Their

work is based on applying the ray method (see Keller [?]) to a scaled form of the Convolution

algorithm. Kogan [?, ?] constructed asymptotic approximations to the normalization constant by

using the inversion integral for the generating function ofthe normalization constant.

Asymptotic approximations have some advantages over computational algorithms. They

yield results for very large networks without requiring much computing time, and they also lead to

formulas that give qualitative insights into the behavior of the performance measures. Asymptotic

formulas often clearly show how the system behaves in terms of the variables and/or parameters in

the model.

Asymptotic approximations to the performance measures of closed, product form queueing

networks with large populations can also be constructed using the MVA Algorithm. As described

above, MVA directly computes mean queue lengths, mean response times and throughputs using

a recursion in the number of jobs in the network. It relies on the key result that the mean queue

lengths seen by arrivals are equal to the mean queue lengths in the same closed queueing network

from which the arriving customer has been removed (arrival theorem). Unfortunately, direct ap-

plication of the finite MVA recursion has a high computational cost if there are many jobs and job

classes. An approximate version of MVA was developed by Schweitzer in [?] in which an iter-
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ation is developed by guessing the performance measures forthe full network and then using an

approximation to compute the measures for a network with oneless job. Finally, MVA is used to

recompute the measures for the full network. Based on this iteration, approximations to the perfor-

mance measures are obtained. Thus, an approximate MVA algorithm is used and the performance

measures are not computed for all size networks. A refinementof this approximation, called the

Linearizer, was given in Chandy and Neuse [?].

A systematic approach to constructing approximations for networks with a unique bottle-

neck was given by Schweitzer [?] and by Schweitzer, Serazzi and Broglia [?]. Here a perturbation

scheme was presented based on MVA for networks with large populations which also agrees with

the approximate MVA algorithm presented by Schweitzer [?]. Further work using the perturbation

scheme was presented Balbo and Serazzi [?, ?]. The leading term in these approximation provides

an asymptotic bottleneck analysis of the network and the higher order terms provide corrections to

the standard bottleneck analysis. However, it was observedthat the perturbation solution worked

poorly when there were two or more bottleneck nodes. In multiclass networks, the bottleneck

configuration can change as a function of the fraction of jobsin each class. The termswitching

surfacesof bottlenecks was used in Schweitzer, Serazzi and Broglia [?] to describe critical param-

eter values where the bottlenecks change. On and near these switching surfaces, the perturbation

expansion develops a non-uniformity and is no longer valid.

Our goal is to re-examine the perturbation scheme of Schweitzer [?] and Schweitzer, Ser-

azzi, and Broglia [?] and present a new analysis to correct the non-uniformitiesthat develop at

the switching surfaces or when there are multiple bottleneck nodes. To do so, we use a singular

perturbation approach which relies on the construction of aboundary layer correction in the vicin-

ity of these switching surfaces. In contrast to computational algorithms, our results yield explicit

formulas for the performance measures.

The paper is organized as follows. In Section 2, we illustrate our approach for single class

networks. We first present an asymptotic solution as in Schweitzer and Schweitzer, Serazzi, and

Broglia [?, ?] and then construct a uniform approximation that is valid ifthere are multiple bottle-

neck nodes and for all values of the parameters. In addition,we show that our uniform approxima-

tion agrees with the asymptotic expansion of an exact solution given in Schweitzer [?]. Numerical

results are presented to illustrate the accuracy of the approximation. Multiclass networks are con-

sidered in Section 3. Here we analyze a network with two nodesand two job classes, to illustrate

the methods. In Section 4 we discuss the results and indicatehow to treat more complicated net-

works.
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2 Single Class Networks

We consider a product form queueing network with a single jobclass andK single server, fixed

rate nodes. There areM jobs circulating in the network. The service time at nodei is exponentially

distributed with parameterµi. The visit ratio at nodei is vi where the visit ratio is equal to one at

some distinguished node. The total demand at nodei for an average job is the network is defined

to beDi = vi/µi.

The MVA algorithm is based on a recursion formed by adding onejob to the network

per iteration until the total number of jobs equalsM . The following performance measures are

computed as a function of the population sizem:

Ti(m) = mean response time at nodei

Ui(m) = utilization of nodei

Ni(m) = mean queue length at nodei

Xi(m) = throughput at nodei

X(m) = system throughput measured at distinguished node

for m = 1, . . . , M . The full set of equations that comprise MVA are then given by:

I. Arrival Theorem

Ti(m) =
1

µi
(1 + Ni(m − 1))

II. Little’s Law

X(m) =
m

∑K
k=1 vkTk(m)

III. Forced Flow Law

Xi(m) = viX(m)

IV. UpdateNi and repeatI

Ni(m) = Xi(m)Ti(m).

The initial condition is

Ni(0) = 0

and the mean queue lengths must satisfy
K
∑

i=1

Ni(m) = m. (2.1)

A more compact form of the iteration can be formed by not directly computing some of the per-

formance measures, i.e. combine the above equations, to yield:

Ni(m) = X(m)Di(1 + Ni(m − 1)), 1 ≤ i ≤ K (2.2)

X(m) =
m

∑K
k=1 Dk(1 + Nk(m − 1))

, 1 ≤ m ≤ M. (2.3)
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Of course, these equations could be simplified further by eliminating the throughputX(m).

2.1 Perturbation Method of Schweitzer

We consider a network as above withM large. We expect that as the number of jobs in the

network increases, and becomes very large, that one node or asmall set of nodes becomes saturated

first, i.e. utilization≈ 1. This set of nodes is called thebottleneck set(see Schweitzer, Serazzi,

and Broglia[?]) and is identified as the nodes with the maximum loadDi. We assume that the

bottleneck set consists only of node 1 and we consider the perturbation approach in Schweitzer,

Serazzi, and Broglia [?]. We introduce the following scalings

ε = 1/M, z = m/M = εm, hi(z) = Ni(m)/M

into the MVA equations (??)-(??) to obtain the scaled recursion

hi(z) − X(z)Dihi(z − ε) = εX(z)Di (2.4)

X(z) =
z

∑

i [Dihi(z − ε) + εDi]
. (2.5)

The initial condition becomes

hi(0) = 0 (2.6)

and (??) is now
K
∑

i=1

hi(z) = z. (2.7)

The stability condition is that the utilization in each nodebe≤ 1 so that

XDi ≤ 1, all i. (2.8)

We seek a regular perturbation expansion as in [?] in the form

hi(z) ∼ h0
i (z) + εh1

i (z) + · · · (2.9)

X(z) ∼ X0 + εX1 + · · · .

We substitute (??) into (??)-(??) to obtain to leading order

h0
i (z)[1 − DiX

0] = 0, i = 1, . . . , K (2.10)

and at the next order

h1
i (z)[1 − DiX

0] = Di(X
0 + X1h0

i − X0 dh0
i

dz
) (2.11)
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For eachi, we can choose one of the following

h0
i (z) = 0 or X0 = 1/Di.

We can use bottleneck analysis to help determine the proper choice. Since node 1 is the unique

bottleneck with

D1 = max
i

Di,

and taking into account (??), we choose1−D1X
0 = 0. Hence, the leading order system throughput

is

X0 = 1/D1. (2.12)

For i 6= 1, we haveXDi < 1 and we choose

h0
i (z) = 0

and using (??), we then have

h0
1(z) = z.

Using the above in (??), we find that theO(ε) equation is

h1
i

(

1 − Di

D1

)

= X1Dih
0
i +

Di

D1
(1 − δi1)

whereδij is the Kronecker delta. We now must chooseX1 ≡ 0 and, fori 6= 1, we obtain

h1
i

(

1 − Di

D1

)

= Di/D1 = Ui

with the solution

h1
i =

Ui

1 − Ui

, i 6= 1.

The termh1
1(z) is then obtained using (??). At this order the series truncates and no further cor-

rections can be computed. We summarize the results.

Result 1 (Schweitzer) ForM ≫ 1 and node 1 the unique bottleneck

h1(z) ∼ z − ε
K
∑

j=2

Uj

1 − Uj

; hi(z) ∼ ε
Ui

1 − Ui

, i 6= 1

X(z) ∼ 1/D1.

In terms of the original variables:

N1(m) ∼ m −
K
∑

j=2

Uj

1 − Uj

; Ni(m) ∼ Ui

1 − Ui

, i 6= 1

X(m) ∼ 1/D1
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where

Ui ≡
Di

D1

= utilization.

This approximation is an improvement over asymptotic boundanalysis (Zahorjan, Sevcik ,

Eager, and Galler [?]) since we obtain a correction in the expansion for the mean number in each

node. We do not obtain a correction for the throughput.

We observe that if anyDi ≈ D1, i 6= 1, the above expansions breakdown due to the1 − Ui

terms in the denominators of theO(ε) terms. This will occur if the bottleneck set contains more

than one node or if the loads of other nodes are “close” to the demand of the bottleneck node.

This is important from a numerical point of view. An exact solution to the recursion (??)-(??)

was obtained in Schweitzer [?]. The asymptotic solution described in Result 1 can be obtained

by introducing our scaling to the result in Schweitzer [?] and expanding forM ≫ 1 for the case

of a unique bottleneck. To illustrate the breakdown in the expansions as the demand of one node

0 5 10 15 20
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1(

m
)

Figure 1: Graphs ofN1(m) as a function ofm. Exact MVA result =� and approximation based
on Result 1 = — for a network with one class and 4 nodes with loads = 2.0, 1.0, 0.8, and 0.5.

approaches the demand of the bottleneck node, we present graphs of the mean number in the

bottleneck nodeN1(m) as a function ofm in Figures 1-3. The total population in a network with

4 nodes isM = 20 so thatε = 0.05. Node 1 is the bottleneck node for this network. In Figure 1,

the nodes have loads given by [2.0, 1.0, 0.8, 0.5], respectively, and we see that the approximation

is reasonably good form > 7. However, if we increase the load in node 2 to 1.5 as in Figure 2, the

approximation is only useful form > 15. Finally, in Figure 3, we increase the demand in node 2 to

1.9 and find the approximation described in Result 1 in not useful. It is important to note that the

demand in node 2 does not have to equal the demand in the bottleneck node 1 for the expansion to

break down. For all three examples, the throughputX = 0.5 for all m, based on Result 1.
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Figure 2: Graphs ofN1(m) as a function ofm. Exact MVA result =� and approximation based
on Result 1 = — for a network with one class and 4 nodes with loads = 2.0, 1.5, 0.8, and 0.5.
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Figure 3: Graphs ofN1(m) as a function ofm. Exact MVA result =� and approximation based
on Result 1 = — for a network with one class and 4 nodes with loads = 2.0, 1.9, 0.8, and 0.5.
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In order to obtain an improved approximation, we could develop approximations for the

cases when there are two, three, or more nodes in the bottleneck set. However, each of these

approximations would still break down if the demand of a non-bottleneck node was close to the

demand of the nodes in the bottleneck set. A better approach is to develop a uniform expansion

which is valid for all values of the demands and for any numberof nodes in the bottleneck set.

2.2 The Uniform Approximation

We now develop a uniform approximation valid for any networkwith K nodes regardless of the

values of the demandsDi, including networks with multiple bottlenecks. We introduce the follow-

ing scaling:

Di ≡ D + εai, i = 1, 2, · · · , K

D =
1

K

K
∑

k=1

Dk,
K
∑

i=1

ai = 0.

We use the single equation form of recursion (combining (??) and (??)) with the above scaling to

obtain
{

∑

j

[(D + εaj)hj(z − ε) + ε(D + εaj)]

}

hi(z) − (D + εai)zhi(z − ε) = εzDi (2.13)

with the conditions

hi(0) = 0, h1 + · · ·+ hK = z.

We assume an asymptotic solution of the form

hi(z) ∼ Hi(z) + εGi(z) + · · · (2.14)

and substitute (??) into the recursion (??) to obtain the following equations at the first two orders

in ε

zDH ′
i(z) − zaiHi(z) + [D(K − 1) +

∑K
k=1 akHk(z)]Hi(z) = zD, i = 1, · · · , K (2.15)

zDG′
i(z) + [(K − 1)D − aiz +

∑K
k=1 akHk(z)]Gi(z) +

(

∑K
k=1 akGk(z)

)

Hi(z) =

zai[1 − H ′
i(z)] + z

2
DH ′′

i (z) + Hi(z)
∑K

k=1 akH
′
k(z). (2.16)

To solve (??), we first reduce the number of unknown functions toK − 1 by using the fact that

HK = z −
K−1
∑

k=1

Hk, aK = −(a1 + a2 + · · · + aK−1)
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to obtain the nonlinear system of ordinary differential equations

zDH ′
i(z) − zaiHi(z) + [D(K − 1) +

K−1
∑

k=1

akHk(z) (2.17)

+aK(z −
∑K−1

k=1 Hk(z))]Hi(z) = zD, i = 1, · · · , K − 1

with the initial conditions

Hi(0) = 0.

To solve (??), we set

Hi =
D

aK − ai

+ fi(z), fi(0) =
D

ai − aK

to obtain

f ′
i +

[

aK − ai
D +

U(z)
Dz

]

fi =
U(z)

z(ai − aK)
, i = 1, · · · , K − 1

(2.18)

U(z) =
∑K−1

k=1 (ak − aK)fk, U(0) = D(K − 1).

The construction of the solution to the system (??) is given in the Appendix. We use (??) for fi

and hence obtainHi(z), which gives, fori = 1, · · · , K

Hi(z) =
R(z)

S(z)
(2.19)

where

S(z) =
∑K

l=1
ezal/D

P l
, P l =

∏K
j=1

j 6=l
(al − aj),

(2.20)

R(z) = zezai/D

P i
+ D

∑K
l=1

l6=i

1

P l

[

ezal/D − ezai/D

al − ai

]

Next we solve the linear system (??) to obtain the correction termGi(z). We first simplify (??) by

introducingS(z) (cf. (??)) to obtain the linear ODE system

z[D
d

dz
− ai + D

S ′

S
]Gi + Hi

K
∑

l=1

alGl (2.21)

= zai −
1

2
zDH ′′

i − zD
S ′

S
H ′

i + DHi
S ′

S
,

with the conditions

Gi(0) = 0,
K
∑

i=1

Gi(z) = 0.
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Here we have also written equation (??), for the leading termHi(z), as

DH ′
i − aiHi +

S ′

S
DHi = D.

We construct the solution to (??) by setting

Gi(z) = −1 + A0(z)Hi + A1(z)H ′
i + A2(z)H ′′

i (2.22)

and substituting into (??). We find, after a long calculation, that

A0(z) =
S ′

S
, A1(z) = K − z

S ′

S
A2(z) = −z

2
. (2.23)

Result 2 A uniform approximation for a closed, single class queueingnetwork consisting ofK

fixed rate nodes andM ≫ 1 is given by

hi(z) ∼ Hi(z) + ε

(

−1 + A0(z)Hi + A1(z)H ′
i + A2(z)H ′′

i

)

+ · · · (2.24)

whereHi(z) are defined in (??)-(??) and Aj(z) are defined in (??). An approximation to the

throughputX(z) can then be obtained by substituting (??) into (??).

The formula (??) is also valid for networks in which some or all of the nodes have the same

demands, i.e.ai = aj for somei andj. For such networks, a new formula forhi(z) can be obtained

in the limit asai → aj , etc. For example, if all the nodes have the same demand (i.e.a balanced

network) then we set

aj = a, j = 1, . . . , K.

We find that

S(z) → 1

(K − 1)!
eza/D zK−1

DK−1
, R(z) → 1

K!
eza/D zK

DK−1

so that

Hi(z) → z

K
, Gi(z) → 0.

and our result (??) reduces to the exact solution for a balanced network, namely,

hi(z) =
z

K

We illustrate in Figure 4 the uniform approximation for the parameters in Figure 3, in

which the approximation in Result 1 was the worst. The uniform result is accurate for all values of

m ≤ M (see Table 1). In Figure 5, we graph the throughput using the uniform expansion in Result

2 along with the bounds on the throughput using ABA and BJB (see Zahorjan, Sevcik, Eager, and

Galler [?]). The uniform result is clearly an improvement over the non-uniform expansion, as well

as over ABA and BJB methods, and is accurate for allm ≤ M .
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Figure 4: Graphs ofN1(m) as a function ofm. Exact MVA result =� and approximation based
on Result 2 = — for the network with one class and 4 nodes in Figure 3.
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Figure 5: Graphs ofX(m) as a function ofm using the exact MVA result =�, asymptotic approx-
imation based on Result 2 = —, ABA = – – and BJB = —· · — for the network with one class and
4 nodes in Figure 3.
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Table 1:N1(m) for the example in Figure 4

m Exact Asymptotic
0 0 0
1 .3846 .3839
2 .8103 .8139
3 1.2690 1.2793
4 1.7537 1.7708
5 2.2592 2.2813
6 2.7818 2.8062
7 3.3187 3.3426
8 3.8682 3.8889
9 4.4291 4.4440
10 5.0005 5.0074
11 5.5819 5.5786
12 6.1728 6.1574
13 6.7728 6.7437
14 7.3818 7.3372
15 7.9995 7.9379
16 8.6257 8.5458
17 9.2603 9.1608
18 9.9032 9.7829
19 10.5542 10.4120

3 Multiple Class Networks

We now consider a multiclass, closed product form queueing network consisting ofK single server,

fixed-rate nodes. There areR job classes (chains) withMr jobs in classr. The total number of

jobs in the network is

M =
∑

r

Mr

and the loads are defined to be

Dri = load of classr jobs at nodei.

The performance measures in the compact form of MVA are functions of the population vector

~m = (m1, m2, · · · , mR) which we define as

Ni(~m) = mean queue length at nodei

Xr(~m) = system throughput - classr.
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The MVA algorithm is now given by

Xr(~m) =
mr

∑K
k=1 Drk[1 + Nk(~m − ~er)]

, r = 1, · · · , R

(3.25)

Nk(~m) =
R
∑

r=1

DrkXr(~m)[1 + Nk(~m − ~er)], k = 1, · · · , K,

with the initial conditions

Nk(~0) = 0.

Here~er is a vector of dimensionR with 1 in therth component and zeros elsewhere.

We introduce the following scaling into (??)

zr = εmr, hk(~z) = εNk(~m); ε = 1/M (3.26)

to obtain the scaled equations

Xr(~z) =
zr

∑K
k=1 Drk[ε + hk(~z − ε~er)]

, r = 1, · · · , R

(3.27)

hk(~z) =

R
∑

r=1

DrkXr(~z)[ε + hk(~z − ε~er)], k = 1, · · · , K.

The initial condition is again

hk(~0) = 0, k = 1, · · · , K. (3.28)

We fix z1 + z2 + · · ·+ zR = 1 and seek an asymptotic solution of the form

hk(~z) ∼ h0
k(~z) + εh1

k(~z) + · · ·
(3.29)

Xr(~z) ∼ X0
r + εX1

r + · · · .

The equation for the leading term is given by

(1 − U0
k )h0

k = 0, k = 1, · · · , K (3.30)

where the utilizationU0
k is defined by

U0
k =

R
∑

r=1

X0
r Drk. (3.31)

Clearly, there are numerous possible solutions to (??). As has been shown in [?]-[?], the choice of

solution as well as the bottleneck set depends on the value of~z. The points where the bottleneck
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set changes are called switching surfaces in Schweitzer [?]. The analysis of (??)-(??) away from

the switching surfaces was given in [?]-[?]. However, their approximations, defined by (??), fail

to be valid at or near the switching surfaces. Our goal is to provide a new approximation which

is valid near the switching surfaces and is consistent with the expansions derived in [?]-[?] valid

away from these surfaces. To simplify our presentation, we first consider the caseR = 2 and

K = 2. This will illustrate the types of asymptotic behavior thatarise.

3.1 MVA Algorithm - R = 2 and K = 2

For the case whenR = 2 andK = 2, the MVA algorithm (??)-(??) reduces to the system of

equations

X1 =
m1

D11[1 + N1(m1 − 1, m2)] + D12[1 + N2(m1 − 1, m2)]

X2 =
m2

D21[1 + N1(m1, m2 − 1)] + D22[1 + N2(m1, m2 − 1)]

(3.32)

N1(m1, m2) = X1D11[1 + N1(m1 − 1, m2)] + X2D21[1 + N1(m1, m2 − 1)]

N2(m1, m2) = X1D12[1 + N2(m1 − 1, m2)] + X2D22[1 + N2(m1, m2 − 1)]

with the initial conditions

N1(0, 0) = 0, N2(0, 0) = 0.

In addition, the total population in the network must satisfy

N1(m1, m2) + N2(m1, m2) = m1 + m2.

We are interested in the behavior forM ≫ 1 so we introduce the following scalings into (??)

ε = 1/M, M = M1 + M2

zi = ni/M = εni

hi(z1, z2) = Ni(m1, m2)/M
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which leads to the scaled MVA recursion

h1(z1, z2) = X1D11[ε + h1(z1 − ε, z2)] + X2D21[ε + h1(z1, z2 − ε)]

h2(z1, z2) = X1D12[ε + h2(z1 − ε, z2)] + X2D22[ε + h2(z1, z2 − ε)]

(3.33)

X1 =
z1

D11[ε + h1(z1 − ε, z2)] + D12[ε + h2(z1 − ε, z2)]

X2 =
z2

D21[ε + h1(z1, z2 − ε)] + D22[ε + h2(z1, z2 − ε)]
.

The initial conditions and normalization conditions are now

h1(0, 0) = 0, h2(0, 0) = 0,

h1(z1, z2) + h2(z1, z2) = z1 + z2.

The recursion is defined on the domain0 ≤ z1 + z2 ≤ 1. As was done in [?]-[?], we restrict our

analysis to the linez1 + z2 = 1, i.e. total population= M ≫ 1 so that

h1 + h2 = 1. (3.34)

We assume an asymptotic solution forε ≪ 1 in the form

hj ∼ h0
j + εh1

j + · · · , j = 1, 2,

(3.35)

Xr ∼ X0
r + εX1

r + · · · , r = 1, 2

and substitute into (??) to obtain to leading order (cf. (??))

(U0
1 − 1)h0

1 = 0

(3.36)

(U0
2 − 1)h0

2 = 0

and to the next order (O(ε))

(U0
1 − 1)h1

1 = X0
1D11∂z1

h0
1 + X0

2D21∂z2
h0

1 − U1
1 h0

1 − U0
1

(3.37)

(U0
2 − 1)h1

2 = X0
1D12∂z1

h0
2 + X0

2D22∂z2
h0

2 − U1
2 h0

2 − U0
2 .
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HereU i
j is theith term in the expansion of the utilization at nodej and is defined by

U i
j ≡ D1jX

i
1 + D2jX

i
2, j = 1, 2. (3.38)

whereU0
j ≤ 1. We also need to expand the equations in (??) for the throughput. We obtain to

leading order

X0
1 =

z1

D11h
0
1 + D12h

0
2

, X0
2 =

z2

D21h
0
1 + D22h

0
2

(3.39)

and toO(ε), after using (??), we find

X1
1 = −z1

D11 + (D11 − D12)(h
1
1 − ∂z1

h0
1)

(D11h
0
1 + D12h

0
2)

2

(3.40)

X1
2 = −z2

D21 + (D21 − D22)(h
1
1 − ∂z2

h0
1)

(D21h
0
1 + D22h

0
2)

2 .

There are three possible solutions of the leading order equations (??):

1. Node 1 in Bottleneck Set: h0
2 = 0; U0

1 = 1

2. Node 2 in Bottleneck Set: h0
1 = 0; U0

2 = 1

3. Nodes 1 and 2 in Bottleneck Set: U0
1 = 1; U0

2 = 1.

The nodes in the bottleneck set, and hence the form of the leading term in the expansion, depend

on the values ofz1 andz2, i.e. the fraction of jobs in each of the job classes. We now consider each

of the cases separately.

Case 1: In this case, node 1 is the only node in the bottleneck set and we chooseh0
2 = 0; U0

1 = 1.

Using (??), we find thath0
1 = 1. We now use the throughput equations in (??), taking into account

the leading terms forh0
j , to obtain

X0
1 =

z1

D11
; X0

2 =
z2

D21
. (3.41)

We require that the utilization at the non-bottleneck node 2be< 1, hence

U0
2 =

D12

D11

z1 +
D22

D21

z2 < 1 (3.42)

which leads to the following restriction on the value ofz1

z1 > z∗1 ≡ D11(D22 − D21)

∆
, ∆ ≡ D11D22 − D12D21 > 0 (3.43)

z1 < z∗1 , ∆ < 0. (3.44)

At the pointz1 = z∗1 , U0
2 = 1 so that node 2 is now also a bottleneck node. We refer toz∗1 as a

switching point(Schweitzer [?]) since the elements in the bottleneck set change at this point. The
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most interesting case is when the switching point lies in theinterval (0,1) which occurs under the

conditions

D11 > D12, D22 > D21 if ∆ > 0 (3.45)

D11 < D12, D22 < D21 if ∆ < 0. (3.46)

When the switching point lies outside of the interval [0,1],it plays no role in the asymptotics.

The correction terms, i.e. next order inε, can be easily obtained usingMaple. Using the

above results in (??), we obtain

U1
1 = −1, h1

2 =
U0

2

1 − U0
2

= −1 +
D11D21

∆(z1 − z∗1)
(3.47)

and using (??)

h1
1 = −h1

2. (3.48)

We can then use (??) to obtain the next term in the throughput. To summarize, we have found that

h2 ∼ ε
[

−1 + D11D21

∆(z1−z∗
1
)

]

+ ε2 D11D21(∆z2
1 + 2D12D21z1 − D11D22)

∆2(z1 − z∗1)
3

h1 = 1 − h2

X1 ∼ z1
D11

(

1 − ε z1 − 1
z1 − z∗1

)

, X2 ∼ z2
D21

(

1 − ε z1

z1 − z∗1

)

U1 = 1 + O(ε2), U2 ∼ U0
2 = 1 − ∆

D11D21
(z1 − z∗1)

which holds forz1
<
> z∗1 when∆ <

> 0.

Case 2: The analysis when node 2 is the only bottleneck is the same as in case 1 so we merely

summarize the results:

h1 ∼ ε

[

−1 − D12D22

∆(z1 − z∗∗1 )

]

− ε2D12D22(∆z2
1 − 2D11D22z1 + D12D21)

∆2(z1 − z∗∗1 )3

h2 = 1 − h1

X1 ∼ z1
D12

(

1 + ε 1 − z1

z1 − z∗∗1

)

, X2 ∼ z2
D22

(

1 − ε z1

z1 − z∗∗1

)

U2 = 1 + O(ε2), U1 ∼ U0
1 = 1 − ∆

D12D22
(z∗∗1 − z1)

which holds for

z1 < z∗∗1 ≡ D12(D22 − D21)

∆
, for ∆ > 0 (3.49)

z1 > z∗∗1 for ∆ < 0 (3.50)
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The switching pointsz∗1 andz∗∗1 satisfies the conditions

0 < z∗∗1 < z∗1 < 1 if ∆ > 0, D11 > D12, D22 > D21, (3.51)

0 < z∗1 < z∗∗1 < 1 if ∆ < 0, D11 < D12, D22 < D21. (3.52)

We also observe that when∆ = 0 only node 1 or node 2 is in the bottleneck set depending upon

which node has the largest values of the loadsDri.

We will assume that (??) holds, i.e. the switching points satisfy (??), and will only summa-

rize the final results when (??) holds, since the analysis is similar.

Case 3: When both node 1 and node 2 are contained in the bottleneck set, we have

U0
1 ≡ D11X

0
1 + D21X

0
2 = 1

(3.53)

U0
2 ≡ D12X

0
1 + D22X

0
2 = 1.

Solving (??), we find that the limiting throughputs are given by

X0
1 =

D22 − D21

∆
, X0

2 =
D11 − D12

∆
. (3.54)

both of which are positive when either condition (??) or (??) holds. We can then use the equations

for hj in (??) to obtain if∆ > 0

h0
1 =

z1 − z∗∗1

z∗1 − z∗∗1

, h0
2 =

z∗1 − z1

z∗1 − z∗∗1

. (3.55)

Summary: We summarize the leading term in the asymptotic expansions(??).

∆ > 0, D11 > D12, D22 > D21:

h0
1 =







0, 0 < z1 < z∗∗1
z1−z∗∗

1

z∗
1
−z∗∗

1

, z∗∗1 < z1 < z∗1
1, z∗1 < z1 < 1

X0
1 =







z1

D12
, 0 < z1 < z∗∗1

D22−D21

∆
, z∗∗1 < z1 < z∗1

z1

D11

, z∗1 < z1 < 1.
h0

2 = 1 − h0
1.

∆ < 0, D11 < D12, D22 < D21:

h0
1 =







1, 0 < z1 < z∗1
z∗∗
1

−z1

z∗∗
1

−z∗
1

, z∗1 < z1 < z∗∗1

0, z∗∗1 < z1 < 1,

X0
1 =







z1

D11
, 0 < z1 < z∗1

D22−D21

∆
, z∗1 < z1 < z∗∗1

z1

D12
, z∗∗1 < z1 < 1.

h0
2 = 1 − h0

1.

We observe that the leading term agrees with the result obtained by Asymptotic Bound

Analysis described above, and the second term provides a correction to it. However, the next term

in the asymptotic expansion forhj has a singularity asz1 approaches a switching point (z∗∗1 or z∗1).

Hence, the asymptotic expansion in the form (??) is no longer valid in the neighborhood of the a

switching point. This behavior was previously pointed out in [?]-[?]. In singular perturbation prob-

lems, such a singularity indicates the need for a boundary layer correction, i.e. a new expansion

form, at or near the switching point. This new analysis is described below.
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3.2 Approximation near a Switching Point

As we have seen in the previous section, the “outer” solutionin the form (??) is no longer valid

in the neighborhood of a switching point. To find the proper asymptotic behavior nearz∗∗1 , we

introduce the following new scaling

z1 = z∗∗1 +
√

εη, z2 = 1 − z∗∗1 −
√

εη, (3.56)

wherez1 + z2 = 1. In addition, we seek a boundary layer solution of the form

h1 =
√

εg(η; ε) =
√

ε[g0 +
√

εg1 + . . . ]

h2 = 1 −
√

εg(η; ε) = 1 −
√

ε[g0 +
√

εg1 + . . . ]

(3.57)

X1 = X0
1 +

√
εX

(1)
1 + . . .

X2 = X0
2 +

√
εX

(1)
2 + . . . .

We use the scaling (??) and the solution form (??) in (??) and expand forε ≪ 1. The expansion

of the equation forh1 leads to, atO(
√

ε),

[D21X
0
2 − D11X

0
1 ]g′

0 + [D21X
(1)
2 + D11X

(1)
1 ]g0 + 1 = 0 (3.58)

and atO(ε)

[D21X
(1)
2 − D11X

(1)
1 ]g′

1 + [D11X
(1)
1 + D21X

(1)
2 ]g1

+D11X
(1)
1 + D21X

(1)
2 + [D11X

(2)
1 + D21X

(2)
2 ]g0

+[−D11X
(1)
1 + D21X

(1)
2 ]g′

0 + 1
2
g′′
0 = 0. (3.59)

Here we have used the fact theU0
1 = 1 and (??) to simplify the equations. We next expand the

throughput equations in (??) to obtain, for class 1,

D12X
0
1 = z∗∗1

D12X
(1)
1 + (D11 − D12)g0X

0
1 = η (3.60)

D12X
(2)
1 + (D11 − D12)g0X

(1)
1 + [D11 + (D11 − D12)(g1 − g′

0)]X
0
1 = 0

and for class 2

D22X
0
2 = 1 − z∗∗1

D22X
(1)
2 + (D21 − D22)g0X

0
2 = −η (3.61)

D22X
(2)
2 + (D21 − D22)g0X

(1)
2 + [D21 + (D21 − D22)(g1 + g′

0)]X
0
2 = 0.

20



We can solve forX(1)
1 and X

(1)
2 in terms ofX0

1 and X0
2 , which are known, and the unknown

functiong0. We then substitute these results into (??) to obtain the leading order equation

Ag′
0 + Bηg0 + Cg2

0 + 1 = 0 (3.62)

where

A ≡ D21X
0
2 − D11X

0
1 ,

B ≡ D11

D12
− D21

D22
=

∆

D12D22
(3.63)

C ≡ D11X
0
1 (1 − D11

D12
) + D21X

0
2 (1 − D21

D22
).

The equation forg1 is obtained from (??), by first solving for the throughput correction terms as

functions ofg0 andX0
j in (??)-(??). It is a linear first-order differential equation given by

Ag′
1 + (Bη + 2Cg0)g1 + Bη + (2C − 1)g0 +

1

2
g′′
0 + 2E1g0g

′
0+

E2ηg2
0 + E3g

3
0 + B′ηg′

0 = 0. (3.64)

where

E1 ≡ A +
D2

11

D12

X0
1 − D2

21

D22

X0
2 , B′ ≡ −D11

D12

− D21

D22

E2 ≡ D11

D12

(1 − D11

D12

) − D21

D22

(1 − D21

D22

) (3.65)

E3 ≡ D11X
0
1 (1 − D11

D12

)2 + D21X
0
2 (1 − D21

D22

)2.

The boundary layer solutiong(η; ε) must also match (i.e. agree with) the solution valid away from

the switching point in the limits asη → ±∞. This can be written symbolically as

√
εg(η; ε)

∣

∣

η→∞ ∼ h1(z1)|z1↓z∗∗1

√
εg(η; ε)

∣

∣

η→−∞ ∼ h1(z1)|z1↑z∗∗1

.

We will concentrate on the case when∆ < 0 and when (??) holds. In this case, the

switching points are ordered as in (??) andA > 0, B < 0, C < 0 in (??). To find the solution of

(??), we convert the Ricatti equation to a linear second order equation by introducing

g0 = −Bη

2C
+

A

C

F ′

F

and find thatF satisfies the parabolic cylinder equation Abramowitz and Stegun [?]

Fωω +

[

−1

4
ω2 +

1

2
− C

AB

]

F = 0, η = |A
B
|1/2ω. (3.66)
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The general solution of (??) is

F (ω) = c1U(
C

AB
− 1

2
, ω) + c2V (

C

AB
− 1

2
, ω) (3.67)

whereU(a, x) andV (a, x) are parabolic cylinder functions described in [?]. We substituteF (ω)

into the formula forg0 and fix the arbitrary constants by applying the matching condition asη →
∞, which to leading order becomes

√
εg0 ∼ εh1

1 ∼ − D12D22ε

∆(z1 − z∗∗1 )
, z1 ↓ z∗∗1 .

To satisfy the matching conditions, we must choosec2 = 0 so that

g0 =
1√
−AB

U( C
AB

+ 1
2
, ω)

U( C
AB

− 1
2
, ω)

. (3.68)

After a tedious calculation, we find that the solution of the linear equation (??) for the correction

term, which satisfies the appropriate matching conditions,is given by

g1(η) = α1 + α2ηg0(η) + α3g
2
0(η)

+ 1
AF 2(η)

∫∞
η

F 2(u) (ν4u
2g0(u) + ν5g

3
0(u)) du (3.69)

where

F (η) = U(
C

AB
− 1

2
,

√

−B

A
η) (3.70)

and

α1 =

(

2C

AB2
− 1

B

)

ν1 −
1

AB
ν2 +

2

AB2
ν3

α2 =
2C

AB
ν1 −

1

A
ν2 +

2

AB
ν3

α3 =
2C2

AB2
ν1 −

C

AB
ν2 +

(

1

B
+

2C

AB2

)

ν3

ν1 = B +
B

2A2
− B′

A
(3.71)

ν2 = 2C − 1 − B

2A
+

C

A2
− 2E1

A

ν3 = E2 +
3BC

2A2
− 1

A
(B′C + 2E1B)

ν4 =
B2

2A2
− BB′

A

ν5 = E3 +
C2

A2
− 2E1C

A
.

The constantsA, B, B′, C, E1, E2, andE3 are defined in (??) and (??). It can be verified that the

boundary layer solution matches to two orders to the outer expansion, in the limit asη → −∞,
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i.e. z1 < z∗∗1 andη → ∞, i.e. z1 > z∗∗1 . A similar analysis is needed near the switching point

z∗1 which is analogous to the boundary layer analysis nearz∗∗1 . The asymptotic solution consists

of the solution valid away from the switching points and the boundary layer solutions nearz∗1 and

z∗∗1 . The main results are summarized below.

Result 3 Consider a closed, two class queueing network with two fixed rate nodes (i.e.R = 2

andK = 2). We assume that the parameters satisfy (??) and that onz1 + z2 = 1, the switching

pointsz∗1 and z∗∗1 are defined by (??) and (??), respectively. The asymptotic expansions for the

performance measures forM ≫ 1 are:

z1 away from the switching points:

h1 ∼















1 − ε
[

−1 + D11D21

∆(z1−z∗
1
)

]

0 < z1 < z∗1
z∗∗
1

−z1

z∗∗
1

−z∗
1

, z∗1 < z1 < z∗∗1

ε
[

−1 + D11D21

∆(z1−z∗
1
)

]

, z∗∗1 < z1 < 1,

h2 = 1 − h1,

X1 ∼























z1
D11

(

1 − ε z1 − 1
z1 − z∗1

)

, 0 < z1 < z∗1
D22−D21

∆
, z∗1 < z1 < z∗∗1

z1
D12

(

1 + ε 1 − z1

z1 − z∗∗1

)

, z∗∗1 < z1 < 1,

X2 ∼























z2
D21

(

1 − ε z1

z1 − z∗1

)

, 0 < z1 < z∗1
D11−D12

∆
, z∗1 < z1 < z∗∗1

z2
D22

(

1 − ε z1

z1 − z∗∗1

)

, z∗∗1 < z1 < 1.

The asymptotic results forU1 andU2 are described in Cases 1-3 above and can be obtained us-

ing (??). Near the switching pointz∗∗1 , the asymptotic expansion is given by the boundary layer

solution:

h1 =
√

ε[g0(η) +
√

εg1(η) + . . . ], z1 = z∗∗1 +
√

εη

h2 = 1 − h1

X1 = X0
1 +

√
εX

(1)
1 + . . .

X2 = X0
2 +

√
εX

(1)
2 + . . . .

whereg0(η) is given by (??) andg1(η) is given by (??)-(??). The formulas forX0
1 , X

(1)
1 , X0

2 , and

X
(1)
2 are obtained by solving (??) and (??) in terms ofg0 andg1.

When (??) holds, the location of the switching points changes but theasymptotic analysis is com-

pletely analogous to that above.
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3.3 Special Case

We now investigate a specific example in which the loads are given by the following matrix

(Dri) =

(

1 2
7 4

)

.

This example was presented in [?] where the expansions away from the switching points were

given. We note that∆ < 0 in this example and conditions (??) are satisfied.

The leading term in our asymptotic approximation and the locations of the switching points

are summarized below:

1. Node 1 is bottleneck - h0
2 = 0 andU0

1 = 1 which leads toh0
1 = 1 andX0

1 = z1. The constraint

U0
2 < 1 satisfied if

z1 < 0.3 = z∗1 .

2. Node 2 is bottleneck - h0
1 = 0 andU0

2 = 1 which leads toh0
2 = 1 andX0

1 =
z1

2
. The constraint

U0
1 < 1 satisfied if

z1 > 0.6 = z∗∗1

3. Nodes 1 and 2 are bottlenecks - U0
1 = U0

2 = 1 which impliesX0
1 = 3

10
andX0

2 = 1
10

. These

lead to

h0
1 = 2 − 10

3
z1

which satisfies0 ≤ h0
1 ≤ 1 if 0.3 ≤ z1 ≤ 0.6. The perturbation expansion valid away from the

switch points, including correction terms, is given by

h1(z1) ∼











































1 − ε10z1 + 4
3 − 10z1

− 70ε210z2
1 − 28z1 + 4

(3 − 10z1)
3 , 0 ≤ z1 < .3

2 − 10
3 z1 − ε1

3

50z2
1 − 155z1 + 63

(10z1 − 3)(5z1 − 3)
, .3 < z1 < .6

ε5z1 − 7
3 − 5z1

− 20ε2 5z2
1 + 4z1 − 7
(3 − 5z1)

3 , .6 < z1 ≤ 1.

(3.72)

In Figure 6, we display graphs of the exact MVA recursion and the O(1) terms in the

approximation (??) which is valid away from the switching points. TheO(1) terms corresponds

to the result obtained using Asymptotic Bound Analysis.

We can clearly see in Figure 7 that the approximation (??) fails near the switching points, as

a singularity occurs in the correction terms. Thus the higher order terms do not prove particularly

useful whenz1 ≈ 0.6 andz1 ≈ 0.3. This illustrates the need for the boundary layer analysis.
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Figure 6: Graphs ofh1 as a function ofz1 for the special case withM = 40. Exact MVA result =
– – and theO(1) approximation in (3.72) = —.
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Figure 7: Graphs ofh1 as a function ofz1 for the special case withM = 40. Exact MVA result =
– – and the approximation in (3.72) includingO(ε) terms =�.
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We now implement the boundary layer analysis described in the previous section near the

switching pointz1 = .6. We introduce the stretched variable

η =
z1 − .6√

ε
, z1 = .6 +

√
εη (3.73)

and the boundary layer function (??)

h1 =
√

εg(η) =
√

ε
[

g0(η) +
√

εg1(η) + . . .
]

. (3.74)

The boundary layer equation (??) becomes

2

5
g′
0 −

5

4
ηg0 −

3

8
g2
0 + 1 = 0

with the matching conditions:

h1 ∼
√

ε 4
5η

, z1 > .6 ⇒ η → ∞, g0 ∼ 4
5η

h1 ∼
√

ε−10η
3

, z1 < .6 ⇒ η → −∞, g0 ∼ −10η
3

.

The solution (??) is then given by

g0(η) =

√
2U(

5

4
,
5
√

2

4
η)

U(
1

4
,
5
√

2

4
η)

(3.75)

whereU(a, x) is a parabolic cylinder function. The next term in the boundary layer solution is

given by (??), which for this example becomes

g1(η) =
5

16
+

5

64
ηg0(η) +

41

128
g2
0(η)

+ 5

2U2( 1

4
, 5

√
2

4
η)

∫∞
η

U2(1
4
, 5

√
2

4
u)
(

−275
128

u2g0(u) + 21
256

g3
0(u)

)

du (3.76)

whereg0 is now given by (??).

A boundary layer solution is also needed near the switching point z∗1 = 0.3. Here we

introduce the stretched variable

ξ =
z1 − 0.3√

ε

and use the equation forh2 to simplify the analysis. Using the boundary layer expansion h2 =

1 − h1 =
√

ε (ĝ0(ξ) +
√

εĝ1(ξ) . . . ), we derive the leading order equation

−7

5
ĝ′

0 + 10ξĝ0 − 3ĝ2
0 + 7 = 0.
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The solution satisfying the appropriate matching conditions is

ĝ0(ξ) =

√

7

2

U(2,−5

√

2

7
ξ)

U(1,−5

√

2

7
ξ)

. (3.77)

so thath1 ∼ 1−√
εĝ0(ξ). A correction term of the form (??) can also be computed, but we do not

include it.

The complete asymptotic solution consists of the solution valid away from the switching

points given by (??), and the boundary layer solutions near the switching points 0.6 and 0.3, given

by (??) and (??), respectively. The solution is summarized as follows:

h1(z1) ∼



























































































































1 − ε10z1 + 4
3 − 10z1

− 70ε2 10z2
1 − 28z1 + 4

(3 − 10z1)
3 , 0 ≤ z1 < .3

1 −
√

7ε
2

U(2,−5

√

2

7
ξ)

U(1,−5

√

2

7
ξ)

, z1 − 0.3 =
√

εξ = O(
√

ε)

2 − 10
3 z1 − ε1

3

50z2
1 − 155z1 + 63

(10z1 − 3)(5z1 − 3)
, .3 < z1 < .6

√
2εU(

5

4
,
5
√

2

4
η)

U(
1

4
,
5
√

2

4
η)

, z1 − 0.6 =
√

εη = O(
√

ε)

ε5z1 − 7
3 − 5z1

− 20ε25z2
1 + 4z1 − 7
(3 − 5z1)

3 , .6 < z1 ≤ 1.

(3.78)

We only give the leading term in each boundary layer region.

We present a graph of the asymptotic results in Figure 8 and demonstrate the numerical

accuracy of our approximation in Table 2. The graph illustrates a smooth transition between the

asymptotic solutions valid away from the switching points and the boundary layer solutions valid

near the switching points. This smooth transition is expected since the different asymptotic solu-

tions satisfy the matching conditions above. In Table 2, thedata labeled “Outer” represents the

approximation valid away from the switch points includingO(ε) terms. The data labeled “Layer”

was computed using the leading term in the boundary layer solution nearz∗1 for .15 ≤ z1 ≤ .40

and the leading term nearz∗∗1 for .50 ≤ z1 ≤ .80.
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Figure 8: Asymptotic approximations toh1 as a function ofz1 for the special case withM = 40.
The exact solutions = – –, the approximation in (3.72) including O(ε) terms =�, and the leading
term in the boundary layer solutions in (3.78) =△.

3.4 Approximation at a Switching Surface

In the beginning of this section, we gave the scaled MVA equations for a generalR class and

K node network (cf. (??)-(??)). The dimension of the MVA recursion is equal to the num-

ber of job classes, since the performance measures are functions of the population vector~m =

(m1, m2, · · · , mR). If there are more than two job classes, the analysis can become considerably

more complicated. However, our methods are still applicable, as we will now show with an exam-

ple.

As we discussed above, the leading term in the perturbation expansion (??) yields the same

result as Asymptotic Bound Analysis. However, the correction terms will develop singularities at

switching surfaceswhere the bottleneck set for the network changes. To illustrate how to construct

the leading term near a switching surface, we consider a 3 class, 2 node network with the switching

surface separating regions with a single node in the bottleneck set and regions with both nodes in

the bottleneck set. This type of analysis applies to a switching surface in any size network.

We write the scaled recursion (??) for this network,R = 3 andK = 2, as

h1(~z) = ε
3
∑

j=1

XjDj1 +
3
∑

j=1

XjDj1h1(~z − ε~ej), ~z = (z1, z2, z3) (3.79)

and

Xr =
zr

ε
∑2

k=1 Drk + Dr1h1(~z − ε~er) + Dr2(1 − h1(~z − ε~er))
, r = 1, 2, 3. (3.80)

Here we have used the fact thath1 + h2 = 1 andz1 + z2 + z3 = 1.
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Table 2:h1(z1) for the example in Figure 8

z1 Exact Outer Layer
0 .9666 .9666

.050 .9570 .9550

.100 .9441 .9375

.150 .9263 .9083 .9090

.200 .9009 .8500 .8850

.250 .8638 .6750 .8489

.300 .8090 ∞ .7937 z∗1

.350 .7294 1.0316 .7110

.400 .6221 .7416 .5966

.450 .4961 .5725 —–

.500 .3724 .3166 .3548

.550 .2699 .0716 .2601

.600 .1944 ∞ .1938 z∗∗1

.650 .1419 .3750 .1484

.700 .1057 .1750 .1173

.750 .0805 .1083 .0954

.800 .0624 .0750 .0796

.850 .0491 .0550

.900 .0390 .0416

.950 .0312 .0321
1. .0250 .0250

We consider the switching surfaceS that separates regionR1, in which node 2 is the unique

bottleneck, and regionR12, in which both nodes 1 and 2 are bottlenecks. The location of this

switching surface is defined using the leading terms in the approximation inR1, namely

h0
1 = 0, X0

r =
zr

Dr2

, U0
2 = 1 (3.81)

and the extra condition that atS

U0
1 =

3
∑

r=1

X0
r Dr1 = 1. (3.82)

This leads to the following equation for the switching surface
(

D11

D12

− D31

D32

)

z1 +

(

D21

D22

− D31

D32

)

z2 =

(

1 − D31

D32

)

. (3.83)

We define

f(ξ) =

(

1 − D31

D32

)

−
(

D11

D12

− D31

D32

)

ξ
(

D21

D22

− D31

D32

) (3.84)
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and introduce the following change of variables in the neighborhood of the switching surface

z1 = ξ +
√

εη, z2 = f(ξ) −
√

εη. (3.85)

The boundary layer function is given by

h1(z1, z2) =
√

εg(η, ξ) =
√

ε(g0 +
√

εg1 + . . . ). (3.86)

We introduce (??)-(??) into (??) and (??) and expand forε ≪ 1, taking into account (??) and (??),

to obtain to leading order

0 =

3
∑

j=1

Dj1X
0
j +

(

3
∑

j=1

Dj1X
1
j

)

g0 + A(ξ)g0,η (3.87)

whereA(ξ) is defined by

A(ξ) =
1

1 + f ′

[

−f ′X0
1D11 + X0

2D21 + (f ′ − 1)X0
3D31

]

. (3.88)

To get an explicit form of the boundary layer equation, we expand the throughput asXj ∼
X0

j +
√

εX1
j + · · · and use (??) to obtain

D12X
0
1 = ξ, D22X

0
2 = f(ξ), D32X

0
3 = 1 − ξ − f(ξ) (3.89)

and

X0
1 (D11 − D12)g0 + D12X

1
1 = η,

X0
2 (D21 − D22)g0 + D22X

1
2 = −η,

X0
3 (D31 − D32)g0 + D32X

1
3 = 0.

In view of (??) and (??), we see thatA(ξ) is a linear function ofξ. The values ofX1
r are obtained

from the above as functions ofX0
r andg0 which, when substituted into (??), yields the Ricatti

equation

A(ξ)g0,η + [Bη + C(ξ)g0]g0 + 1 = 0 (3.90)

whereA(ξ) is defined in (??) and

B =
D11

D12

− D21

D22

C = D11X
0
1

(

1 − D11

D12

)

+ D21X
0
2

(

1 − D21

D22

)

+ D31X
0
3

(

1 − D31

D32

)

.

We note the similarity between (??) and (??). The next step would be to match the boundary layer

solution to the solutions inR1 andR12, which we illustrated for the network with two classes.

Boundary layer analyses are also needed near any other switching surfaces.
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4 Conclusion

To summarize, we have developed an asymptotic approach for analyzing the non-linear recurrence

equations that arise in the MVA algorithm(s). This extends and improves upon previous work (cf.

[?]-[?]) in that we treat the case of multiple bottleneck (and “near” bottleneck) nodes in single

class networks, and also the switching surfaces that arise in multiclass networks.

The asymptotic formulas we obtained lead to accurate numerical approximations for the

performance measures, even for moderate values of the totalnetwork population size (e.g.M =

10). For multiclass networks, we have developed the basic approach necessary to treat the vicinities

of the switching surfaces, though we have not given a generalformula that would apply to a net-

work with an arbitrary number of nodes, customer classes andbottleneck nodes near the switching

surface.

To treat the general case we would need to first locate all switching surfaces, introduce

appropriate scales near the surfaces (such as (??)) and derive the differential equations that apply

on these scales. It would seem that as long as crossing the switching surface involves adding (or

subtracting) a single node to the bottleneck set, we invariably obtain a Ricatti equation of the type

(??). This is explicitly solvable in terms of parabolic cylinder functions, whose numerical values

are easily obtained using standard programs. If the bottleneck set changes by more than one (i.e. at

intersections of two or more switching surfaces), then the local analysis will likely involve solving

a non-linear system of ODEs.

We have not attempted to treat the most general case, but we believe that the basic approach

will apply to networks with many nodes and job classes.

Appendix

We derive the solution of (??) by first solving the first order differential equation forfi in

terms ofU to obtain

fi(z) =
D

ai − aK

∫ z

0

exp[−(
aK − ai

D
)(z − s)]G′(s)eG(s)−G(z)ds, i = 1, . . . , K − 1 (A.1)

where

G(z) =

∫ z U(s)

Ds
ds. (A.2)

An integral equation forU(z) can be obtained by multiplying (??) by ai − aK and then summing

from i = 1, . . . , K − 1 to obtain

U(z) = D

∫ z

0

G′(s)eG(s)−G(z)

K−1
∑

i=1

exp[−(
aK − ai

D
)(z − s)]ds. (A.3)
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We define

F (z) =
U(z)

z
exp

[
∫ z

1

U(τ)

Dτ
dτ

]

(A.4)

with which (??) becomes

zF (z) =

∫ z

0

F (s) H(z − s)ds (A.5)

where

H(z) =

K−1
∑

i=1

exp[−aK − ai

D
z].

We now define the Laplace transform̂F (α) =

∫ ∞

0

e−αzF (z)dz and transform (??) into

−F̂ ′(α) = F̂ (α)

K−1
∑

i=1

(

α +
aK − ai

D

)−1

. (A.6)

The solution of (??) is

F̂ (α) = c
K−1
∏

i=1

(

α +
aK − ai

D

)−1

. (A.7)

To determinec, we use (??) and note that for smallz

F (z) ∼ U(0)zK−2 exp

[
∫ 1

0

U(0) − U(τ)

Dτ
dτ

]

or, in terms of Laplace transforms,

F̂ (α) ∼ D(K − 1)!α−(K−1) exp

[
∫ 1

0

U(0) − U(τ)

Dτ
dτ

]

, α → +∞. (A.8)

Here we have usedU(0) = D(K − 1). From (??), we see that asα → +∞,

F̂ (α) ∼ cα−(K−1)

so that we choose

c = D(K − 1)! exp

[
∫ 1

0

U(0) − U(τ)

Dτ
dτ

]

. (A.9)

We use (??) to solve forU(z) in terms ofF (z) to obtain

U(z) =
DzF (z)
∫ z

0
F (τ)dτ

. (A.10)

Inverting (??), we get

F (z) = c

K−1
∑

i=1

βie
(ai − aK)z/D (A.11)
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with

βj =

K−1
∏

i=1,i6=j

{

D

aj − ai

}

. (A.12)

We findU(z) using (??) andfi using (??) to obtain

fi(z) =
De(ai − aK)z/D

ai − aK

K−1
∑

l=1

βl

al − ai

(

e(al − ai)z/D − 1
)

/

K−1
∑

l=1

βl

al − aK

(

e(al − aK)z/D − 1
)

.

(A.13)

We then obtainHi for i = 1, 2, . . . , K − 1 from Hi =
D

aK − ai

+ fi(z).

We now write the result forHi in a more symmetric form, which will apply for all1 ≤ i ≤
K. Let us set

Bj =
K−1
∏

p=1,p 6=j

(aj − ap); P l = (al − aK)Bl, l < K; PK = BK .

ForK ≥ 2, we can easily show that

K
∑

l=1

1

P l

=
1

P1

+
1

P2

+ · · · + 1

PK

= 0 (A.14)

and thus

K−1
∑

l=1

1

P l
(ealz/D − eaKz/D)

=
K
∑

l=1

1

P l

(ealz/D − eaKz/D) =
K
∑

l=1

1

P l

ealz/D ≡ S(z).

Sinceβj = DK−2/Bj , we obtain from (??)

Hi = D
aK−ai

+ 1
S(z)

D
ai−aK

∑K−1
l=1

1

Bl

ealz/D−eaiz/D

al−ai

= D
ai−aK

1
S(z)

{

∑K−1
l=1

1

Bl

ealz/D−eaiz/D

al−ai
−
∑K

l=1
ealz/D

P l

}

.

Now,B−1
l = (al − ak)P−1

l and

al − aK

al − ai

(

ealz/D − eaiz/D

)

− ealz/D

= w
ai − aK

al − ai

(

ealz/D − eaiz/D

)

− eaiz/D

so that

Hi =
D

S(z)

K−1
∑

l=1

1

P l

ealz/D − eaiz/D

al − ai
+

D

aK − ai

1

S(z)

{

eaiz/D

K−1
∑

l=1

1

P l
+ eaKz/D 1

PK

}

. (A.15)
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From (??) we have
∑K−1

l=1 P−1
l = −P−1

K , which when used in (??) gives the expression (??). This

equation also applies fori = K. In (??), the term withl = i is understood to be evaluated by

L’Hopital’s rule.
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