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Abstract

We consider the GI/G/1 queue described by either the workload (unfinished work) or the
number of customers in the system. We compute the mean time until reaches or exceeds
the level , and also the mean time until reaches 0. For the M/G/1 and GI/M/1 models, we
obtain exact contour integral representations for these mean first passage times. We then compute
the mean times asymptotically, as and 0 , by evaluating these contour integrals. For
the general GI/G/1 model, we obtain asymptotic results by a singular perturbation analysis of the
appropriate backward Kolmogorov equation(s). Numerical comparisons show that the asymptotic
formulas are very accurate even for moderate values of and 0.

1. Introduction

Queueing models arise in a wide variety of applications such as computer systems and commu-
nications networks. The mathematical analysis of these models typically involves the computation
of certain performance measures, such as the steady-state queue length or workload distribution, the
length of a busy period, etc. Of particular importance is the total number of customers (“jobs”) or
the size of the workload in the queueing system. If this total size becomes very large, the system
performance may deteriorate and jobs may be lost or suffer long delays. For example, in the design of
high speed communications systems, the buffer size at a switch is of crucial importance. If the buffer
capacity is too small, arriving jobs may be frequently lost. Even if the buffer has a large capacity, a
large buffer size below capacity may develop, resulting in unacceptably long delays. It is therefore
natural to ask how long it will take before a large buffer size (as measured by either number of jobs or
total workload) develops in a particular queueing system.
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In this paper we consider the GI/G/1 queue and compute the mean time needed for either the
workload (total unfinished work), or the number of customers in the system, to reach or exceed some
specified level. We denote the workload at time by and by the number of customers.
These stochastic processes are not Markovian, but may be imbedded in higher dimensional Markovian
processess by using the supplementary variable technique. If we let be the elapsed time since
the last arrival and be the elapsed service time of the customer presently being served, then

and are both Markov processes.
It is generally undesirable to have large queue lengths or large workloads. In a stable GI/G/1 queue

the occurence of these events is very rare. However, having accurate measures of the probabilities of
such rare events may be an important measure of performance and reliability. We therefore analyze
the time for to reach or exceed some large level , and also the time for to reach some large
number 0. For a model with a finite capacity of either workload or queue length, computing this time
is the same as computing the time until the next customer is lost.

For the GI/G/1 model we denote the interarrival time density by and the service time density
by . Throughout the paper we assume that the Laplace transforms

0 0

are analytic for Re 0. Thus, all the moments are finite, and we denote the respective moments by

0 0
1

The traffic intensity is 1 1 and we assume that 1, which guarantees that the queue is
stable, and the processes and have steady-state distributions. For exponential arrivals we set

1 1 and for exponential service we set 1 1 .
Let be the steady-state workload density, and let be the steady-state probability that

. For these quantities there are exact integral representations. A good summary of known
exact results for the GI/G/1 model can be found in the book of Cohen [4]. From these integrals and
our assumptions about the analyticity of the Laplace transforms, it is easy to obtain the asymptotic tail
probabilities

1 (1.1)

2
0

(1.2)

Here is the unique positive solution of

0 0
1 0 (1.3)
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Thus, the tail exponent in the workload is precisely , and the tail exponent in the queue length
distribution is log . The constant corresponds to a simple pole in the integral representations of
the distribution functions. The constants 1 2 correspond to residues at this pole, and these are also
readily computed. In sections 6 and 7 we explicitly identify 1 and 2.

Now let be the mean time until the workload reaches or exceeds the level . For the GI/G/1
model, will generally depend upon the initial workload 0 , and also on the initial value

0 . Thus, . We let be the mean time until reaches 0. This function
depends on the initial values 0 0 0 , i.e. . We will show,
however, that asymptotically as 0 (and for initial values of 0 0 not close to 0)
the mean first passage times are independent of ; and we have

1 (1.4)

2
0

0

0 (1.5)

Thus, and grow exponentially at precisely the same rates as the corresponding steady-state
probabilities decay. While this seems to be well-known and can be argued, for example, by using
1 1 - 1 2 and renewal theory, the computation of the constants 1, 2 appears to be a much more

difficult task. The purpose of this paper is to give explicit formulas for these constants. The computation
of 1 and 2 is essential if one is to obtain accurate numerical approximations to and ; this is
further discussed in section 8.

Previous work on tail exponents and tail probabilities includes Cohen [2], Iglehart [8], Neuts
and Takahashi [16] and Sadowsky and Szpankowski [17]. These authors consider the m-server
GI/G/m queue and/or various special cases of this model. Using the tail behavior as an exponential
approximation is also discussed by Fredericks [5], Gaver and Shedler [6], and in the book of Tijms
[18]. This type of approximation seems to be superior to the standard (exponential) heavy traffic
approximation, and reduces to the latter in the heavy traffic limit (for the GI/G/1 model this is defined
as 1). The difficulty in using this approximation is the computation of the constants 1, 2.

The asymptotic approach employed here makes use of singular perturbation methods such as
boundary layer theory and asymptotic matching; general references for these techniques are Kevorkian
and Cole [9] and Bender and Orszag [1]. Matkowsky and Schuss [15] developed a singular perturbation
method for computing asymptotically first passage times for diffusion processes with small diffusion
coefficients. We have extended this method to discrete random walks and Markov jump processes in
[11-13]. In particular, in [12,13] we computed the first passage times and for a state-dependent
M/G/1 model, where the arrival and service processes are allowed to depend on the present workload
or queue length. Results for the standard M/G/1 model may be obtained simply by omitting the various
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state-dependence. Recently [10], we have computed the mean time for large queue lengths to develop
in tandem Jackson networks. Numerical comparisons in [10] show that the asymptotic results are in
excellent agreement with exact (numerical) solutions. For this agreement to occur, it is essential to
compute the constants in the asymptotic expansions (i.e. the analogs of 2 in 1 5 ).

For the M/M/1 model, it is trivial to compute exactly the first passage times and . For the more
general M/G/1 and GI/M/1 models, we give exact integral representations for and (cf. Results
2–5). It is easy to then evaluate these integrals asymptotically and hence obtain 1 4 and 1 5 . For
these special models, we also obtain the asymptotics directly, by using perturbation techniques to
analyze the appropriate backward Kolmogorov equation(s). Of course, the two methods yield identical
results. For the general GI/G/1 model, we have not been able to obtain exact expressions for and

, so that we use the perturbation method to obtain asymptotic formulas for 0 . The main
results for the GI/G/1 model are summarized in Results 6 and 7, and these appear in sections 6 and 7,
respectively.

While we only compute mean first passage times, similar techniques may be used for higher
moments. However, in the asymptotic limit considered here, the first passage times tend to be
exponentially distributed, so that the mean is sufficient to characterize the entire distribution. This was
shown explicitly for singularly perturbed diffusion processes by Williams [19], and this calculation
can be easily adapted to discrete random walks and jump processes.

The assumption on the analyticity of the Laplace transforms and is essential to our analysis.
If, say, the service time density had only an algebraic tail, then it is likely that the mean first passage
times and would have only algebraic growth in and 0, and also be more sensitive to the initial
conditions and .

2. Queue length in the M/M/1 queue

We compute the mean time until , the number of customers in the system, reaches some large
number 0. Thus we define

min : 0 min : 0 (2.1)

and
; 0 0 0 0 (2.2)

Note that since customers arrive individually, the time to reach or exceed 0 is the same as the time to
reach 0.

The function satisfies the backward equation

1 1 1 1 0 1 (2.3)
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with the boundary conditions
1 0 1 (2.4)

0 0 (2.5)

Here and are the arrival and service rates, respectively. This difference equation is easily solved,
and then the result may be asymptotically evaluated in the limit 0 . We set and give
the results below.
RESULT 1:

The mean time for to reach 0 in the M/M/1 queue is given by

1
1 2

0 0

For 0 , asymptotic expansions for are

(a) 0 0

1
1 2

1 0

(b) 0 0 1 1

1
1 2

1 0

[1 ]

Even this very simple model reveals some important insights into the structure of . First,
we note that grows exponentially as 0 . Also, is independent of the initial value

0 , as long as is not close to the “exit boundary” 0. In [10], we have shown how to obtain the
asymptotic results in (a) and (b) directly from the difference equation, by using singular perturbation
techniques. This method was then extended to compute the time needed for large queue lengths to
build up in tandem Jackson networks. For these problems exact results are not available, so that the
direct asymptotic approach is needed.

We note that the last term in the exact expression for (the term linear in ) is uniformly smaller
than the first term(s), in the limit 0 , 0 0. It is in fact exponentially smaller. This
last term is a particular solution to the difference equation 2 3 , which has 1 as an inhomogeneous
term. The parts of the exact expression for that grow exponentially as 0 satisfy the
homogeneous form of 2 3 . These observations are useful for developing the perturbation method.

3. Workload in the M/G/1 queue
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We consider an M/G/1 model with arrival rate and service time density , with finite moments
of all order. The workload is clearly a Markov process. We define the first passage time

min : (3.1)

and its conditional mean

0 0 (3.2)

By definition, 0 for . Note that can jump across the level without actually
hitting it. In this respect the jump process is different from a diffusion process or the discrete queue
length process.

The backward equation satisfied by is

0
1 0 (3.3)

0
0

1 (3.4)

The last equation may be replaced by the equivalent condition 0 0, which is obtained by
setting 0 in 3 3 and subtracting equation 3 4 .

For exponential service with and , we can easily convert 3 3 - 3 4 to the
differential equation

(3.5)

0 0; 1 (3.6)

Here is understood to mean , as 0. The solution to 3 5 and 3 6 is

1
1 2 1

1
(3.7)

As was the case for , we see that is exponentially large in and nearly constant, expect
when 1 , which corresponds to initial workloads close to the “capacity” .

We observe that 0 , so that the first passage time has a discontinuity at .
This is because for initial workloads just below , the system’s unfinished work cannot exceed until
the next customer arrives, and by the time this occurs the server has decreased the workload, possibly
by a significant amount. Asymptotically, as , we have 1 0 so that
is in fact exponentially large in , of the same order of magnitude as 0 , the mean first passage
time starting with zero workload. The factor 1 suggests that roughly a fraction 1 of the sample
paths that start at 0 will have the workload decreased to some 1 value, before finally
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undergoing the large deviation to cross . The remaining fraction of sample paths that start
at 0 will cross in a short time period, before the server has had the chance to
empty the system of the large workload. Since the first set of paths weigh the mean escape time by an
exponentially large amount, will also be asymptotically exponentially large.

Now consider 3 3 for general service time densities. By setting and using a Laplace
transform over , we obtain from 3 3 the contour integral representation

1
2

1
(3.8)

where
0

is the Laplace transform of service time density, , and
the integration contour is a Bromwich contour on which Re 0. Note that the integrand has a double
pole at 0. The constant is determined from 3 4 , or, equivalently, from the condition

0 0; hence
1

2
1

2

NUM
DEN

(3.9)

When , and it is then easy to show that 3 8 and 3 9 reduces to 3 7 .
We next examine the asymptotics of as . We use two independent approaches.

First, we expand the integrals in 3 8 and 3 9 as . Then we obtain the identical results by
asymptotically analyzing 3 3 and 3 4 by perturbation methods.

The asymptotic behavior of the integrals in 3 9 is determined by the singularities of the integrands
with the largest real part. The integrand in DEN( ) is analytic at 0, but has a pole at ,
where satisfies the (real) transcendental equation

0
0 (3.10)

The existence of the solution follows from our assumption that the moment generating function

0
is analytic for Re 0, and the stability condition 1 1. The numerator

in 3 9 has a pole at 0. Thus, computing the corresponding residues in 3 9 we obtain

NUM
1

1
DEN

1 1
; (3.11)

where

1
0

(3.12)

It follows that is again exponentially large as . Now consider the integral in 3 8 .
Since is exponentially large, we can approximate 1 in the integrand, with
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an error that is exponentially small. For 1 , we cannot simplify 3 8 any further.
For , the asymptotic behavior of is determined by the simple pole in 3 8 at 0.
Using 3 8 and 3 11 thus yields

1
1 1

1 2 ; (3.13)

An alternate approach to the asymptotics is as follows. We introduce the scaled variables

1
(3.14)

and note that 0 when . In terms of these new variables, 3 3 becomes

1

0
1 (3.15)

and we use the boundary condition 0 0. For 1 , we expand as

0 1 (3.16)

and extend the upper limit on the integral in 3 15 to . Assuming further that as
0 (which is a very mild assumption since we eventually find that grows exponentially as
0), we obtain from 3 15 to leading order the problem

1 1 0 0; 0 0 0 (3.17)

It follows that 0 is constant, and without loss of generality we set 0 1. The expansion
3 16 breaks down near the exit boundary, where 1 (to be more precise, 1 ). Setting

1 , with 0 1 , we obtain from
3 15

0 0
0

0 0 0 (3.18)

The function 0 is referred to as a “boundary-layer” approximation, since it is to be valid in the
thin region 1 , where varies appreciably. By asymptotically matching the two
expansions, we obtain

0 1 as (3.19)

Then 3 18 is easily solved using Laplace transforms, and we get the contour integral representation

0
1
2

(3.20)

It also follows that the approximation 0 1 is valid uniformly, for 0 1
(i.e. 0 ). It remains only to determine the constant .
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We denote the steady-state unfinished work distribution by

lim Pr 0

lim Pr 0
(3.21)

It satisfies the Takacs integro-differential equation

0
0 (3.22)

with
0 ;

0
1 (3.23)

The solution is well-known to be 1 and

1
2

1
(3.24)

Now we multiply 3 3 by , integrate from 0 to , and use 3 4 , 3 22 and 3 23 .
After some simplification we are led to

0
1 (3.25)

This identity is exact for all 0. As , 3 25 can be replaced by the asymptotic relation

1 (3.26)

Now, from the perturbation expansion, 0 0 1 . The asymptotics of
as are easily obtained from 3 24 , as the singularity with the largest real part is at
(cf. 3 10 ). Computing the residue at this pole yields

1
1

1
1
1 1

(3.27)

From 3 26 and 3 27 we find that

1
1

1 1
1 2 (3.28)

This result of course agrees with 3 13 , which was obtained by asymptotically expanding the exact
solution. We summarize our results below.

RESULT 2:
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The mean time for to reach or exceed in the M/G/1 queue is given by

1
2

1

1
2

1
2

For , asymptotic expansions for are

(a)
1 1

1 2

(b) 1 0
1
2

Here 0 is the solution to 3 10 , 1 is defined by 3 12 , and is the Laplace transform of the
service time density.

We again see that is asymptotically constant, except near the exit boundary .

4. Queue length in the M/G/1 queue

For the M/G/1 model, is no longer a Markov process. Thus we let be the elapsed service
time of the customer presently being served and consider the joint process , which is
Markov. We denote the steady-state probabilities by

lim 1

0 lim 0

0
1

(4.1)

These satisfy the balance equations

1 2

1 1

1 0 0
0

2

0
0

1

0
0

1 2

0
1 0

1

(4.2)
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Subscripts are used to denote partial derivatives. Here is the conditional departure rate given
, and is related to the service time density via

; exp
0

(4.3)

Assuming the stability condition 1 1, 4 2 is easily solved using generating functions to give
0 1 and

exp
0

1
2

1 1
1 (4.4)

where is a small loop about 0. The integrand is analytic for 1 and at 1. As ,
the asymptotic behavior of the integral is determined by the simple pole at 1 (cf. 3 10 ).
Thus,

exp
0

1
1 1

(4.5)

and
1
1 1

(4.6)

Note that for the M/M/1 model, and then 1
2 and 4 6 reduces to the well known

(exact) geometric distribution for this model.
We analyze the time for to reach 0. We again define by 2 1 and set

; 0 0 0 1

0 0 0
(4.7)

The function satisfies the backward equation

1 1 0 1 2 0 2 (4.8)

and the boundary conditions are

2 0 1 1 1

1 0 0 1
(4.9)

and

0 2 0 0 1 0 1 1 (4.10)

Note that, by definition, 0 0 for all .
For exponential service, constant and then 4 8 - 4 10 admits a solution independent

of , which leads to the expression in Result 1.
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We solve 4 8 - 4 10 by using generating functions. The final result is

0 1
2

1

0
0 1 0

1
1

(4.11)
where

0 1 0

1 1
2

0

1
2

0
1

NUM1 0

DEN1 0
(4.12)

We examine asymptotically as 0 . In this limit, the expansions of the integrals in
4 11 and 4 12 are determined by the singularities of the integrands whose distance from the orgin

is minimal. For DEN1 0 the dominant singularity is 1 , and for NUM1 0 the dominant
singularity is 1. These integrals are asymptotic to 1 times the corresponding residues; hence

NUM1 0
1

1
DEN1 0

1
1 1

0 1

(4.13)

For 0 , we can write 0 1 0 1 1 0 1 0 , with an exponentially
small error, in 4 11 . Also, the term 0 is asymptotically negligible. If 0 with

0 1 , no further simplification is possible. But if 0 , then the dominant
singularity in the integral is the simple pole at 1, and we get

0 1 0
1

1 1
1 2 1 0 1; 0 0 (4.14)

We next analyze 4 8 - 4 10 by a perturbation method similar to that in section 3. We set

0

1
0

(4.15)

Then 4 8 becomes

0 1 (4.16)

for 2 1 2 , where we identify 0 0 with 0 0 . Using the expansion

0 1 (4.17)

in 4 16 , and assuming that as 0, we obtain at the first two orders in the equations

0 0 0 0 0 0 (4.18)
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1 0 0 0 (4.19)

The only solution to 4 18 that doesn’t grow exponentially in is given by 0 0 , which
is independent of . Then 4 19 has, in general, no solution unless a solvability condition is satisfied.
The solvability condition is obtained by multiplying the equation by

exp
0

and integrating from 0 to . Using 0 0 , 4 19 then becomes

1 1 0 0

so that 0 is a constant, and we set 0 1, as this constant can be incorporated into in
4 17 . Note that with 4 17 , 0 1 also satisfies the boundary conditions in 4 9 asymptotically.

We next construct a boundary layer correction to the expansion 4 17 , which takes into account
the boundary condition 4 10 . We set

1
1 2 3 with

and expand as

0 1 (4.20)

Then from 4 8 and 4 10 we obtain the problem

0 0 1 0 0 1 0 0 0 1 (4.21)

and the boundary condition 4 10 can be replaced by 0 0 0 for all . By introducing the
generating function

1
0 (4.22)

we obtain from 4 21

1 0 1 0
1

0 (4.23)

Multiplying 4 23 by 1 exp
0

and integrating from 0 to yields

0
1

0 0 1 0 (4.24)

Solving 4 24 for 0 , using the result in 4 23 and then integrating the resulting ODE in , we
obtain in term of 0 1 0 . Then we invert the generating function in 4 22 and obtain

0
0 1 0
2

1

(4.25)
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In order for expansions 4 17 and 4 20 to be consistent, we must have 0 1 as for
each . As , the expansion of 4 25 is determined by the simple pole at 1, which is the
singularity of the integrand that is closest to the origin. Noting that the residue is independent of , the
matching condition implies that

0 1 0 1 1 1 (4.26)

It remains to determine the constant . To this end we use the steady-state balance equations
4 2 . We multiply 4 8 by the steady-state probability , integrate from 0 to , and

sum from 1 to 0 1. Integrating some of the integrals by parts, shifting indices in the
summations, and using the fact that satisfies the system of equations 4 2 , we eventually obtain

0 1 0 0 1 0 0
0 1

1 0

1
0

0

(4.27)

We evaluate this identity as 0 . The right side of 4 27 is asymptotically equal to 1, with
an error that is exponentially small. From the perturbation method, we found that 0 1 0

0 1 0 1 and 0 1 0 can be evaluated using 4 5 . Thus, solving 4 27 for
we obtain

1 1
1 2 1

0 1
(4.28)

which agrees with 4 14 . We summarize the main results.
RESULT 3:

The mean time for to reach 0 in the M/G/1 queue is given by

0 1
2

1

0
0 1 0

1
1

0 1 0
1 1

2
0

1
2

0
1

For 0 , asymptotic expansions for are

(a) 0 0

1 1
1 2 1

0 1
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(b) 0 0 1 1

1
2

1

Here 1 and are as in Result 2.
When , and then is independent of . By evaluating the

contour integrals we can easily show that Result 3 reduces to the corresponding parts in Result 1. We
again observe that is exponentially large and approximately constant, except near the exit boundary.
Near the exit boundary is still exponentially large, but now depends upon and 0 . The
expression for in Result 3 applies for all 0. Note that when 0, the contour integral
vanishes for all 0, as now the integrand is analytic at 0.

5. Queue length in the GI/M/1 queue

We consider the GI/M/1 model with service rate and interarrival time density . The process
is not Markovian, but the joint process , where denotes the elapsed time since the

last arrival, is Markov. Assuming the stability condition 1
1 1, we define the steady-state

probabilities by

lim Pr 0 (5.1)

0
0 (5.2)

These satisfy the balance equations

1 1

0 1 0

1 0
0

0

0 0 0

0 0
1

(5.3)

Here is the conditional arrival rate given ; it is related to the interarrival time density
via

; exp
0

(5.4)
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The solution to 5 3 is

1
1

1 1 exp
0

1

0
1

1
1 1 exp

0

(5.5)

where is the unique solution to

0

1 0 1 (5.6)

The marginal queue length probabilities are

1
1

1 1; 0 1 1
1

1
(5.7)

To compute the time until reaches 0, we again define the stopping time by 2 1 and set

0 0 (5.8)

By definition, 0 0 for 0. For 0, we easily obtain the following backward equation
for

1 0 1 1 1 0 2 (5.9)

0 1 0 0 1 (5.10)

0 1 0 2 0 1 1 (5.11)

The last equation may be replaced by the condition 0 0 0 and the requirement that 5 9 also
hold for 0 1. We solve 5 9 - 5 11 using generating functions and obtain

1 0 1

2
1

1

1

(5.12)
The constant 1 0 is determined from the boundary condition 0 0 0; hence

0 1 0 1
1

2
1
1 0

(5.13)

Here is the Laplace transform of the interarrival time density. Expression 5 12 gives for
0 0 1 and 0, and also for 0 and 0. For 0 or 0 and 0, we
obviously have 0. It is easy to show that if , then is independent of
and we recover the first formula in Result 1.
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We next evaluate in the limit 0 . The integrand in 5 13 now has a unique pole inside
the unit circle 1, at (cf. 5 6 ). For large 0 this pole determines the asymptotic behavior
of 1 0 , and we obtain

1 0 1

1 1

1
1

1 0 1
1

1 1

0 1

(5.14)

where 1 0 and

1
0

(5.15)

For , the contour integral in 5 12 also has a pole at , and grows exponentially. For

0 , this integral is smaller asymptotically than 1 0 and we obtain 1 0 for

0 0 . For 0 1 , the integral in 5 12 is of the same order of magnitude
as 1 0 . Evaluating the residue from , we thus obtain

1 0 1 1
1

1

for 0 , 0 1 .
An alternate approach to the asymptotics is to analyze 5 9 - 5 11 by the perturbation method. We

set , 1
0 with 0 1 . Using these scaled

variables in 5 9 and expanding for 0, we obtain

0 0 0 0 1 0 0 (5.16)

1 1 0 0 0 (5.17)

Solving these equations in a manner similar to that used to analyze 4 18 and 4 19 , we eventually
find that 0 0 1. Then the boundary condition 5 10 is also asymptotically satisfied.

The approximation breaks down for 1 ( 0) and does not satisfy the
boundary condition 5 11 . In the boundary layer we set 1 0 1 , with

0 1 . The leading term 0 satisfies the
problem (cf. 5 10 and 5 11 )

0 0 1 0 0 1 0 0 0 1 (5.18)

and we use the boundary condition 0 0 0 0. We also have the matching condition

0 1 as for each (5.19)
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Since 5 18 is “constant-coefficient” in , we look for solutions in the form 0 . Then
5 18 yields 1 0 0, or

exp
0

1 1
0 1 (5.20)

Integrating 5 20 from 0 to yields

0
1

0
0

1

For 0 0, this equation has two solutions: 1 and (cf. 5 6 ). If 1 then 5 20
implies that 0 constant. If , we set 1 and then 5 20 has the solution

0
1

(5.21)

We superimpose these two solutions and write

0 1 2 1
1

(5.22)

The remaining constants are determined from the boundary condition 0 0 0 0 and the matching
condition 5 19 ; this yields 1 1, 2 1. It follows that a uniform approximation to is

0 .
We determine by multiplying 5 9 by , integrating from 0 to , and summing

from 1 to 0 1 (using 0 0 0). After some integration by parts, shifting of indices
on the sums, and use of the fact that satisfies 5 3 , we obtain

0
0 1 0

0 1

0 0
1

0
0

(5.23)

This identity may be viewed as a generalized Green’s theorem (or Lagrange identity) for the linear
operators in 5 3 and 5 9 - 5 11 . As 0 , the right side of 5 23 is asymptotically equal to 1.
To evaluate the left side we use 0 1 0 1 , and 0 is given by 5 5 . Now,

exp
0

and integration by parts yields

0
exp

0

1
1

0

1

0 0
1

18



Using these identities in 5 23 leads to

1
1

0 1 1
1 1

Solving for regains the expression in 5 14 . This again establishes the equivalence of the two
asymptotic approaches. Below we summarize our results.
RESULT 4:

The mean time for to reach 0 in the GI/M/1 queue is given by

1

2
1
1 0

1

1

2
1

1

1

For 0 , asymptotic expansions for are

(a) 0 0

1

1 1

0 1

(b) 0 0 1 1

1 1
1

Here 1 where is given by 5 6 , 1 is defined in 5 15 , and is the Laplace
transform of the interarrival time density.

The overall asymptotic structure is similar to that for the M/M/1 and M/G/1 models. For the
GI/M/1 model the structure of the solution in the boundary layer (result in part (b)) is simpler than the
corresponding M/G/1 result. We also note that if 0 1, the exact result becomes

0

which is just the mean residual life on the renewal process that governs the arrivals. Now the first
passage time measures the first arrival time to an empty system.
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6. Workload in the GI/G/1 queue

We consider in the GI/G/1 model. We again let be the elapsed time since the last
arrival and analyze the Markov process ( ). The steady-state distribution of this process is
well-known to be equivalent to solving a Wiener-Hopf problem. Since our approach, which uses
the supplementary variable technique, is different from that used in most books on queueing theory,
we briefly give the details of the computation of the steady-state distribution. Our main goal is the
computation of the time for to reach or exceed . We can compute this exactly for the GI/M/1
model, but not for the general GI/G/1 case. For the latter case we derive asymptotic results by using
the perturbation method that we outlined in the previous sections. This method requires that (i) we
know the tail behavior of the steady-state distribution for the joint process ( ) and (ii) we use
the balance equations satisfied by this distribution.

We thus define

lim Pr (6.1)

lim Pr 0 (6.2)

and assume the stability condition 1 1 1. The balance equations are given by

0; 0 (6.3)

0 0; 0 (6.4)

0
0 0 0

(6.5)

0 0 (6.6)

0 0 0
1 (6.7)

Here is as in section 5.
From 6 3 , 6 4 and 6 6 it follows that

exp
0

(6.8)

0
exp

0
(6.9)

Then 6 5 yields an integral equation for . By setting

1
1 0

(6.10)
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this integral equation can be reduced to the Wiener-Hopf (Lindley) equation

0
1 (6.11)

The kernel in 6 11 is

max 0
(6.12)

and we have used the normalization condition 6 7 to infer the value of . Using standard
Wiener-Hopf techniques, we write the solution to 6 11 as

1 1

2 1
exp ! (6.13)

where
!

1
2

1 1
log 1

!
1

2
1 1

log 1

exp ! 1 exp !

(6.14)

Given our assumptions that the Laplace transform (resp. ) is analytic for Re( 0 (resp.
Re( 0), we have 1 analytic and nonzero in some strip 0 Im 0. The Bromwich
contour in 6 13 lies within this strip, and on (resp. ) we have Re( ) Re( ) 0 (resp.
0 Re Re ). The various contours are sketched in Figure 1. Note that ! is analytic at 0
(with ! 0 0), but exp ! has a simple pole at 0. In view of 6 8 - 6 10 and 6 13 , we
have the integral representations

exp
0

1
2 1

! (6.15)

exp
0

1
2

1
1

! (6.16)

Note that ! is analytic in the left half-plane Re( 0. From 6 16 , it is easy to show that

0
1 , as is well-known.

We evaluate the tail behavior of . Let be the unique positive solution of the (real)
transcendental equation

0 0
1 0 (6.17)

Then the integrand in 6 15 has a pole at , and this pole determines the asymptotic behavior of
as . We have

exp
0

1 0 !0

1 0 0 1
(6.18)
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Figure 1: A sketch of the integration contours in the complex -plane.

where

0
; 0 1

0
; 0 1

(6.19)

and

!0 exp ! exp
1

2
1 1

log 1 (6.20)

The contour in 6 20 may be taken along the imaginary axis, with an indentation about 0 in the
right half-plane. Note that equation 6 17 may be compactly written as 0 0 1. Since

0
exp

0

1 0 0 1
0

the marginal density of has the tail

0

1 0 1 !0

1 0 0 1
(6.21)

In special cases, the contour integrals in 6 14 may be explicitly evaluated and the results then
become more explicit. For example, for the M/G/1 model we easily evaluate 6 14 to get exp !

and the expression for
0

is equivalent to that in 3 24 . In this case
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(cf. 3 10 and 6 17 ), !0 , 0 , 0 1 , and 1
2.

Then 3 27 agrees with 6 21 (with ).
For the GI/M/1 model, we have (cf. 5 6 and 6 17 ) and evaluating 6 14 yields

exp !
1 1

and then integrating 6 15 over gives

1
GI/M/1 queue (6.22)

Also, we now have !0 exp ! 1 1 [ 1 1], 0 , 0 1 ,
and 1

2. Then the asymptotic result 6 21 reduces to the exact expression in 6 22 .
We compute the mean time for to reach or exceed . Let be as in 3 1 and set

0 0 (6.23)

The backward equation is easily obtained as

0
0 1; 0 0

(6.24)
with the boundary condition

0 0
0

0 1 0 (6.25)

The latter may be replaced by the equivalent “reflecting” condition 0 0 0. When
, we have constant and then so that 6 24 - 6 25 reduces

to 3 3 - 3 4 . Note that an arrival causes the clock on the renewal process to be reset to zero, and
thus the second argument in in 6 24 inside the integral is zero. Also, from the definition 3 1 ,
we see that for for all . From now on, we will use to mean .

We can construct the (exact) solution to 6 24 for the GI/M/1 model with . It is then
easy to evaluate this expression asymptotically as . Below we give only the final results.
RESULT 5:

The mean time for to reach or exceed in the GI/M/1 queue is given by

1

2

1
1

2

For , asymptotic expansions for are
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(a)
1

1 1

(b) 1 0

1

Here 1 and are as in Result 4. On the contour we have Re .
Note that the first formula in Result 5 applies for 0 and all . For other values of ,

we clearly have 0 by definition.
We now consider the general GI/G/1 model. While we have not been able to solve 6 24 - 6 25

exactly in this case, the perturbation method in the previous sections can be readily extended to
the general model. We begin by establishing an identity between the solution of 6 3 - 6 7 and

. As before, we multiply 6 24 by and integrate the resulting expression over the strip
0 0 . To this we add times equation 6 25 , integrated from 0 to

. After some integration by parts and use of equations 6 3 - 6 6 , we obtain

0 0 0 0
1

0
(6.26)

This identity generalizes 3 25 . The right side is asymptotically equal to 1. To evaluate the left side
as , we use 6 18 with . Then we must know the asymptotic expansion of ,
which corresponds to computing the mean first passage time for an initial workload just below the exit
boundary. We also note that for the GI/M/1 model, has the simple form

1
exp

0
(6.27)

while is quite complicated (cf. Result 5). By using 6 27 and Result 5 to evaluate the first
integral in 6 26 , we have verified that 6 26 is indeed satisfied.

To evaluate as we again use the perturbation method with , 1 .
Away from the exit boundary we find that is a constant, i.e. . In the boundary layer
we set 1 1 and expand as 0 . From 6 24 we
obtain, for and 0,

0 0 0
0

0 0 0 (6.28)

and the matching condition is

0 1 as for all (6.29)
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Setting

0 exp
0

¯
1

¯ (6.30)

we obtain from 6 28

¯ ¯
0

¯ 0 0 (6.31)

Furthermore, we write the solution of 6 31 in the form

¯ (6.32)

In view of 6 29 and 6 30 , we have 1. Using 6 32 in 6 31 we find that

0
¯ 0 ¯ 0 (6.33)

Using 6 33 back in 6 32 yields

¯
0

¯ 0 (6.34)

which expresses ¯ in terms of ¯ 0 . By setting 0 in 6 34 , we obtain an integral
equation for ¯ 0 . Since 1, it also follows from 6 33 that ¯ 0 1. After some
elementary manipulation, this integral equation becomes

¯ 0
0

¯ 0 ¯ 0 1 (6.35)

where is as in 6 12 . But 6 35 is precisely the Lindley integral equation, which is satisfied by
the steady-state unfinished work distribution at arrival instants (cf. 6 11 - 6 13 ). Hence,

¯ 0 1 1

2 1
exp ! (6.36)

where Re 0 on . We thus obtain the boundary layer approximation from 6 36 , 6 34 , and
6 30 . Also,

0 0 exp
0

¯ 0

which when used in 6 26 along with 6 18 leads to

1 !0 0

1 0 0 1 0
¯ 0 1 (6.37)

We evaluate explicitly the integral in 6 37 . From 6 36 and 6 34 we obtain

¯ 1 1

2

!

1
(6.38)
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Setting 0 and using

0

we obtain from 6 38

0
¯ 0 1 1

2 1
! (6.39)

Using 6 14 , the last integral may be written as

1 1

2
1 ! 1 ! (6.40)

Now ! (resp. ! ) is analytic in the left (resp. right) half-plane Re 0 (resp. Re 0). Also,
it is easy to show that as in the corresponding half-planes, we have exp ! const.
and exp ! const. . It follows that the second integral in 6 40 vanishes, as can seen by
closing the Bromwich contour in the right half-plane, where the integrand is analytic. The first integral
in 6 40 can be evaluated by closing the contour in the left half-plane. In this region the only singularity
is the simple pole at . Hence we have

0
¯ 0 1 1 exp ! 1 1 !0 (6.41)

Using 6 41 in 6 37 we solve for , and then the asymptotic expansion of is completely
determined. We summarize the final results below.
RESULT 6:

Asymptotic expansions for the mean time for to reach or exceed in the GI/G/1 queue are
given by

(a)

1 0 0 1

1 2 1 0 !2
0

(b) 1

1 1

2

!

1

Here

0
;

0
0 1
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is the unique positive solution of 0 0 1, and

!0 exp ! exp
1

2
1 1

log 1

On the contour we have 0 Re 0, and may be taken as the imaginary axis with an
indentation about 0 in the right half-plane.

The overall structure of for the GI/G/1 model is similar to that we obtained for the special cases.
The numerical evaluation of the contant requires that we evaluate (numerically) the contour integral
in!0 . This can be done analytically, in closed form, if and have rational Laplace transforms.

For the M/G/1 model we have , , 1 1 , exp ! ,
!0 0

1
0 , 1

2 and then Result 6 reduces to parts (a) and (b) in Result
2. The dependence on in Result 6(b) disappears.

For the GI/M/1 model we have , ,
!

1
!̃ 1

1 1

!0 1 1 1 and 1 0 0 1 0!0 1 1 . Then Result 6 reduces to parts
(a) and (b) in Result 5. The contour integral in part (b) of Result 6 may now be explicitly evaluated, as
the integrand has but two poles in the region Re 0, at 0 and . The residues at these
poles correspond to the two terms in Result 5, part (b).

7. Queue length in the GI/G/1 queue

We compute asymptotically the mean time for to reach 0 in the GI/G/1 model. We consider
the Markov process , where is the elapsed service time and is the age on
the renewal process that governs the arrivals. The perturbation method requires that we know the tail
behavior of the joint steady-state distribution of the 3-dimensional Markov process. The method also
uses the balance equations satisfied by this distribution function.

We hence define

lim Pr 2 (7.1)

1 lim Pr 1 (7.2)

1 lim Pr 1 (7.3)

0 lim Pr 0 (7.4)

Note that we have decomposed the probability that 1 into the two pieces 7 2 and 7 3 . There
are two ways that there can be a single customer present in the system. If a customer arrives to an
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empty system, then 1 and , until the next arrival or departure. This accounts for
the probability “mass” in 7 2 . We can also have 1 if the system has two customers and the
one being served finishes service, and then we have 1 and , until another arrival
or departure occurs. It follows that the support of 1 is . We can also combine 7 2 and
7 3 and write

1 1 1 (7.5)

where is the Dirac delta function and is the Heaviside step function.
The balance equations are now

0; 2 0 0 (7.6)

1 0
0

; 2 0 (7.7)

1 0
0

; 2 0 (7.8)

When 1, 7 6 holds in the region 0. A careful consideration of the various transitions
when 1 or 0 leads to the boundary conditions

1 1 0 0 (7.9)

2 0 1 1 0 (7.10)

0 0
0

1 1 0 0 (7.11)

0 0 0 (7.12)

0
0 1 0 (7.13)

2 0 0 0
1

0
1

0
0 1 (7.14)

Here and were defined in the previous sections; they represent the arrival and departure rates,
conditioned on and .

In view of 7 6 , 7 9 and 7 11 , we have

exp
0 0

1 (7.15)

1 exp
0 0

1 (7.16)

0 exp
0

0 (7.17)
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Note that 1 0 for 0. From 7 7 , 7 8 , 7 10 – 7 13 we find that

0
1 ; 2 0 (7.18)

0
1 ; 2 0 (7.19)

1 1 2 0 (7.20)

0 0
0

1 1 0 (7.21)

0 0 0 (7.22)

0
0 1 (7.23)

These equations are easily solved by using the results in section 6. We first observe that the joint
probability that the system is empty and , is the same whether we are measuring the workload
or the number of customers. Hence, 0 and from 6 16 we obtain

0 exp
0

1
2 1

! (7.24)

where ! is given by 6 14 . Note that it is irrelevant whether the integrand contains the factor
or 1, since 0 0 1 2 1 exp ! 0, as this last integrand is analytic
for Re 0.

In view of 7 5 , we write

1 1 1 (7.25)

Then we use 0 (cf. 7 17 and 7 24 ) in 7 21 and solve this equation using Laplace transforms.
This leads to the integral representation

1
1
2 1

! 0 (7.26)

from which one can compute 1 and 1 (cf. 7 25 ). We can then use 7 15 and 7 16 to
compute 7 2 and 7 3 . Using 7 25 and 7 26 in 7 20 to compute 2 for 0, we get

2
1
2 1

! 0 (7.27)

On the contour we have 0 Re 1, where is analytic for Re 1. But by continuing
7 27 to positive values of , we find that 7 18 is satisfied when 2. Then we can compute

3 for 0 from 7 19 with 2. The resulting integral representation can be continued to
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positive values of , and then 7 18 will be satisfied for 3. Continuing in this recursive manner,
we obtain

1
2 1

! 1 2 (7.28)

where 0 Re 1 on . Expression 7 28 remains valid for 1, if we interpret the left side
as 1 . Finally, the probability density can be computed from 7 15 and 7 28 . The
marginal queue length probabilities are given by, for 2,

0 0

1
2

1 1
1

! 1 (7.29)

This representation is equivalent to that given by Cohen in [1, pg. 307, eq. (5.140)]. Expression 7 29
also applies to 1, where

1
0

1
0

1

and, of course, 0 1 .
The tail behavior as is easily obtained by shifting the contours in 7 28 and 7 29 to

the left, past the pole at . By computing the residues at this pole we obtain

exp
0 0

1 !0

1 0 0 1 0

1 (7.30)

and
1 !0 0 1 1 0

1 0 0 1
[ 0] 1 (7.31)

Here !0 are as in Result 6.
Next we analyze the time to reach 0. We again define by 2 1 and set

0 0 0 1

0 0 0 0
(7.32)

The backward equation is now

1 0 1 0

1 2 0 1
(7.33)

and we use the boundary conditions 0 0 0 for 0, and

0 0 1 0 0 1 (7.34)
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Equation 7 33 remains valid when 1, if we identify 0 0 with 0 .
We have not been able to solve exactly for , so that we compute asymptotically as 0 . The

standard perturbation method shows that away from the exit boundary , 1
0 .

In the boundary layer we set 0 and 0 1 .
Then 7 33 leads to

0 0 0 1 0 0 1 0

0 0
(7.35)

The matching condition is

0 1 as for all and (7.36)

Also, 0 0 0 implies that 0 0 0 0. Setting

0 exp
0 0

¯ (7.37)

leads to
¯ ¯ 1 0 ¯ 1 0 0 (7.38)

We represent the solution to 7 38 in the form

¯ (7.39)

Then 7 38 is satisfied for all 0 provided that

0
1 0

0
1 0

(7.40)

In view of 7 18 , 7 19 and 7 40 , we see that satisfies the same equations as . It
can be easily verified that the contour integral

2 1
! 1 (7.41)

satisfies 7 40 . The matching condition 7 36 implies (in view of 7 37 and 7 39 ) that 1.
Now, as , the behavior of is determined by the simple pole at 0. Recall that on

, 0 Re 1. Since exp ! 0 0 1, we have 1 1 so that we must
choose 1 1 1 1 . We only need to verify that the boundary condition ¯ 0 0 0
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is satisfied. In view of 7 39 and 7 41 , we have

¯ 0 0
0

0

1 1

2

!

1
1

0

1 1

2

!

1

1 1

2
!̃

0

since the integral over vanishes for all , as the integrand is analytic for Re( 0. We have thus
solved for the boundary layer function 0 , and it remains only to determine the constant .
We also note that is related to the steady-state probabilities via 1

(for 2).
We next establish an identity between and . We multiply 7 33 by ,

sum from 2 to 0 1, and integrate over and . After some integration by parts, shifts of
indices on the summations, and use of equations 7 6 - 7 13 , we obtain the identity

0
0 1 0 0 1 0 1

0
0 0

1
0

(7.42)

For the GI/M/1 model, 0
0

0 0 1 0 so that 7 42 reduces to
5 23 , as now is independent of . For the M/G/1 model, 7 42 reduces to 4 27 , since

.
As before, the right side of 7 42 1 as 0 . To evaluate the left side we use 7 30 (with

0 1 and 0) and 0 1 0 0 1 0 . We thus obtain

1
0

0 1 0 0 1 0

1 !0

1 0 0 1
[ 0] 0 2

0 0
1

1 !0

1 0 0 1
[ 0] 0 2 1 1

2

!

1 0

The last integral can be evaluated as in 6 38 - 6 40 . We have thus determined and we summarize
our results below.
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RESULT 7:
Asymptotic expansions for the mean time for to reach 0 in the GI/G/1 queue are given by

(a) 0 0

1 0 0 1

1 2 1!2
0 0

0 2

(b) 0 0 1 1

1 1

2 1
! 1

The various quantities are defined in Result 6. On the contour , 0 Re 1, where is
analytic for Re 1.

It is easy to show that Result 7 reduces to the asymptotic results in Result 3 for the M/G/1 model,
and to those in Result 4 for the GI/M/1 model. For the M/G/1 model, we have and
then the contour integral in may be deformed into a small loop about . For the GI/M/1
model, the integrand in has only two poles (at 0 and ) in the half-plane
Re 1.

8. Discussion and numerical results

We have computed the mean time needed for large workloads and large queue lengths to develop
in the GI/G/1 queue. If either the arrival times or service times are exponentially distributed, we
have derived exact contour integral representations for the mean first passage times. From these
the asymptotic results are easily obtained. For the general model we have computed the mean time
asymptotically, by using singular perturbation methods to analyze the appropriate backward equation(s).

The asymptotic method requires that we know explicitly the tail behavior of the steady-state
distribution of the queue length or workload. For the GI/G/1 model this may be easily obtained from
the Wiener-Hopf theory. The method also requires that we carefully analyze the first passage time for
initial conditions that are close to the exit boundary (i.e. 0 0, 0 ). Using asymptotic
methods, we have shown that this involves solving a second Wiener-Hopf problem. However, the
second problem is very similar in structure to the computation of the steady-state distribution.

In principle, it should be possible to extend the asymptotic method to other models, such as the
m-server GI/G/m queue. For this model, the tail exponent in the steady-state distribution(s) is easily
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computed, but it is very difficult to compute the constant in the asymptotic relation(s). The latter
would seem to require that we have some exact representation of the steady-state distribution(s). This
is known for the GI/M/m model but not for the M/G/m model. Indeed, the analysis of even the M/G/2
queue is quite difficult (see Hokstadt [7]; Cohen [3]; and Knessl, Matkowsky, Schuss and Tier [14]).
Thus, while the asymptotic method reduces the first passage time problem to two simpler problems,
the solution of the latter may itself be difficult.

We next discuss the numerical accuracy of the asymptotic results. We would like to get some idea
as to how large 0 and must be before there is good agreement between the exact and asymptotic
results. Let and be the exact values of the mean first passage times, and let and be the
asymptotic formulas we give in Results 1–7, for initial conditions not close to the exit boundary. From
Results 1–5, we can easily obtain the estimates

1

1 0
(8.1)

where denotes terms that are exponentially small in the appropriate limits (and thus smaller than
any power of 1 or 1

0 ). The estimate 8 1 is obviously true for the M/M/1 model (cf. Result 1
and 3 7 ). It can easily be shown to hold for the M/G/1 and GI/M/1 models by estimating the various
contour integrals in Results 2–5. We conjecture that 8 1 is also true for the general GI/G/1 case. This
suggests that the asymptotic results should be highly accurate, even for moderate values of and 0.

In Tables 1-3 we compare the asymptotic and exact formulas in Result 2 for the M/E2/1 queue,
which has service time density 2 2 2 with 1 1 . We set 1 and in Tables 1,
2, and 3 we have = 4, 2, and 4/3; respectively. The respective traffic intensities are thus = 0.25,
0.50, and 0.75. We also set 0 and compare the exact result to the asymptotic result 0 in
part (a) in Result 2. The contour integrals in the exact answer are easily evaluated since the various
integrands have only two or three poles. Also, the solution to 3 10 is

1
2

4 2 8
2

4 2 8

In Table 1 we consider values of in the range 5 10. The exact and asymptotic answers agree
to 6 decimal places. Since the traffic intensity is quite small, the mean first passage time is very large
(about 1010) even when 5. In Table 2 we increase to 0.5. There is still good agreement between
exact and asymptotic answers, with the worst maximum relative error being less than 1% when 5.
When 10, the two answers agree to 5 decimal places. In Table 3 we further increase to 0.75.
Now the error is unacceptable (about 40%) when 5, but decreases to about 5% when 10
and to under 1% when 15. As 1 the asymptotics are no longer valid. In Tables 1-3 the
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relative error is always under 1% for values of and which have 1 4. This shows that the
asymptotic result is quite useful even for moderate values of , provided is not close to one.

In Tables 4-6 we compare the asymptotic and exact formulas in Result 3 for the M/D/1 queue,
which has service time density 1 . We consider initial conditions 0 0 and
use the asymptotic result 0 0 in part (a) in Result 3. We set 1 and Tables 4, 5, and 6
have 4 0 25 , 2 0 50 , and 4 3 0 75 ; respectively. The exact answer was
obtained by using symbolic methods to compute the residues at 0 for the various contour integrals.
To get dependable numerical answers when 0 25, it was necessary to do the calculation using 30
digits of precision. Now 0 satisfies exp( ), which we solved numerically. In Tables
4-6 we consider values of 0 in the range 5 0 15. When 0 25, Table 4 shows that we get
agreement within 1% even when 0 5. When 0 15, the asymptotic and exact answers agree to
6 decimal places. In Table 5 we increase to 0.5. The error is about 3% when 0 5 but decreases
to under 1% for 0 7; when 0 15 we get agreement to 6 decimal places. Table 6 has 0 75.
When 0 5, the error is an unacceptable 50%, but decreases to about 3% when 0 10 and to
about 0.3% when 0 15. Throughout Tables 4-6 the error is always under 1% for 0 1 4.
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Table 1: 1 4

K Exact Asymptotic
5 .100519E11 .100519E11
6 .102811E13 .102811E13
7 .105156E15 .105156E15
8 .107554E17 .107554E17
9 .110007E19 .110007E19
10 .112515E21 .112515E21
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Table 2: 1 2

K Exact Asymptotic
5 3328.58 3340.61
6 14063.80 14077.83
7 59310.03 59326.06
8 249990.73 250008.76
9 .105355E7 .105357E7
10 .443989E7 .443991E7

Table 3: 1 4 3

K Exact Asymptotic
5 80.49 111.17
6 141.22 175.91
7 239.65 278.33
8 397.71 440.39
9 650.12 696.81
10 1051.83 1102.52
11 1689.77 1744.45
12 2701.46 2760.14
13 4304.52 4367.21
14 6843.29 6909.98
15 10862.56 10933.24

Table 4: 1 4

0 Exact Asymptotic
5 3464.00 3458.64
6 35657.97 35785.35
7 369810.20 370258.57
8 .383086E7 .383093E7
9 .396417E8 .396373E8
10 .410127E9 .410114E9
11 .424330E10 .424330E10
12 .439038E11 439040E11
13 .454259E12 .454259E12
14 .470006E13 .470006E13
15 .486299E14 .486299E14
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Table 5: 1 2

0 Exact Asymptotic
5 178.24 183.36
6 637.66 644.11
7 2255.39 2262.70
8 7940.53 7948.56
9 27913.28 27922.21
10 98076.86 98086.89
11 .344554E6 .344565E6
12 .121039E7 .121041E7
13 .425199E7 .425201E7
14 .149367E8 .149367E8
15 .524706E8 .524706E8

Table 6: 1 4 3

0 Exact Asymptotic
5 40.72 59.13
6 81.10 102.52
7 153.32 177.73
8 280.71 308.11
9 503.74 534.15
10 892.60 926.00
11 1568.92 1605.32
12 2743.58 2782.99
13 4782.19 4824.60
14 8318.53 8363.93
15 14451.32 14499.72
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