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Set theory is the basic mathematical theory commonly accepted as the
language to describe the mathematical universe. Our first goal in this course
is to develop all regular mathematical objects (such as numbers, functions,
vector spaces, graphs etc.) from the basic concept of a set. The second goal
is to present some results in set theory which relates to the infinite.

We will use the first-order language of set theory (whatever that means)
which includes the following symbols:

(1) Equality =.
(2) Negation ¬A (“not A”).
(3) Conjunction A ∧B (“A and B”).
(4) Disjunction A ∨B (“A or B”).
(5) Implication A ⇒ B (“ If A then B”).
(6) Equivalence A ⇔ B (“ A if and only if B”).
(7) Universal quantifier ∀x, ϕ(x) (“For all x, ϕ(x)”).
(8) Existential quantifier ∃x, ϕ(x) (“there exists some x such that ϕ(x)”).
(9) The membership relation ∈ (a ∈ A means “a is a member in the set

A”)
(10) Uniqueness quantifier ∃!x, ϕ(x) (“There is a unique x such that

ϕ(x)”)
(11) Bounded quantifiers: it will be convenient to use the notion of quan-

tifiers which are bounded in a given set A:
(a) ∀x ∈ A, ϕ(x) (“for every x in the set A, ϕ(x)”). This is equiva-

lent to ∀x, x ∈ A → ϕ(x).
(b) ∃x ∈ A, ϕ(x) (“there exists an element x in the set A such that

ϕ(x)”). This is equivalent to ∃x, x ∈ A ∧ ϕ(x).
We think of these quantifiers as quatifiters which range over a

given set.

1. sets

In the next section we shall lay the formal foundations of set theory.
Before that, we would like to gain intuition about sets. We shall give rules
of thumb (which will later turn into Axioms) to describe sets and how one
can think of and handle them.

Date: September 20, 2023.

1



2 TOM BENHAMOU RUTGERS UNIVERSITY

Definition 1.1 (Non-formal). A set is a collection of mathematical objects
without repetitions and without ordering.

To understand this definition better, let us jump directly to the descrip-
tion of sets and through the example we will understand it better.

1.1. Defining sets. In general, there are exactly three ways to define a set.

1.1.1. The list principle.

{a, b, c, ..., z}, {1, 5, 17}, {{1, 2}, {2, 3}}
A set is always denoted with curly brackets {, }. Between the brackets we
specify the members or elements of the set separated by commas.

Let us denote the set of natural numbers by:

N = {0, 1, 2, ...}

Definition 1.2 (Non-formal). The membership relation a ∈ A is the state-
ment that the object a is a member of the set A

Example 1.3. 1 ∈ {1}, {2, 2} ∈ {{1}, {2}}, {3} /∈ {3, 4, 5}, {1, 10, 100} ∋
1, 12 /∈ N

Formally, we can define the ”List Principle” by

a ∈ {a1, ..., an} ≡ a = a1 ∨ a = a2... ∨ a = an

Remark 1.4. (1) To explain the fact that sets have no order, we note
that the sets {1, 2, 3}, {2, 3, 1} represent the same set.

(2) To explain the fact that sets have no repetitions, we note that
{1, 1, 2, 3}, {1, 2, 3} represent the same set.

Remember: The membership relation is always between a member of a
set and a set

1.1.2. The separation principle. Given a set A and a predicate p(x) (a first
order formula) where x is a free variable in the set A, we can separate from
A the elements a ∈ A which satisfy p(a) into a new set. This separated set
is denoted by:

{x ∈ A | p(x)}
This reads as “the set of all x in A such that p(x) holds true”. The Axiom

of separation states that such a set always exists.

Example 1.5. (1) {x ∈ {1, 2, 6, 7} | x > 3} = {6, 7}
(2) p(x) is the predicate ∃k ∈ N(3 · k = x). Then we can separate from

N the following set:

{x ∈ N | ∃k ∈ N(3 · k = x)} = {0, 3, 6, 9, ....}
(3) A = {1, 3, 6, 11, 21, 17}, {x ∈ A | x+ 1 is prime} = {1, 6}



MATH 316: SET THEORY 3

(4) B = {{1}, {2},N, {N}, {x ∈ N | x · x = x}}

{x ∈ B | 1 /∈ x} = {{2}, {N}}

Define a ∈ {x ∈ A | p(x)} ≡ a ∈ A ∧ p(a)

1.1.3. The replacement principle. Let A be a set and f(x) some operation/
function on the elements of A. We can replace every memeber a of the set
A by the outcome of the operation f(a) and collect all the outcomes into a
new set. This new collection is denoted by:

{f(x) | x ∈ A}
This reads as “the set of all outcomes f(x) where the parameter x runs in
the set A”.

Example 1.6. • f(x) = 2x, {2x | x ∈ N} = {20, 21, 22, ....} = {1, 2, 4, 8, 16, ....}
• {{x} | x ∈ {1, 4, 3}} = {{1}, {3}, {4}}. Sets of the form {a} are
called singletons.

• {x+ 1 | x ∈ N} = {x ∈ N | x > 0}

Define a ∈ {f(x) | x ∈ A} ≡ ∃x ∈ A.f(x) = a

Important: a formula of the form a ∈ A is a statement and should be
proven by the definitions given above for each of the three principles.

Exercise 1. Prove the following membership statements:

(1) 2 + 5 ∈ {1, 2, ..., 10}.

Solution 1. By the list principle, we need to prove that

(2 + 5 = 1) ∨ (2 + 5 = 2) ∨ ... ∨ (2 + 5 = 10)

Indeed, 2 + 5 = 7 hence the ∨-statement holds.

(2) 5 ∈ {x ∈ N | ∃y ∈ Z.y + x = 5}.

Solution 2. By the separation principle, we need to prove that 5 ∈
N ∧ ∃y ∈ Z.y + 5 = 5. This is a ∧-statement, so we need to prove
two parts:
(a) 5 ∈ N, this is clear by the definition of the natural numbers.
(b) We need to prove that ∃y ∈ Z.y + 5 = 5. Define y = 0, then

y ∈ Z and y + 5 = 0 + 5 = 5.

(3) {1} ∈ {{n, 1} | n ∈ N}.

Solution 3. By the replacement principle, we need to prove that
∃n ∈ N.{1} = {1, n}. Define n = 1, indeed 1 ∈ N and since there
are no repetitions in sets we have that

{1, n} = {1, 1} = {1}.
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1.1.4. Celebrity sets.

(1) N = {0, 1, 2, 3, ....} you will not need to explain basic properties of the
natural numbers which relates to addition, multiplication and power
of natural numbers. Here are some other properties we assume about
the natural numbers:

• Every natural number has an immediate successor.
• The natural numbers are well-ordered, which simply says that
every set of natural numbers (finite or infinite) has a minimal
element.

• Every finite set of natural numbers has a maximal element.
(2) The set of positive natural numbers is: N+ = {x ∈ N | x > 0} =

{1, 2, 3, 4, ....}
(3) The set of integers is: Z = {...,−2,−1, 0, 1, 2, ...}
(4) The set of fractions/ rational numbers is: Q = {m

n | m,n ∈ Z∧n ̸= 0}
(5) The set of real numbers is denoted by R. We will formally de-

fine the reals only later. We will simply describe them as num-
bers which have a (possibly infinite) decimal representation such as:
15.6755897847566372....... Among the real numbers, one can find√
2, π, e. One of the most important properties of the reals is that

the rational numbers are dense inside them:

∀r1, r2 ∈ R.r1 < r2 ⇒ (∃q ∈ Q.r1 < q < r2)

R+ = {x ∈ R | x > 0}.
(6) The intervals:

• (a, b) = {x ∈ R | a < x < b} denotes the open interval between
a and b.

• [a, b] = {x ∈ R | a ≤ x ≤ b} the closed interval.
• [a, b) = {x ∈ R | a ≤ x < b}. Define similarly (a, b].
• (a,∞) = {x ∈ R | a < x} is the infinite ray. Similarly define
[a,∞), (−∞, a), (−∞, a]. Note that (a,∞] is not defined since
∞ is not a natural number.

(7) ∅ denoted the empty set, which is characterized by the following
property: ∀x.x /∈ ∅. Namely, the empty set is a set with no element.
It is sometimes convenient to think of ∅ = {}.

1.1.5. Axiomatic development- Existence, Extensionality and Comprehen-
sion. The reason the need of formal mathematics as emerged is the discovery
of certain paradoxes.

Russel’s Paradox The paradox emphasizes the fact that if we are not
being careful regarding what might be considered a mathematical object
(i.e. set) then we will run into paradoxes. More specifically, consider the
collection of

{x | x /∈ x}
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Namely the collection of all sets which are not members of themselves. For
example: ∅ /∈ ∅ and therefore ∅ is part of this collection. Also N /∈ N since
N consists only of the natural numbers and N is not a natural number. In
general, it is not clear if there is even a set x such that x ∈ x. Russel’s
paradox says that this collection cannot form a set:

Proof. Suppose otherwise, that D = {x | x /∈ x} is a set. Then there are
exactly two options:

(1) D ∈ D.
(2) D /∈ D.

In the first case, the set D itself (when thinking of x = D in the definition
of D) does not satisfy the condition x /∈ x and thus D is not a member of
D, a contradiction.

In the second case, D satisfies the condition x /∈ x and therefore D must
be a member of the set D, namely D ∈ D, contradiction. □

We shall see how the formal approach resolves this paradox.
We need to start with something.

Axiom (Ax0. Existence). There exists some object x.

From the set existence we can only prove that the universe is non-empty
and it can contain a single object (which is not enough for any interesting
mathematics). Axioms which generate new sets will be presented later on.

Axiom (Ax1. Extensionality). For every x, y we have that x = y if and
only if ∀z, z ∈ x ↔ x ∈ y.

The axiom of extensionality is not contributing to the existence of new
sets. It is used usually to prove uniqueness.

Example 1.7. Let us claim that from extensionality, if there is a set x such
that ∀z.z /∈ x then x is unique (this claim basically sais that the empty set
is unique).

Proof. Suppose that x1, x2both satisfy that for all ∀z.z /∈ xi (i = 1, 2), then
the antecedent ∀z.z ∈ x1 ↔ z ∈ x2 is satisfied and therefore x1 = x2. □

Once we prove that there is a unique set satisfying a certain property we
may introduce a special notion for it and use it from now on.

Definition 1.8. The empty set, denoted by ϕ is the unique set satisfying
∀z, z /∈ ϕ.

Axiom (Ax3. Comprehension scheme). For every set A and every first-
order formula ϕ(x), there is a set B such that ∀z.z ∈ B ↔ z ∈ A ∧ ϕ(z).

Definition 1.9. We denote the set B from Ax3 by B := {x ∈ A | ϕ(x)}.

By the axiom of extensionality, given a set A and a formula ϕ(x), the set
B is unique and therefore the definition above is legitimate. Now Russel’s
paradox is just the theorem that a certain set does not exists
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Theorem 1.10 (Russel’s Paradox). There is no set A such that

For every x, x ∈ A if and only if x /∈ x

Corollary 1.11. There is no set A such that ∀x, x ∈ A.

Proof. Just otherwise, from the set A, using the axiom of comprehension the
set from Russel’s paradox exists, contradicting the previous theorem. □

Remark 1.12. The general principle of replacement will be given only later.
However, if C is a set defined by replacement and for some set B, C :=
{f(x) | x ∈ A} ⊆ B then C can also be defined using comprehension
C = {x ∈ B | ∃a ∈ A, f(a) = x}. This is of course not always possible,
since otherwise, the axiom of replacement would have been redundant.

1.2. Inclusion and set equality.

Definition 1.13. Let A,B be any sets. We say that A is included in B
and denote it by A ⊆ B if

∀x.x ∈ A ⇒ x ∈ B

In other words, if every element of A is an element of B. Using bounded
quantifiers we can say that A ⊆ B is the statement ∀x ∈ A.x ∈ B.

Example 1.14. {1, 5} ⊆ Nodd ⊆ N+ ⊆ N ⊆ Z ⊆ Q ⊆ R.

1.3. Proving sets inclusion. Since A ⊆ B is a universal implication, we
have the following format:

(1) The proof starts with “Let a ∈ A”.
(2) Then we should deduce from the assumption of that a ∈ A usually

that requires to interpret that assumption that a ∈ A. that a ∈ B
and the proof should terminate by “a ∈ B”.

Of course, in special cases we can use the other methods of proving universal
statements (such as proving a ∈ B going over a ∈ A one-by-one)

Example 1.15. Prove the following inclusions:

(1) {2,−1} ⊆ {x ∈ Z | x2 > x}.
Proof. Let a ∈ {2,−1}. Since {2,−1} includes only two elements,
let us prove that a ∈ B by going over the elements of {2,−1} one-
by-one:
(a) For a = 2, we need to prove that 2 ∈ {x ∈ Z | x2 > x}. By

the separation principle we need to prove that 2 ∈ Z ∧ 22 > 2.
Indeed 2 is an integer and 22 = 4 > 2.

(b) For a = −1, we need to prove that −1 ∈ Z ∧ (−1)2 > −1.
Indeed, −1 is an integer and (−1)2 = 1 > −1.

□

(2) {n2 + n | n ∈ N} ⊆ Neven.
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Proof. Let x ∈ {n2 + n | n ∈ N}. We need to prove that x ∈ Neven.
By the replacement principle, there exist n ∈ N such that x = n2+n,
so let n0 ∈ N be such that x = n2

0 + n0. In is an easy exercise to
deduce now that x is even, namely that x ∈ Neven. □

(3) For every a, b, c ∈ R. If a < b < c, then there is ϵ > 0 such that
(a, b+ ϵ] ⊆ (a, c).

Proof. Let a, b, c ∈ R such that a < b < c. We need to prove that
there is ϵ > 0 such that (a, b + ϵ] ⊆ (a, c)A moment of reflection
reviles that we only need to find 0 < ϵ such that b + ϵ < c, hence
0 < ϵ < c − b. The following definition of ϵ is tailored to satisfy
exactly these inequalities.. Define ϵ = c−b

2 . Since c > b, we have that

c− b > 0 and also ϵ = c−b
2 > 0. Let us prove that1 (a, b+ ϵ] ⊆ (a, c).

This is an inclusion, let x ∈ (a, b+ ϵ]. By definition of intervals, this
means that x ∈ R∧(a < x ≤ b+ϵ). We need to prove that x ∈ (a, c),
namely, that x ∈ R∧ (a < x < c). Indeed by the assumption, x ∈ R,
and a < x. To see that x < c, we use the definition of ϵ:

x ≤ b+ ϵ = b+
c− b

2
< b+ (c− b) = c

Hence a < x < c and we conclude that x ∈ (a, c). □

Problem 1. Prove that if A ⊆ B ∧B ⊆ C, then A ⊆ C.

Theorem 1.16. For every set A, ∅ ⊆ A.

Proof. 2 Let A be a set. We need to prove that ∅ ⊆ A. Note here the
assumption “Let a ∈ ∅” is impossible. Instead, we recall that in order to
prove that ∅ ⊆ A we need to prove that ∀x.x ∈ ∅ ⇒ x ∈ A. Let x be
any element, then x ∈ ∅ is false by the definition of ∅ and therefore the
implication x ∈ ∅ ⇒ x ∈ A is vacuously true. □

Definition 1.17. We denote by A ⊈ B if ¬(A ⊆ B), namely, if ∃x ∈ A.x /∈
B.

Example 1.18. Prove that {n ∈ N | n2 − 7n+ 12 = 0} ̸⊆ Nodd

Proof. For example3 4 /∈ Nodd and also 4 ∈ {n ∈ N | n2 − 7n + 12}, since
4 ∈ N and 42 − 7 · 4 + 12 = 0. □

1.4. Set equality. The extensionality axion expresses the fact the a set is
determined by its elements.

Corollary 1.19. For any two sets A,B:

A = B ⇔ (A ⊆ B) ∧ (B ⊆ A)

1Recall that to prove an existential statement we give the example and prove it satisfy
the desired property.

2Here is and example for the 0.1% of the cases where we prove that an implication is
vacuously true.

3We need to prove an existential statement so we provide an example.
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This means that when we wish to prove set equality A = B, we do so by
proving a double inclusion:

(1) Prove A ⊆ B.
(2) Prove B ⊆ A.

Example 1.20. Prove that N+ = {x ∈ Z | ∃y ∈ N.y + 1 = x}.

Proof. Let us denote the set of the right-hand side by A. We want to prove
N+ = A. This is sets equality and we prove it by a double inclusion:

(1) N+ ⊆ A: Let n0 ∈ N+, then n0 ≥ 1 is an integer. We want to prove
that n0 ∈ A, by the separation principle, we want to prove that
n0 ∈ Z ∧ ∃y ∈ N.y + 1 = n0. Clearly, n0 ∈ Z. Define y = n0 − 1.
Note that y ≥ 0 is an integer, hence y ∈ N and clearly y + 1 = n0,
hence n0 ∈ A.

(2) A ⊆ N+: Let a0 ∈ A. We want to show that a0 ∈ N+. By the
separation principle, we know that a0 ∈ Z and that ∃y ∈ N.y + 1 =
a0. Let y0 ∈ N witness that y0 + 1 = a0. Since y0 ∈ N, we have that
y0 ≥ 0 and therefore a0 = y0 + 1 ≥ 1. It follows that a0 ∈ N+.

□

Definition 1.21. We denote A ̸= B is ¬(A = B). This is equivalent
to ∃x. (x ∈ A ∧ x /∈ B) ∨ (x ∈ B ∧ x /∈ A). We denote by A ⊊ B if
(A ⊆ B) ∧ (A ̸= B).

2. Operations on sets

2.1. Venn diagram. The graphical representation of sets and elements is
to think of a set A as an area and a member of it x ∈ A as a point in that
area:

xA

A Venn diagram of two or more sets, is graphial representation of general
sets.
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A B

Three sets:

A

B

C

We can also add extra assumption to the diagram, for example if B ⊊ C we
can express it as follows:

A B C

x

Note that x is a witness for a member of B which is not in C. A vigilant
reader will notice that the picture is not fully accurate as we do not know
if the witness x belongs to A.
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2.2. Operation between sets.

Definition 2.1. Let A,B be sets

(1) The intersection of the sets is defined by A∩B = {x | x ∈ A∧x ∈ B}.

A B
A ∩B

(2) The union of the two sets is denoted by A∪B = {x | x ∈ A∨x ∈ B}

A B

A ∪ B

(3) The difference of the sets is defined by A \B = {x ∈ A | x /∈ B}

A B
A \B

In the literature, difference of sets is sometimes denoted by A−B.
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(4) The complement of A inside a supset U of A is denoted by Ac = U\A.
This is conceptually different from difference since we assume that
U is some framework set and then Ac is an operation on a single set.

A

Ac

(5) The symmetric difference of the sets is denoted by A∆B = (A\B)∪
(B \A)

A B
A \B B \ A

Example 2.2. (1) {1, 2}∪{2, 3} = {1, 2, 3}, {1, 4, 5}∩{2, 4, 4} = {4}, [0,∞)∩
(−∞, 1) = [0, 1)

(2) {1, 2, 6} \ {2, 7, 8} = {1, 6}, A∩A = A∪A = A, the set of irrational
numbers is the set R \Q

2.3. General union and the axiom of union.

Axiom (Ax5. Union). For any family of sets F there is a set U such that

∀x, (∃z.z ∈ F ∧ x ∈ z) → x ∈ Y.

The set Y only includes the union of the sets in F but with comprehension
we my form the (unique) set:

Definition 2.3. For any set F we define⋃
F := {x ∈ Y | ∃z ∈ F .x ∈ z}
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where Y is the set guaranteed from Ax5.

Problem 2. Prove that the definition of
⋃
F does not depend on the choice

of Y . Namely, if Y, Y ′ are two sets witnessing the union axiom for F , then
the resulting definition

⋃
F is the same.

Example 2.4. (1)
⋃
{A,B} = A ∪B.

(2)
⋃{

{0, 1}, {0, 2}, {0, 3}
}
= {0, 1, 2, 3}.

(3)
⋃
{[0, n) | n ∈ N} = [0,∞).

(4)
⋃
{(n, n+ 1) | n ∈ Z} = R \ Z.

Remark 2.5. In many situations (for example items (3),(4) above) the set
F will be defined by replacement F := {A(x) | x ∈ B}. This we write⋃

F =
⋃
x∈B

A(x).

Exercise 2. Compute
⋃

n∈N+
( 1n , n)

Solution 4. We claim that
⋃

n∈N+
( 1n , n) = (0,∞). We shall prove it by a

double inclusion:

⊆: Let x ∈
⋃

n∈N+
( 1n , n). By definition of union, there is n ∈ N+ such

that x ∈ ( 1n , n). By definition of interval this means that 1
n < x < n

and in particular 0 < x. By definition of (0,∞) this means that
x ∈ (0,∞).

⊇: Let x ∈ (0,∞). To prove that x ∈
⋃

n∈N+
( 1n , n), we need to find

some n ∈ N+ such that 1
n < x < n. This means that x < n and

also, since x > 0, the inequality 1
n < x is equivalent to 1

x < n. So

n should be greater then both x and 1
x . There exists such a natural

number n (for example n = ⌈max{x, 1x}⌉).

The following definition does not require the union axiom:

Definition 2.6. Let F ̸= ∅, define the intersection⋂
F := {x | ∀z ∈ F .x ∈ z}

Example 2.7. (1)
⋂{

{1, 2, 3}, {2, 3, 5}, {1, 2, 7}
}
= {2}.

(2)
⋂{

(− 1
n ,

1
n) | n ∈ N+

}
= {0}.

(3)
⋂

n∈N+
(0, 1

n) = ∅.

Note that the intersection exists by comprehension since⋂
F = {x ∈ B | ∀z ∈ F .x ∈ z}

where B is any member of F .

Proposition 2.8. Sets operations identities:

(1) Associativity:
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(a) A ∩ (B ∩ C) = (A ∩B) ∩ C.
(b) A ∪ (B ∪ C) = (A ∪B) ∪ C.
(c) A∆(B∆C) = (A∆B)∆C.

(2) Commutativity:
(a) A ∩B = B ∩A.
(b) A ∪B = B ∪A.
(c) A∆B = B∆A.

(3) Distributivity:
(a) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
(b) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(4) Identities of difference and De-Morgan low’s for sets:
(a) A \B = A ∩Bc.
(b) (A ∪B)c = Ac ∩Bc.
(c) (A ∩B)c = Ac ∪Bc.
(d) A \ (B ∩ C) = (A \B) ∪ (A \ C)
(e) A \ (B ∪ C) = (A \B) ∩ (A \ C).

(5) Identities of the empty set:
(a) A ∩ ∅ = ∅.
(b) A ∪ ∅ = A.
(c) A \ ∅ = A.
(d) ∅ \A = ∅.
(e) A∆∅ = A.

(6) Identities of a set and itself:
(a) A ∩A = A.
(b) A ∪A = A.
(c) A \A = ∅.
(d) A∆A = ∅.

As examples, we will prove some of the items. We encourage the readers
to write the proof for the other items.

Proof of 3.(b). We need to prove sets equality. We do so by proving a double
inclusion.

(A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C): Let x ∈ (A∩B)∪(A∩C). By definition
of ∪, we can split into cases:

(1) If x ∈ A∩B, then by definition of ∩, x ∈ A∧x ∈ B. Hence x ∈ B∪C
and x ∈ A ∩ (B ∪ C).

(2) If x ∈ A ∩ C then x ∈ A ∧ x ∈ C. Once again, x ∈ B ∪ C, thus
x ∈ A ∩ (B ∪ C).

In both cases we conclude that x ∈ A ∩ (B ∪ C).
(A ∩B) ∪ (A ∩ C) ⊇ A ∩ (B ∪ C): Exercise.

□

Proof of 4.(e). Let us prove it using the other items.



14 TOM BENHAMOU RUTGERS UNIVERSITY

A \ (B ∪C)
4.(a)
= A ∩ (B ∪C)c

4.(b)
= A ∩ (Bc ∩Cc)

6.(a)
= (A ∩A) ∩ (Bc ∩Cc) =

2.(a)+1.(a)
= (A ∩Bc) ∩ (A ∩ Cc)

4.(a)
= (A \B) ∩ (A \ C)

□

Proof of 4.(b): We will prove 4.(b) in is generalized form, i.e.

(
⋃

F)c =
⋂{

Bc | B ∈ F
}

⊆: Let x ∈ (
⋃

F)c. Then x /∈
⋃
F . By definition of union, it follows

that there is no B ∈ F such that x ∈ B. In other words, for every
B ∈ F , x /∈ B, or equivalently, x ∈ Bc. By definition of intersection,
x ∈

⋂{
Bc | B ∈ F

}
.

⊇: similar to the first direction.

□

Proposition 2.9. The following are equivalent:

(1) A ⊆ B
(2) A ∩B = A
(3) A \B = ∅
(4) A ∪B = B

Proof. We shall prove: (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1).4

(1) ⇒ (2): Suppose A ⊆ B. We need to prove that A ∩B = A. We need
to prove a double inclusion: Clearly, A∩B ⊆ A. As for the other inclusion,
let x ∈ A, since A ⊆ B we conclude x ∈ B and therefore x ∈ A ∩ B thus
A = A ∩B.

(2) ⇒ (3): Suppose that A ∩ B = A and suppose toward a contradiction

that AB ̸= ∅. By the definition of ∅, we conclude that there is x ∈ A\B. By
definition of sets difference, x ∈ A ∧ x /∈ B. By definition of ∩, x /∈ A ∩ B.
Thus x ∈ A and x /∈ A ∩ B. By extensionality, A ̸= A ∩ B, contradicting
the assumption.

(3) ⇒ (4) and (4) ⇒ (1) are left as exercises.
□

2.4. The power set.

Axiom (Ax8 Power set). For every set x there is a set y such that

∀z, z ⊆ x ⇒ z ∈ y.

Definition 2.10. Let A be any set. Define the power set of A as the set of
all possible subsets of A. We denote it by

P (A) := {x | x ⊆ A}
4This is a standard trick to prove equivalence between several statements. The order

is not important as long as we close a circle of implications.
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The definition above is justified by the power set axiom and comprehen-
sion (to establish existence) and extensionality (for uniqueness).

Example 2.11. (1) P ({0, 1}) = {∅, {0}, {1}, {0, 1}}
(2) P ({{1}, 2}) = {∅, {{1}}.{2}, {{1}, 2}}
(3) ∅, A ∈ P (A)

Exercise 3. Prove that A ⊆ B If and only if P (A) ⊆ P (B).

Solution 5. ⇒: Suppose that A ⊆ B. We want to prove that P (A) ⊆
P (B). To prove the inclusion, let X ∈ P (A), we want to prove
that X ∈ P (B). By definition of power set, X ∈ P (A) implies that
X ⊆ A. By the assumption A ⊆ B and by a transitivity of inclusion
we conclude that X ⊆ B. Again by definition of the power set, we
have that X ∈ P (B).

⇐: Suppose that P (A) ⊆ P (B). We want to prove that A ⊆ B. Usually,
we would take an element a ∈ A and try to prove that a ∈ B.
However, there is a “trick” here which simplifies the proof. We have
that A ∈ P (A) and by the assumption, P (A) ⊆ P (B), hence A ∈
P (B). By definition of power set this means that A ⊆ B, as wanted.

Definition 2.12. For a finite set A, we denote be |A| the number of elements
in the set A. For example |{1, 2, 3, 18,−3}| = 5 and |(−5, 5) ∩ Z| = 9.

Theorem 2.13. Let A be a finite set then |P (A)| = 2|A|.

“Proof”. Suppose that A = {a1, ..., an}.
Every subset X ⊆ A, defines a sequence of n yes/no answers in the follow-

ing way: for each i = 1, ..., n, we ask the question, is ai ∈ X? For example
suppose that:

• a1 yes
• a2 no
• a3 no
• a4, ..., an yes

Then the sequence of answers would be

yes, no, no, yes, yes, yes, ..., yes

Note that from this sequence of answers we can reproduce the subset X =
{a1, a4, ..., an}. This means that we are left to count the number of possible
sequences of answers. Since typically there are n answers, with 2 possibilities
for each answer we conclude that there are

2 · 2....2︸ ︷︷ ︸
ntimes

= 2n

many subsets of A. □

Problem 3. What is the sequence of answers which corresponds to ∅, A?
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2.5. The pairing axiom, Ordered pairs and Cartesian product. Many
mathematical objects involve order and repetitions. For example, the coor-
dinates of a point in the plane is an object for which the order is important
(since the point P = (1, 2) is not the same point as Q = (2, 1)) and repe-
tition is allowed (there is the point (1, 1)). We shall aim to define objects
which allow order and repetition. They will be denoted by ⟨x, y⟩ and the
point is that we allow x = y and ⟨x, y⟩ ≠ ⟨y, x⟩ in case x ̸= y.

Definition 2.14. Let x, y be two objects, the ordered pair of x and y is
defined by ⟨x, y⟩ = {{x}, {x, y}}.

but how do we justify this definition? we need to first be able to define
sets using the list principle {a1, ..., an}.

The following axiom ensures that some of the most basic concepts in set
theory exist, and in particular, prove the existence of non-empty sets.

Axiom (Ax4. Pairing). For every sets x, y there is a set w such that x ∈
w ∧ y ∈ w.

So using comprehension we can now prove the existence of the set {x, y}
and the set {x} by applying paring to x, x.

We can now justify the definition of order pairs by applying pairing and
comprehension to {x}, {x, y}.
Exercise 4. Define (and prove the existence and uniqueness using pairing
and other axioms) of the following objects: A ∪ B, A ∩ B, A \ B, A∆B,
{a1, ..., an}.
Theorem 2.15 (Pairs equality). For every a, b, c, d we have

⟨a, b⟩ = ⟨c, d⟩ ↔ a = xc ∧ b = d

Proof. ⇒: Suppose a = c, b = d then

⟨a, b⟩ = {{a}, {a, b}} = {{c}{c, d}} = ⟨c, d⟩
→: Suppose that {{a}, {a, b}} = {{c}, {c, d}} then

I {a}, {a, b} ∈ {{c}, {c, d}}.
II {c}, {c, d} ∈ {{a}, {a, b}}.

Let us split into cases:
(a) If a = b then

{{a}, {a, b}} = {{a}, {a, a}} = {{a}, {a}} = {{a}}
and therefore, since {c}, {c, d}{{a}} we have that {c} = {a} =
{c, d}. It follows that a = b = c = d, in which case we are done.

(b) The case c = d is symmetric to the one above.
(c) Suppose that a ̸= b and c ̸= d. Then {a} = {c}, since otherwise,

by I, {a} = {c, d} and therefore a = c = d, contradicting our
assumption. Hence a = c. Also {a, b} = {c, d} since otherwise,
again by I, {a, b} = {c} resulting in a = c = b, contradiction.
This means that b ∈ {c, d}. Since a = c and b ̸= a we conclude
that b = d.
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□

Definition 2.16. Let A,B be two sets. The Cartesian product of the sets
(named after René Descartes) is defined by A×B = {⟨a, b⟩ | a ∈ A,B ∈ B}

Also define the square of a set A is to be A×A.

The existence of the cartesian product is justified by the powerset axiom,
union, pairing, comprehension and extensionality:

Problem 4. Prove that A×B ⊆ P (P (A ∪B)).

Remark 2.17. In practice the power set axiom can be replaced by the so-
called replacement theorem which is usually assumed before the powerset
axiom.

Example 2.18. (1) {1, 2} × {3, 4} = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 3⟩, ⟨2, 4⟩}
(2) {2, 3}2 = {⟨2, 2⟩, ⟨2, 3⟩, ⟨3, 2⟩, ⟨3, 3⟩}
(3) The Real plane is defined to be the set R2.

Definition 2.19. Let us define by recursion an n-tuple. A 1-tuple is defined
by ⟨a⟩ = a. Given we have defined an n-tuple, we define n+ 1-tuples using
n-tuples and ordered pairs we have already defined.:

⟨a1, ..., an, an+1⟩ = ⟨⟨a1, ...an⟩, an+1⟩

Example 2.20. (1) ⟨a0⟩ = a0.
(2) Note that a 2-tuple is the same as an ordered pair. Indeed, let us

denote momentarily the 2-tuple by ⟨a0, a1⟩∗, then we have

⟨a0, a1⟩∗ = ⟨⟨a0⟩, a1⟩ = ⟨a0, a1⟩
.

(3) ⟨a0, a1, a2⟩ = ⟨⟨a0, a1⟩, a2⟩ =
{{⟨a0, a1⟩}, {⟨a0, a1⟩, a2}} = {{{{a0}, {a0, a1}}}, {{{a0}, {a0, a1}}, a2}}
(4) ⟨a0, a1, a2, a3⟩ = ⟨⟨⟨a0, a1⟩, a2⟩, a3⟩

Theorem 2.21. For all n ∈ N+ and a1, .., an, b1, .., bn,

⟨a1, .., an⟩ = ⟨b1, ..., bn⟩ ⇐⇒ ∀1 ≤ i ≤ n.ai = bi

Proof. We will use Theorem 2.15, that for every a1, a2, b1, b2

⟨a1, a2⟩ = ⟨b1, b2⟩ ⇔ a1 = b1 ∧ a2 = b2

The induction is of the variable n, which is the length of the n-tuple.
The induction base: For n = 1, we need to prove that for every a1, b1

(⋆) ⟨a1⟩ = ⟨b1⟩ ⇐⇒ a1 = b1

Recall that by definition of 1-tuple, ⟨a⟩ = a, hence the equivalence (⋆) is
clear.

The induction hypothesis: Suppose that for a general n, for every
a1, .., an, b1, ..., bn,

⟨a1, .., an⟩ = ⟨b1, ..., bn⟩ ⇐⇒ ∀1 ≤ i ≤ n.ai = bi
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The induction step: We need to prove that for every a1, .., an+1, b1, ..., bn+1,

⟨a1, .., an+1⟩ = ⟨b1, ..., bn+1⟩ ⇐⇒ ∀1 ≤ i ≤ n+ 1.ai = bi

Let a1, ..., an+1, b1, ..., bn+1. We need t prove that

⟨a1, .., an+1⟩ = ⟨b1, ..., bn+1⟩ ⇐⇒ ∀1 ≤ i ≤ n+ 1.ai = bi

We will prove this equivalences with a chain of equivalences which we already
know.

⟨a1, .., an+1⟩ = ⟨b1, ..., bn+1⟩ ⇐⇒
Recursive definition of n-tuples

⟨⟨a1, .., an⟩, an+1⟩ = ⟨⟨b1, ..., bn⟩, bn+1⟩

⇐⇒
Pairs equality

⟨a1, .., an⟩ = ⟨b1, ..., bn⟩ ∧ an+1 = bn+1 ⇐⇒
I.H.

∀1 ≤ i ≤ n.ai = bi ∧ an+1 = bn+1 ⇐⇒ ∀1 ≤ i ≤ n+ 1.ai = bi

□

Definition 2.22. A1 × ...×An = {⟨a1, ..., an⟩ | a1 ∈ A1, ..., an ∈ An}

Definition 2.23. For n ≥ 1, An = A× ...×A︸ ︷︷ ︸
n times

.

3. Relations

Relations are a wide class of important mathematical objects such as
functions, orders and equivalence relation.

3.1. Non-formal functions. Functions are among the most common math-
ematical objects and appear in almost every mathematical theory. Intu-
itively speaking, a function is just a machine which assigns to every element
a (the input) in a given set A (the domain of the function) a unique element
f(a) (the output/ the image of a) in a set B (the range of the function). To
illustrate these ideas, here are some day-to-day examples:

(1) The function which attaches to every person its height. The domain
of the function is the set of humans and the range of the functions
is the set of real numbers (theoretically, a person can be 5 feet and√
2 inches tall).

(2) If we attach to every person, its siblings, the result is not a function
and there are two reasons for that. The first is that there are people
with no siblings (and therefore the function is not defined for every
person), also there are people with more than one sibling and for
those people, we do not attach a unique person).

We will formally define function only later and steak with a non-formal
definition for now. We will later have to justify this non-formal definition.

Definition 3.1 (Non formal). Let A,B be any sets. A function from A to
B is an object f , such that:

(1) f is total on A: for every a ∈ A, f(a) is defined.
(2) f is univalent: for every a ∈ A, f(a) is a unique element of B.
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We denote it we f : A → B. The set A is the domain f the function f which
is denoted by dom(f) and B is the range of the function f which we denote
by rng(f).

3.1.1. How to define functions? Usually, we declare what A and B are in
advance by saying we are about to define a function f : A → B. Then we
provide some formula with a free variable a which we think of as a general
element in the set A. This formula prescribes what element f(a) ∈ B is
assigned to a.

Example 3.2. (1) Define f : {1, 2, 3} → {1, 2, 3, 4} by f(x) = x + 1.
Then f(1) = 1 + 1 = 2, f(3) = 3 + 1 = 4.

(2) Define f : R → R by f(x) = x2.
(3) define f : R → R by f(r) = 2, this is the constant function which

for every real r returns the value 2.
(4) f :

{
{1, 2, 3}, {1, 3, 5}

}
→ N, f(X) = max(X).

(5) f : R2 → R2 defined by f(⟨x, y⟩) = ⟨x2 + y2, x− y + 1⟩.
(6) f : N → P (Z) f(n) = {n} ∪ {1,−1}.
(7) Here are some non-examples:

(a) f : R → R, f(x) = 1
x .

(b) f : P (N) → N, f(X) = min(X).
(c) f : [0,∞) → [0,∞), f(x) = x− 1.
(d) f : [0,∞) → R f(x) = y for y such that y2 = x.

(8) Definition of a function by cases: Suppose we which to define a
function on a set A, and for some of the elements of A we want one
formula and for the another part of A we want to use a different
formula. We can do that the following way: “Define f : A → B by

f(a) =


(first formula) (first condition on a)

(second formula) (second condition on a)

...

where the conditions on a describe the element for which you would
like to use the formula. When we check that a function defined by
cases is well defined, we also have to check the condition on a covers
all possible a and that they are “disjoint” in the sense that no a
satisfy two of the condition.
(a) Define f : R → R by

f(a) =


√
a a > 0

a+ 1 −1 < a ≤ 0

|a|3 − 15 a ≤ −1

We can also use “otherwise” if we would like to take care of the
remaining cases.

(b) If we have a ”small” number of elements in the domain we can
use the definition by cases above to explicitly assign to every
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element a value, without worrying about a formula which de-
scribes that assignment. For example f : {1, 2, 3} → {a, b, c, d}

f(x) =


b x = 3

a x = 2

c x = 1

Important: If we define f : A → B by a formula f(a) =(some formula)
we must always make sure that the functions we define are well defined in
the sense that:

(1) The function is total. Practically, this means that we should make
sure that the formula for f(a) is defined for every a ∈ A.

(2) The function is univalent. This means that for every a ∈ A, the
formula for f(a) points to a single element. (This is trivial in most
cases)

(3) for every a ∈ A the formula for f(a) describes an element of B. So
the range we declared when we wrote f : A → B is indeed correct.

Here are further examples:

(1) f : N → N defined by f(x) = x2 satisfies f(4) = 16.
(2) g : N → P (N) defined by g(x) = {x, x+ 1} satisfies g(5) = {5, 6}.

(3) t : N → N defined by t(n) =

{
0 n ∈ Neven

1 n ∈ Nodd
.

satisfies that t(1) = 1, t(14) = 0. s(f)(3) = {−2}.

(4) F : P (N)2 → N defined by F (⟨A,B⟩) =

{
0 A ∩B = ∅
min(A ∩B) else

satisfies that F (⟨{1, 2, 3, 4},Neven⟩) = 2.
(5) f : N2 → P (N) defined by f(⟨x, y⟩) = {n ∈ N | x < n < y} satisfies

f(⟨1, 4⟩) = {2, 3} and f(⟨4, 1⟩) = ∅.
When formally working with functions we will only need the following

criterion for equality of functions. This is exactly what we will have to
justify once we will give the formal definition of a function:

Theorem 3.3. Let f, g : A → B be two function. Then the following are
equivalent:

(1) ∀x ∈ A.f(x) = g(x).
(2) f = g.

The theorem says that two functions with the same domain and range are
equal if and only if for every x in this domain, the functions assign the same
value to x. From this point, our proofs will be completely formal relaying
in this theorem.

Remark 3.4. The function equality theorem indicated that a function is not
the same as a formula defining it.



MATH 316: SET THEORY 21

For example the functions: f1, f2 : {−1, 0, 1} → R defined by f1(x) = |x|
and f2(x) = x2 have different formulas but they define the same function
since f1(−1) = f2(−1), f1(0) = f2(0), f1(1) = f2(1).

Remember! Different formulas can define the same function.

3.1.2. Operations on functions.

Definition 3.5. Let f : A → B be a function and X ⊆ A. We define the
restriction of f to X, denoted by f ↾X : X → B, to be the function with
domain dom(f ↾X) = X and for every x ∈ X, (f ↾X)(x) = f(x).

Intuitively, the restriction of a function acts the same way that the original
function did, the only difference is that the domain restricts to the new set
X.

Definition 3.6. Let A be any set. We define the Identity function on A as
the function IdA : A → A defined by IdA(a) = a.

Example 3.7. Let f : Z → Z be defined as f(z) = |z|. Prove that f ↾ N =
IdN

Proof. We want to prove equality of functions. First we want to prove that
dom(f ↾N) = dom(IdN). Indeed by definition of restriction and the identity
function, both of the functions have domain N. Next we want to prove that
∀x ∈ N.(f ↾N)(x) = IdN(x). Let x ∈ N, then by definition of restriction and
since n ≥ 0 we have

(f ↾ N)(x) = f(x) = |x| = x

and by definition of the identity function we have

IdN(x) = x

Hence
(f ↾ N)(x) = x = IdN(x)

as wanted □

Definition 3.8. Let f : A → B and g : B → C be two functions. We define
the composition of g in f as g ◦ f : A → C, to be the function with domain
f and range C such that for each a ∈ A, (g ◦ f)(a) = g(f(a)).

Example 3.9. (1) f(x) = x2 and g(x) = x+ 1, then g ◦ f(x) = x2 + 1
and f ◦ g(x) = (x+ 1)2.

(2) f : P (N) \ {∅} → N × N, f(X) = ⟨min(X),min(X) + 1⟩ and g :
P (N) → P (N)\{∅}, g(X) = X∪{0}. Then f ◦g(X) = f(X∪{0}) =
⟨min(X ∪ {0}),min(X ∪ {0}) + 1⟩ = ⟨0, 1⟩.

Proposition 3.10. Suppose that f : A → B, g : B → C and h : C → D.
Then:

(1) f ◦ IdA = f , IdB ◦ f = f .
(2) h ◦ (g ◦ f) = (h ◦ g) ◦ f .
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Proof. Let us prove for example that f ◦IdA = f . We need to prove function
equality, the domain of both functions is A. Let a ∈ A, then (f ◦ IdA)(a) =
f(IdA(a)) = f(a) hence f ◦ IdA = f . □

3.1.3. Properties of functions.

Definition 3.11. Let f : A → B be a function we sat that f is:

(1) One to one/ injective: if for every a1, a2 ∈ A, if f(a1) = f(a2) then
a1 = a2.

(2) Onto/ surjective: if for every b ∈ B there is a ∈ A such that f(a) = b.

Example 3.12. (1) f : R → R defined by f(x) = x2 is not injective as
1 ̸= −1 and f(−1) = (−1)2 = 1 = 12 = f(1).

(2) f : N → Z defined by f(n) = n− 1 is injective.

Proof. Let n1, n2 ∈ N. Suppose that f(n1) = f(n2), we want to
prove that n1 = n2. By definition of f , n1 − 1 = n2 − 1, adding 1 to
both sides of the equation we conclude that n1 = n2. □

(3) g : N×N → N×N defined by g(⟨n,m⟩) = ⟨2n+m,n+m⟩ is injective.
Proof. Let ⟨n1,m1⟩, ⟨n2,m2⟩ ∈ N×N and assume that g(⟨n1,m1⟩) =
g(⟨n2,m2⟩) we want to prove that ⟨n1,m1⟩ = ⟨n2,m2⟩. By the
assumption we know that ⟨2n1+m1, n1+m1⟩ = ⟨2n2+m2, n2+m2⟩
and by equality of pair we get that

2n1 +m1 = 2n2 +m2 and n1 +m1 = n2 +m2

Subtracting the second equation from the first we get:

2n1 +m1 − (n1 +m1) = 2n2 +m2 − (n2 −m2)

n1 = n2

Hence by the equality n1 + m1 = n2 + m2, we have that n1 =
n2 cancels so m1 = m2. By equality of pairs we conclude that
⟨n1,m1⟩ = ⟨n2,m2⟩. □

(4) F : P (N) → P (N) defined by F (X) = {x+ 1 | x ∈ X} is injective.

Proof. Let X1, X2 ∈ P (N), suppose that F (X1) = F (X2) we want
to prove that X1 = X2. By definition of F ,

)∗) {x+ 1 | x ∈ X1} = {x+ 1 | x ∈ X2}
Let us prove X1 = X2 by a double inclusion:
(a) X1 ⊆ X2: Let x0 ∈ X1 we want to prove that x0 ∈ X2. By

definition x0+1 ∈ {x+1 | x ∈ X1} and by (∗), x0+1 ∈ {x+1 |
x ∈ X2}. By the replacement principle, there exists y ∈ X2

such that x0+1 = y+1, hence x0 = y ∈ X2, which implies that
x0 ∈ X2 as wanted.

(b) X2 ⊆ X1: Symmetric to the first inclusion.
□

(5) F1 : N× N → N defined by F (⟨n,m⟩) = 2n · 3m is injective.
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Proof. Let ⟨n1,m1⟩, ⟨n2,m2⟩ ∈ N × N. Suppose that F1(n1,m1) =
F1(n2,m2) we want to prove that ⟨n1,m1⟩ = ⟨n2,m2⟩. By definition
of F2 we have that (∗) 2n13m1 = 2n23m2 . By the fundamental
theorem of arithmentics, each positive natural number has a unique
factorization into primes. The equality (∗) provides two factorization
into primes of the same numbers, hence it must be the same, namely
n1 = n2 and m1 = m2. By the basic property of pairs, ⟨n1,m1⟩ =
⟨n2,m2⟩. □

Definition 3.13. Let f : A → B be a function. The image of f , denoted
by Im(f) = {f(x) | x ∈ A}.

Exercise 5. For the function f : R → R, defined by f(x) = x2 Prove that
dom(f) = Rng(f) = R while Im(f) = [0,∞).

Solution 6. Since the last equality if a set equality, we should prove it by a
double implication:

(1) ⊆: Let r ∈ Im(f), we need to prove that r ∈ [0,∞). By definition of

Im(f), there is x ∈ R such that f(x) = r. Those r = x2 ≥ 0 and by
definition of [0,∞), r ∈ [0,∞).

(2) ⊇: Let r ∈ [0,∞). we need to prove that r ∈ Im(f). By defini-
tion, r ≥ 0 and therefore we have

√
r defined. Define (This is an

existential proof) x =
√
r, then f(x) = x2 = r.

Remark 3.14. f is surjective if and only if Im(f) = Range(f).

Example 3.15. (1) The function f : N → N defined by f(n) = 2n is
not surjective.

Proof. For example 1 ∈ N and for every n ∈ N, f(n) ̸= 1. Otherwise,
there exists n ∈ N such that f(n) = 1 then by definition of f , 2n = 1
which implies that 1 is even, contradiction. □

Note also that Im(f) = Neven and that f is injective.
(2) The function g : P (Z) → P (N) defined by g(X) = X∩N is surjective.

Proof. Let Y ∈ P (N) we want to prove that there is X ∈ P (Z) such
that f(X) = Y . Define X = Y , then since Y ∈ P (N), Y ∈ P (Z).
Also, to see that g(Y ) = Y , we need to prove that Y ∩N = Y . This
is equivalent (by a proposition we have seen previously) to the fact
that Y ⊆ N. This follows since Y ⊆ N. □

Also note that Im(g) = P (N), (since we just proved that g is
surjective) and it is not injective since for example g({−1, 1}) =
{1} = g({1}).

(3) The function h : (0,∞) → (0,∞) defined by h(x) = 1
x is surjective.

Proof. Let y ∈ (0,∞), we want to prove that there is x ∈ (0,∞) such
that h(x) = y. Namely, we want that 1

x = y. Then define x = 1
y .

Since 0 < y, also 0 < x and therefore x ∈ (0,∞) and we have that
h(x) = 1

1
y

= y as wanted. □



24 TOM BENHAMOU RUTGERS UNIVERSITY

(4) G : P (N)×P (N) → P (N×N) defined by G(⟨X,Y ⟩) = X × Y is not
onto.

Proof. For example {⟨1, 1⟩, ⟨2, 2⟩} ∈ Range(G) \ Im(G). Suppose
toward a contradiction that G(⟨X,Y ⟩) = {⟨1, 1⟩, ⟨2, 2⟩}. Then by
definition of G, X × Y = {⟨1, 1⟩, ⟨2, 2⟩}. By set equality, this means
that ⟨1, 1⟩, ⟨2, 2⟩ ∈ X × Y . which by the definition of Cartesian
product implies that 1, 2 ∈ X and 1, 2 ∈ Y . But then ⟨1, 2⟩ ∈ X×Y
but ⟨1, 2⟩ /∈ {⟨1, 1⟩, ⟨2, 2⟩}, contradiction. □

Proposition 3.16. Let f : A → B and g : B → C be any functions.

(1) If f, g are injective then so is g ◦ f .
(2) If f, g are surjective then so is g ◦ f

Definition 3.17. A function f : A → B is invertible if there is a function
g : B → A such that:

g ◦ f = idA and f ◦ g = idB

Example 3.18. (1) f : {a, b, c} → {1, 2, 3} defined by

f(x) =


1 x = a

2 x = b

3 x = c

is invertible as witnessed by the function g : {1, 2, 3} → {a, b, c},

g(x) =


a x = 1

b x = 2

c x = 3

(2) f : R → R, f(x) = x + 1 is invertible since the function g : R → R
defined by g(x) = x− 1 satisfy that g ◦ f = f ◦ g = IdR.

(3) The function f : N → N defined by f(n) = n + 1 is not invertible.
The function g(n) = n−1 is not a function from N to N as g(0) = −1.
To formal way to prove it is to use the next theorem (and the fact
the g is not onto). If we restrict the range of f to N+ then g above
from N+ to N witnesses that f is invertible.

(4) There is no f : {a, b, c} → {1, 2, 3, 4} which is invertible.
(5) f : P (N) → P (N) defined by f(X) = N \X is invertible as f ◦ f =

IdP (N).

Theorem 3.19. If g1, g2 are two inverse functions of f then g1 = g2. We
denote the inverse function of f by f−1.

Proof. Suppose the g1, g2 are two inverse function of f , then

g1 ◦ f = idA and f ◦ g1 = idB

g2 ◦ f = idA and f ◦ g2 = idB
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It follows that

g1 = g1 ◦ IdB = g1 ◦ (f ◦ g2) = (g1 ◦ f) ◦ g2 = IdA ◦ g2 = g2

□

Theorem 3.20. A function f : A → B is invertible if and only if it is one
to one and onto.

Proof. Suppose that f is invertible and let f−1 : B → A be the inverse
function. Let us prove that f is one to one and onto:

• one to one: Let a1, a2 ∈ A, suppose that f(a1) = f(a2), we want
to prove that a1 = a2. Then f−1(f(a1)) = f−1(f(a2)) and since
f−1 ◦ f = IdA we get that

a1 = f−1(f(a1)) = f−1(f(a2)) = a2

• onto: Let b ∈ B, we want to prove that there is a ∈ A such that
f(a) = b. Let a = f−1(b) ∈ A. Then f(a) = f(f−1(b)) and since
f ◦ f−1 = IdB, we have that f(a) = f(f−1(b)) = b as wanted.

For the other direction, suppose that f is one to one and onto B. We want
to prove that f is invertible, namely that there is a function g : B → A
such that f ◦ g = IdB and g ◦ f = IdA. Here is the definition of g: For any
element of b, there is (since f is onto B) a unique (since f is one to one)
element ab ∈ A such that f(ab) = b. Define g(b) = ab. Let us prove that g
is inverse to f :

• g ◦ f = IdA: Let a ∈ A, then denote f(a) = b ∈ B. By definition
g(b) = ab is the unique element in A such that f(ab) = b and since
f(a) = b it follows that a = ab. Hence g(f(a)) = g(b) = ab = a. It
follows that g ◦ f = IdA.

• f ◦ g = IdB: Let b ∈ B, by definition, g(b) = ab and ab has the
property that it is (the unique which is) mapped to b, namely f(ab) =
b. Hence f(g(b)) = f(ab) = b. Again it follows that f ◦ g = IdB.

□

3.2. General relations. Toward a formal definition of a function, we would
like to describe that certain objects relate to other objects. To turn relations
into a formal mathematical object, we need to define them as sets. First,
how would we code that an object a relates to an object b? we can use the
ordered pair ⟨a, b⟩. A single relation describes many such connections, hence
it is a set of ordered pairs:

Definition 3.21. A relation from the set A to the set B is set R ⊆ A×B.

Example 3.22. (1) R = {⟨1, 2⟩, ⟨1, 3⟩} is a relation from {1, 2} tp {1, 2, 3}
since

R ⊆ {1, 2} × {1, 2, 3}
. R is also a relation from R to N.

(2) {⟨1,
√
2⟩, ⟨2, 4⟩} is not a relation from N to N.
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(3)
idN = {⟨n, n⟩ | n ∈ N}

≤N= {⟨n,m⟩ ∈ N2 | ∃k ∈ N.n+k = m}, <N= {⟨n,m⟩ ∈ N2 | ∃k ∈ N+.n+k = m}
are three relations from N to N. Note that

≤=< ∪idN
(4) A = {⟨x, y⟩ ∈ R2 | x − y ∈ Q} for example ⟨3 +

√
2,
√
2⟩ ∈ A,

⟨1, π⟩ /∈ A.
(5) R = {⟨X,Y ⟩ ∈ P (N) × P (Z) | X ⊆ Y }. R is a relation from P (N)

to P (Z).
(6) It is sometimes convinient to imagine a relation as two potato’s rep-

resenting the sets A and B, and then and arrows from A to B. For
example, if R = {⟨1, 2⟩, ⟨2, a⟩, ⟨2, b⟩} From {1, 2, 3}, to {2, a, b}:

(7) S = {⟨x, y⟩ ∈ Z2 | x divides y}, Then S is a relation from Z to Z.
(8) In general, for every set A we denote the identity relation on the set

A by idA = {⟨a, a⟩ | a ∈ A}.
(9) A funciton is also a relation. For example, consider the function f :

R → R, defined by f(x) = x2. This function establishes connections
between the real number x and the real number x2, So the formal
definition of the function as a set is f = {⟨x, x2⟩ | x ∈ R}.

Remark 3.23. In most cases a relation (i.e. a set of pairs) has a “meaning”,
which is some notion we already familiar with, just not in terms of sets of
pairs. In the previous examples, ≤N is just a formal representation for the
usual ≤ where we only consider natural numbers. The relation D is just the
divisibility relation on between integers, and idA is just the equality relation
where we only consider elements of the set A. However, a general relation
R, is just an abstract object. It does not necessarily have a meaning as in
the previous examples. Examples (1), (2), (6) do not arise from a natural
notion. We can always artificially force a meaning to it, but this would be
of no use.

Definition 3.24. Let R be a relation from A to B. Define:

Definition 3.25. (1) dom(R) = {a ∈ A | ∃b ∈ B, ⟨a, b⟩ ∈ R}.
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(2) im(R) = {b ∈ B | ∃a ∈ A, ⟨a, b⟩ ∈ R}.
(3) R−1 = {⟨b, a⟩ | ⟨a, b⟩ ∈ R}.
(4) IdA = {⟨a, a⟩ | a ∈ A}.

Important: When handling general relations, do not try to find a “mean-
ing” for it. Instead, you should simply think of a set of pairs. When handling
a specific relation, it is important to understand the idea behind it (by find-
ing examples pairs of elements which belongs to the relation).

Problem 5. Let R be a relation from A to B, S be a relation from B to C.
Define

S ◦R = {⟨a, c⟩ ∈ A× C | ∃b ∈ B, ⟨a, b⟩ ∈ R ∧ ⟨b, c⟩ ∈ S}
Prove that:

(1) R ◦ IdA = R.
(2) IdB ◦R = R.
(3) (S ◦R)−1 = R−1 ◦ S−1.
(4) If T is a relation from C to D them (T ◦ S) ◦R = T ◦ (S ◦R).

3.3. abstract functions. The formal way to define a function is as rela-
tions:

Definition 3.26. Let A,B be two sets. A function from A to B is a relation
from A to B such that:

(1) f is total Total on A: ∀a ∈ A.∃b ∈ B.⟨a, b⟩ ∈ f . (i.e. dom(f) = A)
(2) f is univalent or a partial function on A: ∀a ∈ A.∀b1, b2 ∈ B.⟨a, b1⟩ ∈

f ∧ ⟨a, b2⟩ ∈ f ⇒ b1 = b2.

Notation 3.27. If f is a function from A to B we denote it by f : A → B.
Also if f : A → B is a function, we denote f(a) = b if and only if ⟨a, b⟩ ∈ f .
So f(a) is the unique object in the set B that the function f attaches to the
element a.

Example 3.28. (1) Let f = {⟨1, a⟩, ⟨3, b⟩, ⟨2, a⟩}. To see that f is a
function from {1, 2, 3} to {a, b, c}, we need to prove that for every
x ∈ {1, 2, 3} the is a unique y ∈ {a, b, c} such that ⟨x, y⟩ ∈ f (and
then we can denote f(x) = y). Since there are only 3 elements in f
we can go one-by-one over the elements of f and check that this is
indeed the case manually. Now that we are sure that f is a function,
we can write f : {1, 2, 3} → {a, b} and

f(1) = a, f(2) = a, f(3) = b.

(2) The identity relation on a set A, is a function idA : A → A satisfying
idA(a) = a for every a ∈ A.

(3) Consider S = {⟨X,x⟩ ∈ P (N)× N | x ∈ X}. This is not a function
from P (N) to N since it is not total. For example5, ∅ ∈ P (N), and
there is no x such that ⟨∅, x⟩ ∈ S, otherwise we would have x ∈ ∅.

5To prove that e function is not total/univalent, we should provide a counter example.
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Let us try and remove ∅ to see if we get a function. Is S a function
from P (N) \ {∅} to N? This is still not a function since it is not
univalent. For example, ⟨{1, 2, 3}, 1⟩, ⟨{1, 2, 3}, 2⟩ ∈ S. Also it is not
Total

(4) Let A,B be any sets. For every b ∈ B the constant function with
value b is the the relation fb from A to B

fb = {⟨x, b⟩ | x ∈ A} = A× {b}.

Claim: fb is a function from A to B.

Proof. We need to prove that fb is total on A and univalent.
Total: We need to prove that for every x ∈ A there is y ∈ B such
that ⟨x, y⟩ ∈ fb. Let x ∈ A. Define y = b, then by the definition of
fb, ⟨x, b⟩ ∈ fb.
Univalent: We need to prove that for every a ∈ A and for every
b1, b2 ∈ B, if ⟨a, b1⟩, ⟨a, b2⟩ ∈ fb then b1 = b2. Let a ∈ A, b1, b2 ∈ B
and suppose that ⟨a, b1⟩, ⟨a, b2⟩ ∈ fb. We want to prove that b1 = b2.
By the definition of fb, since we have that b1 = b = b2. □

Hence fb : A → B is a function satisfying ∀a ∈ A.fb(a) = b.
(5) π1 : A × B → A π1 = {⟨⟨a, b⟩, c⟩ ∈ (A × B) × A | a = c} Is called

the projection to the left coordinate, it satisfies that π(⟨a, b⟩) = a.
Similarly, the projection to the right coordinate is denoted π2 : (A×
B) → B and it satisfies π2(⟨a, b⟩) = b.

(6) To summation operation on the rational number (or on the natural
numbers/integers/reals) is a function + : R × R → R. We are used
to write 3 + 5 = 8 instead of +(⟨3, 5⟩) = 8.

(7) Let g : P (A)×P (B) → P (A) defined by g = {⟨⟨X,Y ⟩, Z⟩ ∈ (P (A)×
P (B))× P (A) | Z = X ∩ Y } we have that g(X,Y ) = X ∩ Y

(8) Given a set of pairs R in A × B we can represent R as a collection
of arrows from he set A to the set B. This is very convenient when
considering functions. For example, to verify the R is a function from
A to B we should simply verify(not prove!) that there is exactly
one arrow attached to every element of A. For example, consider

f : {1, 2, 3, 4} → {−1, 0, 1, 2, 3, 4, 5} f = {⟨1, 1⟩, ⟨2, 1⟩, ⟨3, 3⟩⟨4, 5⟩}
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Definition 3.29. A sequence of elements in the set A is a function f : N →
A. In calculus we sometime denote an = f(n) and (an)

∞
n=0 = f .

Example 3.30. The sequence 1, 12 ,
1
3 , ... is formally the function f : N → Q,

f = {⟨n, 1
n+1⟩ | n ∈ N} satisfying f(n) = 1

n+1 .

Definition 3.31. Let f : A → B be a function. The domain of f is simply
A, we denote dom(f) = A. The range of f is B and we denote rng(f) = B.
The image of f is the set Im(f) = {f(a) | a ∈ A}.

Definition 3.32. Let A,B be two sets. We denote the set of all functions
from A to B by

AB = {f ∈ P (A×B) | f is a function from A to B}

Example 3.33. Let F2 be the relation from RR to R defined by

F2 = {⟨f, r⟩ ∈ RR× R | ⟨2, r⟩ ∈ f}.

Prove that F is a function.

Proof. Total: We nee to probe that for every f ∈ RR (here the domain of
F2 is itself a set of functions!) there is r ∈ R such that ⟨f, r⟩ ∈ F . Let
f ∈ RR. we need to find r ∈ R such that ⟨2, r⟩ ∈ f . Since f is a function
from R to R, it is in particular a total relation on R, and since 2 ∈ R, there
exists r ∈ R such that ⟨2, r⟩ ∈ f , hence ⟨f, r⟩ ∈ F2.
Univalent: We want to prove that for any f ∈ RR and any r1, r2 ∈ R, if
⟨f, r1⟩, ⟨f, r2⟩ ∈ F2 then r1 = r2. Supposet that ⟨f, r1⟩, ⟨f, r2⟩ ∈ F2, then
by definition ⟨2, r1⟩, ⟨2, r2⟩ ∈ f . Since f is a function, it is in particular
univalent and therefore r1 = r2. □

Note that we have F2(f) = f(2) for every function f ∈ RR.
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In order to discard the need to formulate functions as sets of pair we
simply need to understand when two functions are equal6.

Theorem 3.34. Let f, g be any function. Then the following are equivalent:

(1) f = g (equality of sets of pairs!).
(2) dom(f) = dom(g) and for every x ∈ dom(f), f(x) = g(x).

Proof. ⇒: Suppose that f = g, then clearly dom(f) = dom(g). Let
x ∈ dom(f), and denote by f(x) = y. Then ⟨x, y⟩ ∈ f and since
f = g ⟨x, y⟩ ∈ g hence g(x) = y = f(x).

⇐: For the other direction, suppose that dom(f) = dom(g) =: A and
that for every x ∈ A, f(x) = g(x). We want to prove that f = g
(equality of sets)
⊆: Let ⟨x, y⟩ ∈ f . Then x ∈ A and f(x) = y. Thus x ∈ dom(g)

and f(x) = y = g(x) which implies that ⟨x, y⟩ ∈ g.
⊇: The other direction is symmetric.

□

Problem 6. Let f : A → B be a function.

(1) Prove that if X ⊆ A, then f ∩X ×B is a function and equals f ↾X.
(2) Show that if f : A → B, g : B → C are functions then g ◦ f (the

composition of the relations) is a function from A to C and that for
every a ∈ A, g ◦ f(a) = g(f(a)).

(3) Prove that if f is one-to-one and onto B then f−1 (the inverse rela-
tion) is a function and moreover that f−1 ◦ f = IdA and f ◦ f−1 =
IdB.

3.4. Relations on a single set. The first kind of relations we are interested
in are relations R from a set A to itself.

Definition 3.35. A relation R from A to A (i.e. R ⊆ A2) is called a relation
on the set A.

For example, ≤N is a relation of N, idA is a relation on A and the divisi-
bility relation S is a relation in Z.
Example 3.36. Let us denote by ⊆A= {⟨X,Y ⟩ ∈ P (A)2 | X ⊆ Y }. Then
⊆A is a relation on P (A).

Instead of writing for example ⟨2, 3⟩ ∈≤N or ⟨{1}, {39, 1, 14}⟩ ∈⊆Z, we
would like to keep the usual notation that 2 ≤N 3 and {1} ⊆Z {39, 1, 14}.
Hence we have the following notation:

Notation 3.37. Given a general relation R on a set A, we define aRb ≡
⟨a, b⟩ ∈ R.

In order to develop some theory and prove interesting theorems about
relations, we will need to add more structure/properties to the relation. The
most important kind of relations on a single set are equivalence relations and
orders.

6As we did with tuples.
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3.5. Equivalence relations. As we have seen previously, sets are equal if
and only if they have the same elements. This is a quit rigid equality. There
are mathematical theories where it is convenient to identify between two
objects although they are not equal as sets, we say that they are equivalent.
For example, to define a rational numbers n

m from the integers, it is natural

to identify it with the pair ⟨n,m⟩. However, note that while 1
2 = 2

4 , the
pairs ⟨1, 2⟩, ⟨2, 4⟩ are distinct. What we usually do, is to set some criterion
to determine when two objects are equivalent. Formally, this would mean
that we have some relation R on a set A, and two members a, b ∈ A will
be equivalent if aRb. In our example of rationals, we would need to find
a criterion which makes ⟨1, 2⟩, ⟨2, 4⟩ equivalent for examples, and not only
them, but also ⟨4, 2⟩, ⟨8, 2⟩ and ⟨ − 1, 9⟩, ⟨2,−18⟩ and so on.

Example 3.38. To find the right criteria for the rations, we need to express
the equality a

b = c
d in terms of integers, so let simply cross-multiply the

equation and get ad = bc. Going back to the beginning, we define a relation
R on the set of pairs Z × Z \ {0}. Note that this is not a relation on Z,
rather then on pairs, and we exclude 0 by only considering pairs of the form
⟨a, b⟩ where b ̸= 0. Now we set the criterion that ⟨a, b⟩R⟨c, d⟩ (namely, the
pairs ⟨a, b⟩ and ⟨c, d⟩ are equivalent) if and only if ad = bc. Formally, we
define the relation R as follows:

R =
{
⟨⟨a, b⟩, ⟨c, d⟩⟩ ∈ (Z× Z \ {0})2 | ad = bc

}
Since equivalence relations imitate equality, there are some necessary

properties which must be posed on a general relation in order for it to be
an equivalence relation:

Definition 3.39 (Properties of relations and equivalence relation). Let R
be a relation on a set A. We say that:

(1) R is reflexive (on A) if: ∀a ∈ A.aRa.
(2) R is symmetric if: ∀a, b ∈ A.aRb ⇒ bRa.
(3) R is transitive if: ∀a, b, c ∈ A.(aRb) ∧ (bRc) ⇒ aRc.
(4) R is an equivalence relation if it is reflexive, symmetric and transitive.

Example 3.40. (1) Let us give some non mathematical relations on the
“set” of all humans to illustrate these properties:
(a) The brotherhood relation: two humans x, y are brothers if and

only if they have the same biological parents.7

The brotherhood relation is reflexive: Indeed, every human x
is a brother of himself, as by this definition x has the same two
biological parents as himself.
The brotherhood relation is symmetric: If x is a brother of y
then clearly y is a brother of x because they both have the
same biological parents.

7This is simply a convenient choice of definition, one can consider other definitions for
brotherhood.
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The brotherhood relation is transitive: Suppose that x is a brother
of y and y is a brother of z. Then x as the same two biological
parents as y and y has the same two biological parents as z.
Then x has the same two biological parents as z, hence x and
z are brothers
We conclude that the brotherhood relation is an equivalence
relation.

(b) The descendent relation: for two humans (dead or alive) we say
that x is a descendent of y (or that y is an ancestor of x) is x
is the son of a son of a son ... of a son of y. It is a matter of
definition if this relation is reflexive, namely, is x is a descendent
of himself. It is clearly transitive.This is not symmetric, since
for example, Jeffery Jordan is a descendent (the son of) Michael
Jordan, but Michael Jordan is not the a descendent of Jeffery
Jordan.8

(2) Let A = {1, 2, 3, 4, 5, 6} then

E = {⟨1, 1⟩, ⟨2, 2⟩, ⟨3, 3⟩, ⟨4, 4⟩, ⟨5, 5⟩, ⟨6, 6⟩︸ ︷︷ ︸
idA

, ⟨1, 5⟩, ⟨5, 1⟩, ⟨2, 3⟩, ⟨3, 2⟩, ⟨3, 6⟩, ⟨6, 3⟩, ⟨2, 6⟩, ⟨6, 2⟩}

is an equivalence relation on A.
(3) Among the most important equivalence relations is the congruence

relation. Recall that for a natural number n > 0 and two integers
z1, z2 we say that z1 ≡ z2 mod n if z1 mod n = z2 mod n. In
order to avoid the use modulo in the definition congruency, we can
formulate it as follows:

En = {⟨z1, z2⟩ ∈ Z2 | z1 − z2 is divisible by n}
Let us prove that En is an equivalence relation.
Reflexive: we want to prove that for every z ∈ Z, zEnz. Let z ∈ Z,
we want to prove that z−z = 0 is divisible by n, but this is true sine
every number divides 0(recall the formal definition of divisibility and
prom this easy fact!).
Symmetric: We want to prove that for every z1, z2 ∈ Z, if z1Enz2
then z2Enz1. Let z1, z2 ∈ Z and suppose (this is an implication!)
that z1Enz2, we want to prove that z2Enz1.

9 By definition of En,
we conclude that n divides z1 − z2 and therefore there is k ∈ Z such
that z1 − z2 = k · n. Hence z2 − z1 = (−k) · n and also −k ∈ Z. It
follows again by the definition of En that z2Enz1.
Transitive: Suppose that z1Enz2 and z2Enz3, we want to prove that
z1Enz3. By definition of En, this means that n divides z1 − z2 and

8Note that in order to prove that a relation is not reflexive/symmetric/transitive we
should always give a specific counter example, since these properties are universal prop-
erties and therefore their negation is an existential property.

9Usually, we will start directly with “suppose that z1Enz2, we want to prove that
z2Enz1”.
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also z2 − z3. By definition f divisibility, there are k1, k2 ∈ Z such
that z1 − z2 = k1n and z2 − z3 = k2n. Summing the two equations,
we get:

z1 − z3 = (z1 − z2) + (z2 − z3) = k1n+ k2n = (k1 + k2)n)

Since k1 + k2 ∈ Z, it follows that z1 − z3 is divisible by n. By the
definition of En, it follow that z1Enz3.

We conclude that En is an equivalence relation.
(4) S = {⟨n,m⟩ ∈ Z2 | ∃k ∈ Zn + k2 = m} is reflexive, not symmetric,

since for example 0S1 (as 0 + 12 = 1) but 1 ̸ S0 (prove that!). It is
not transitive since for example 1 + 12 = 2 and 2 + 12 = 3 however
3− 1 = 2 is not a square of a natural (or even rational) number.

(5) The following relation will serve to construct the integers from the
natural numbers. On N2 we define the following relation

∼Z=
{
⟨⟨n,m⟩, ⟨k, l⟩⟩ ∈ (N× N)2 | n+ l = m+ k

}
Problem 7. Prove that ∼Z is an equivalence relation on N× N.

(6) Let us prove that the relation

∼Q=
{
⟨⟨a, b⟩, ⟨c, d⟩⟩ ∈ (Z× (Z \ {0}))2 | ad = bc

}
we use to construct the rational numbers is indeed an equivalence
relation on Z× (Z \ {0}):
Reflexive: Let ⟨a, b⟩ ∈ Z × (Z \ {0}), 10 we want to prove that
⟨a, b⟩ ∼Q ⟨a, b⟩. This follows, since ab = ab and by the definition of
∼Q.
Symmetric: Suppose that ⟨a, b⟩ ∼Q ⟨c, d⟩, we want to prove that
⟨c, d⟩ ∼Q ⟨a, b⟩. By our assumption we see that ad = bc, and since
we can switch the order of number multiplication we get that da = cb
and therefore ⟨c, d⟩ ∼Q ⟨a, b⟩.
Transitive: Suppose that ⟨a, b⟩ ∼Q ⟨c, d⟩, ⟨c, d⟩ ∼Q ⟨e, f⟩. We want
to prove that ⟨a, c⟩ ∼Q ⟨e, f⟩. By the assumption we have that
ad = bc and cf = de. Note that adf = bcf = bde and since11

d ̸= 0, we can eliminate it from the equation to see that af = be.
By definition of ∼Q, it follows that ⟨a, b⟩ ∼Q ⟨e, f⟩.

It follows that ∼Q is an equivalence relation.
(7) For any set A, the identity relation idA and A×A are always equiv-

alence relations on the set A.
(8) Here are two examples of equivalence relations on R3:

H1 = {⟨⟨a, b, c⟩, ⟨a′, b′, c′⟩⟩ ∈ R3 | a = a′}
H2 = {⟨⟨a, b, c⟩, ⟨a′, b′, c′⟩⟩ ∈ R3 | a+ b+ c = a′ + b′ + c′}.

10We want to prove that ∀a ∈ A.a ∼Q a. In our case A = Z× (Z \ {0}) is a set of pairs
(!) hence we want to prove that ∀⟨a, b⟩ ∈ Z× (Z \ {0}).⟨a, b⟩ ∼Q ⟨a, b⟩.

11Indeed ⟨c, d⟩ ∈ Z× Z \ {0}, c ∈ Z and d ∈ Z \ {0}. Therefore d ̸= 0.
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The equivalence criterion that the relation H1 sets is to identify
between triples with the same first coordinate. The equivalence that
H2 sets is to identify triples with the same sum.

(9) Here is an equivalence relations on the set P (N) \ {∅}:

T1 = {⟨X,Y ⟩ ∈ (P (N) \ {∅})2 | min(X) = min(Y )}

T1 identifies sets with the same minimal elements. Here is an equiv-
alence relation on the set P (N):

T2 = {⟨X,Y ⟩ ∈ (P (N) \ {∅})2 | X ∩ Neven = X ∩ Nodd}

T2 identifies sets which includes exactly the same even numbers.

Back to our example of the rational numbers, what is the object 1
2? is

it ⟨1, 2⟩ or is it ⟨2, 4⟩? the definition of 1
2 is just the set of those pairs

{⟨1, 2⟩, ⟨2, 4⟩, ⟩3, 6⟩, ⟨ − 1,−2⟩....}. The point is that we “glue” together all
the conditions which are equivalent to ⟨1, 2⟩. Formally, we call this an
equivalence class:

Definition 3.41. Let E be an equivalence relation on a set A. The equiv-
alence class of an element a ∈ A is the set of all conditions b ∈ A such that
a is E-equivalent to b. Formally, we denote the equivalence class of a by

[a]E = {b ∈ A | aEb}

An E-equivalent class is just [a]E for some a ∈ A.

Example 3.42. We use the same notations from the previous example.

(1) In the brotherhood relation we have for example the following equiv-
alence classes:

[Orville Wright]brotherhood = {Orville Wright, Wilbur Wright}

[Steph Curry]brotherhood = {Steph Curry, Seth Curry, Sydel Curry}

[Kim Kardashian]brotherhood = {Kim Kard., Kourtney Kard., Khloé Kard., Rob Kard.}
(2) For A = {1, 2, 3, 4, 5, 6} and E from example (2), We have that:

[1]E = {1, 5}

[2]E = {2, 3, 6}

[3]E = {2, 3, 6}

[4]E = {4}

[5]E = {1, 5}

[6]E = {2, 3, 6}
This is not a coincidence that [1]E = [5]E and that [2]E = [3]E =
[6]E , can you guess way?
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(3) The equivalence classes of En are

[0]En = {0, n,−n, 2n,−2n, 3n, ....} = {zn | z ∈ Z}
[1]En = {1, n− 1,−n+ 1, 2n− 1,−2n+ 1, ...} = {zn+ 1 | z ∈ Z}

A general equivalence class is just:

[i]En = {zn+ i | z ∈ Z}
and i ≡ j mod n if and only if [i]En = [j]En .

(4) Using equivalence classes and the equivalence relation ∼Q we can
now formally define the rational number n

m = [⟨n,m⟩]∼Q . For exam-

ple, the number 1
2 is just [⟨1, 2⟩]∼Q . We will see later that [⟨1, 2⟩]∼Q =

[⟨2, 4⟩]∼Q for example, where the last equality is an actual set equal-
ity!

(5) As for ∼Z , we think of a pair ⟨n,m⟩ ∈ N2 and representing n−m. So
we identify between n ∈ N with [⟨n, 0⟩]∼Z and define−n = [⟨0, n⟩]∼Z .

(6) The equivalence class of a general triple ⟨a, b, c⟩ ∈ R3 has the form:

[⟨a, b, c⟩]H1 = {⟨a, x, y⟩ | x, y ∈ R}
and

[⟨a, b, c⟩]H2 = {⟨x, y, (a+ b+ c− x− y)⟩ | x, y ∈ R}
(7) We have fore example

[{4, 7, 3, 22}]T1 = {X ∈ P (N) | 3 = min(X)}
and

[{4, 7, 3, 22}]T2 = {X ∈ P (N) | X ∩ N = {2, 22}}

Proposition 3.43. Let E be an equivalence relation on A. Then for every
a, b ∈ A:

(1) Either [a]E = [b]E.
(2) Or [a]E ∩ [b]E = ∅

Moreover, [a]E = [b]E if and only if aEb.

Proof. Let a, b ∈ A. We formally need to prove a ∨-statement. Let us split
into cases:

(1) Suppose [a]E ∩ [b]E = ∅, the (2) holds and we are done.
(2) Suppose [a]E ∩ [b]E ̸= ∅. We want to prove that [a]E = [b]E , which

is sets equality. Let us prove a double inclusion:
(a) [a]E ⊆ [b]E : Let x ∈ [a]E . We want to prove that x ∈ [b]E . Let

c ∈ [a]E ∩ [b]E , which exists by the assumption in this case. By
definition of equivalence relation, xEa, cEa and cEb.

• By symmetry, since cEa, then aEc.
• By transitivity, since xEa and aEc, then xEc.
• Again by trasitivity since xEc and cEb, xEb.

By the definition of equivalence class it follows that x ∈ [b]E .
(b) [b]E ⊆ [a]E : Follows from the symmetry between a and b.
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This concludes the proof that [a]E = [b]E or [a]R∩[b]E = ∅. For the moreover
part, we nee to prove a double implication:

(1) =⇒: Suppose that [a]E = [b]E , we need to prove that aEb. Since
E is reflexive, aEa and therefore a ∈ [a]E . By the equality of the
set [a]E = [b]E we conclude that a ∈ [b]E and by the definition of
equivalence class we conclude that aEb.

(2) ⇐=: Suppose that aEb, we need to prove that [a]E = [b]E . Again
since E is reflexive we have that a ∈ [a]E and by the definition of
equivalence class we have that a ∈ [b]E . Thus a ∈ [a]E ∩ [b]E , which
means that [a]E ∩ [b]E ̸= ∅. By the first part, this must means that
[a]E = [b]E .

□

Corollary 3.44. The following are equivalent:

(1) a ̸ Eb.
(2) [a]E ̸= [b]E.
(3) [a]E ∩ [b]E = ∅.

Proof. exercise. □

Definition 3.45. Let E be an equivalence relation on A. The quotient set
of A by E (a.k.a “A modulo E”) is the set of all equivalence classes.12. We
denote it by13

A/E = {[a]E | a ∈ A}

Example 3.46. (1) The “set” Humans/brotherhood consist of all pos-
sible equivalence classes, each equivalence class is the set of siblings
from a given family. We can label each equivalence class according
to the family name and think of the quotient

Humans/brotherhood = {“The Kardeshians”, “The Curry’s”, “The Wright’s”, ...}

(2) A/E = {{1, 5}, {2, 3, 6}, {4}}.
(3) We have that

Z/En = {{zn+ i | z ∈ Z} | i = 0, 1, 2, ..., n− 1}

Since each equivalence class in En is associated with a residue modulo
n, we think of Z/En as the sets of residues modulo n.

(4) The integers are defined by Z = N2/ ∼Z

(5) The rational numbers are defined as

Q = (Z× (Z \ {0})/ ∼Z

(6)

R3/H1 = {{⟨a, x, y⟩ | x, y ∈ R} | a ∈ R}

12Needless to say, without repetitions.
13Do not confused A/E with set difference A \ E.
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Here every equivalence class can be identified with a single real num-
ber a.

R3/H2 = {{⟨x, y, (s− x− y)⟩ | x, y ∈ R} | s ∈ R}
Also here the equivalence classes can be identifies with a single real
number s which represents the sum a+ b+ c.

(7)

(P (N) \ {∅})/T1 = {{X ∈ P (N) \ {∅} | min(X) = n} | n ∈ N}
And each equivalence class can be identified with a natural number.

P (N)/T2 = {{X ∈ P (N) | X ∩ Neven = Y } | Y ∈ P (Neven)}
And each equivalence class can be identified with a set of even num-
bers.

Definition 3.47 (Partition). Let A be any set. A partition of the set A is
any set Π ⊆ P (A) such that:

(1) ∅ /∈ Π.
(2) ∪Π = A.
(3) If X,Y ∈ Π, X ̸= Y , then X ∩ Y = ∅.

Example 3.48. (1) {{1, 5}, {2, 3, 6}, {4}} is a partition of {1, 2, 3, 4, 5, 6}.
(2) {Neven,Nodd} is a partition of N.

Corollary 3.49. If E is an equivalent relation on A then A/E is a partition
of A.

Proof. Follows directly from Proposition 3.43. □

Theorem 3.50. Let Π be a partition on A. Let RΠ be the relation on A
defined by

xRΠy ⇐⇒ ∃B ∈ Π, x, y ∈ B

Then:

(1) RΠ is an equivalence relation on A.
(2) A/RΠ = Π.

Proof. (1) Let us prove that RΠ is an equivalence relation:
RΠ is reflexive: Let a ∈ A, since ∪Π = A, there is X ∈ Π such that a ∈ X and

therefore by definition of RΠ, ⟨a, a⟩ ∈ RΠ.
RΠ is symmetric: Suppose that ⟨a, b⟩ ∈ RΠ, then there is X ∈ Π such that a, b ∈

X. Hence b, a ∈ X, and therefore ⟨b, a⟩ ∈ RΠ.
RΠ is transitive: Suppose that ⟨a, b⟩ ∈ RΠ and ⟨b, c⟩ ∈ RΠ, then there are X,Y ∈

Π such that a, b ∈ X and b, c ∈ Y . Since b ∈ X∩Y , we conclude
that X ∩ Y ̸= ∅ and since Π is a partition, X = Y . hence
a, c ∈ X and therefore ⟨a, c⟩ ∈ RΠ.

(2) To see that A/RΠ = Π we prove a double inclusion:
⊆: Let [a]RΠ

∈ A/RΠ. Then there is X ∈ Π such that a ∈ X. We
claim that [a]RΠ

= X and from this it follows that [a]RΠ
∈ Π.

Again we prove it by double inclusion:



38 TOM BENHAMOU RUTGERS UNIVERSITY

⊆: Let b ∈ [a]RΠ
, then aRΠb and therefore there is Y ∈ Π

such that a, b ∈ Y . Since a ∈ X ∩ Y we conclude that
X = Y and therefore b ∈ X.

⊇: If b ∈ X then a, b ∈ X ∈ Π and therefore aRΠb which
implies that b ∈ [a]RΠ

.
⊆: Let X ∈ Π, we want to prove that X ∈ A/RΠ. Since X ̸= ∅,

pick any a ∈ X, we claim that X = [a]RΠ
∈ A/RΠ. The prof is

similar to the previous part.
□

Problem 8. If R is an equivalence relation on A, then R = RA/R.

Definition 3.51. A relation R does not depend on the choice of represen-
tatives of E if whenever aEa′ and bEb′ then aRb ⇒ a′Rb′.

Example 3.52. (1) [⟨n,m⟩]∼Z+[⟨n′,m′⟩]∼Z = [⟨n+n′,m+m′⟩]∼Z Does
not depend on the choice of representatives.

Proof. If ⟨n1,m1⟩ ∼Z ⟨n2,m2⟩ and ⟨n′
1,m

′
1⟩ ∼Z ⟨n′

2,m
′
2⟩, then n1 +

m2 = n2 +m1 and n′
1 +m′

2 = n′
2 +m′

1. We would like to prove that

⟨n1 + n′
1,m1 +m′

1⟩ ∼Z ⟨n2 + n′
2,m2 +m′

2⟩

. To see this,

n1+n′
1+m2+m′

2 = n1+m2+n′
1+m′

2 = n2+m1+n′2+m′
1 = m1+m′

1+n2+n′
2

as wanted. □

(2) [n]Em · [n′]Em = [n ·n′]Em does not depend on the choice of represen-
tative.

Proof. Suppose that nEmn0 and n′Emn′
0 we want to prove that

nn′Emn0n
′
0. Note that m|n− n0 and m|n′ − n′

0. Hence

nn′ − n0n
′
0 = nn′ − n′n0 + n′n0 − n0n

′
0 = n′(n− n0) + n0(n

′ − n′
0).

This is a sum of two numbers which are divisible by m and therefore
nn′ − n0n

′
0 is divisible by m. □

(3) F ([⟨a, b, c⟩]H1) = a Does not depend on the choice of represen-
tatives. Clearly if ⟨a, b, c⟩H1⟨a′, b′, c′⟩, then a = a′ and therefore
F ([⟨a, b, c⟩]H1) = F ([⟨a′, b′, c′⟩]H1).

3.6. Ordered sets.

Definition 3.53. We say that a relation R on A is:

(1) Weakly anti-symmetric if: for all a, b ∈ A, if aRb and bRa then
a = b.

(2) Strongly anti-symmetric if: for all a, b ∈ A, if a R b then b ̸ R a.
(3) Weak partial order if R is reflexive, transitive, and weakly anti-

symmetric.
(4) Strong partial order if R is transitive and strongly anti-symmetric.
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Definition 3.54. A partial order R (either weak or strong) is called to-
tal/linear if every a, b ∈ A are R-comparable, namely, if

aRb ∨ bRa ∨ a = b

Problem 9. A relation R on A is called anti-reflexive if ∀a ∈ A, a ̸ Ra.
Prove that the following are equivalent:

(1) R is strongly anti symmetric.
(2) R is anti reflexive and weakly anti symmetric.

Example 3.55. (1) the regular order < of real numbers is a strong
linear order on R and ≤ is a weak linear order on R.

(2) ⊊ is a strong non-linear order on P (A) for (almost) every set A and
⊆ is a weak non-linear order on P (A) for (almost) every set A.

Proof. Let us some weak anti-symmetry of ⊆: Let X,Y ∈ P (A),
if X ⊆ Y and Y ⊆ X then X = Y by double inclusion. If A has
at least two elements a, b ∈ A then {a}, {b} are incomparable in
⊆-relation and therefore ⊆ is not linear on P (A). □

(3) The lexicographic order. Suppose that <A is a partial order on A
and <B is a partial order on B. Define the lexicographic order on
A×B by

⟨a, b⟩ <Lex ⟨a′, b′⟩ if and only if a <A a′ ∨ (a = a′ ∧ b <B b′)

We leave transitivity to the reader. Let us prove that it is strongly
anti-symmetric. Assume that ⟨a, b⟩ <Lex ⟨a′, b′⟩. We want to prove
that ¬(⟨a′, b′⟩ <Lex ⟨a, b⟩), namely, that ¬(a′ <A a) and ¬(a′ =
a ∧ b′ <B b). Let us split into cases:
(a) If a <A a′, then by anti-symmetry of <A, a ̸= a′ and ¬(a′ <A a).

Hence we are done.
(b) If a = a′ and b <B b′, then ¬a′ <A a since <A is anti-reflexive.

Also since <B is anti-reflexive, ¬(b′ <B b) and agin we are done.
(4) The domination order on NN is defined by

f ≤ g ⇐⇒ ∀n ∈ N, f(n) ≤ g(n)

This is a weak order on NN. The eventual domination order is defined
by

f ≤∗ g ⇐⇒ ∃N∀n ≥ N, f(n) ≤ g(n)

This is not an order on NN since there are f ̸= g such that f ≤∗ g
and g ≤∗ f (find an example!). However:

Problem 10. Let

E = {⟨f, g⟩ ∈ (NN)2 | ∃N∀n ≥ N, f(n) = g(n)}

(a) Prove that E is an equivalence relation.
(b) Prove that the relation [f ]E ≤∗ [g]E iff f ≤∗ g does not depend

on the choice of representatives and partially orders NN/E.
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(5) Define <Lex in NN by f <Lex g iff f ̸= g ∧ f(nf,g) < g(nf,g) where
nf,g = min{m ∈ N | f(m) ̸= g(m)}.

Exercise 6. Prove that <Lex is an order on NN.

Solution 7. Let us prove it is transitive. Suppose that f <Lex g and
g <Lex h. Let us split into cases:
(a) If nf,g = ng,h = n∗, then for every n < n∗, f(n) = g(n) = h(n)

hence nf,h ≥ n∗. Also f(n∗) < g(n∗) < h(n∗) and so f(n∗) <
h(n∗). Thus n∗ = nf,h and f(nf,h) < h(nf,h) as wanted.

(b) If nf,g < ng,h, we have for every n < nf,g f(n) = g(n) = h(n),
hence nf,h ≥ nf,g and also f(nf,g) < g(nf,g) = h(nf,g). Hence
nf,h = nf,g and f(nf,h) < h(nf,h) as desired.

(c) The case nf,g > ng,h is similar.
Let us prove that <Lex is anti-symmetric. Suppose that f <Lex g,
then f(nf,g) < g(nf,g). Hence ¬(g(nf,g) < f(nf,g)) so ¬(g <Lex f).

Definition 3.56. A pair ⟨A,≤A ⟩ is called an ordered set or a poset (par-
tially ordered set).

Definition 3.57. Let ⟨A,≤A ⟩ and ⟨B,≤B be two ordered sets. A function
f : AB is called order-preserving if:

∀a1, a2 ∈ A, a1 ≤A a2 ⇔ f(a1) ≤B f(a2)

f is called an isomorphism if it is an order-preserving bijection. f is an
embedding if it is order-preserving and injective.

Example 3.58. (1) Consider the regular order < on N and <Lex on
N × N. The function f : N → N × N defined by f(n) = ⟨5, n⟩ is an
embedding. It is clearly injective, to see it is order-preserving, let
n1, n2 ∈ N, then if is a straightforward verification that

n1 < n2 ⇐⇒ f(n1) = ⟨5, n1⟩ <Lex ⟨5, n2⟩

(2) f : N → P (N) defined by f(n) = {0, ..., n} is an embedding of N
with ≤N into P (N) with ⊆.

(3) f : N → Neven defined by f(n) = 2n is an isomorphism of N with
the regular order into Neven with the regular order.

Definition 3.59. We say that ⟨A,≤A ⟩ ≃ ⟨B,≤B ⟩ is there exists an iso-
morphism f : A → B. We say that ⟨A,≤A ⟩ ≾ ⟨B,≤B ⟩ if there is an
embedding f : A → B.

Exercise 7. Prove that Q is not isomorphic to Z.

Proof. Suppose otherwise and let f : Q → Z be an isomorphism. Consider
f(0) = z. Since f is an isomorphism, there is q ∈ Q such that f(q) = z + 1.
Since z < z + 1 and f is order-preserving, 0 < q. Hence 0 < q

2 < q. Then
z < f( q2) < z+1 is an integer strictly between z and z+1, contradiction. □
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4. Number systems

4.1. Natural numbers. We want a definition which is purely set-theoretic.

Definition 4.1. Define 0 = ∅. For any set A define A+ 1 = A ∪ {A}.

Why not define the natural numbers by induction? Since induction itself
requires the natural numbers and we end up with a circular definition. We
need to take a different approach

Definition 4.2. A set X is inductive if:

(1) 0 ∈ X.
(2) ∀x ∈ X.x+ 1 ∈ X.

Definition 4.3. A natural number is a set x such that for every inductive
set B, x ∈ B.

Clearly, 0 is a natural number and also 0+1, (0+1)+1, ((0+1)+1)+1.

Exercise 8. The intersection of inductive sets is an inductive set.

Proposition 4.4. The set of natural numbers (if it exists) is an inductive
set and is included in every inductive set.

Proof. The second part is immediate from the definition of natural numbers.
To see that the set of natural numbers is inductive, we mentioned that 0 is a
natural number hence condition (1) of ”inductive set” is satisfied. Suppose
that x is a natural number and let us prove that x+ 1 is a natural number.
Let B be any inductive set, then x ∈ B by definition of a natural number.
Since B is inductive, x+1 ∈ B and therefore x+1 is a natural number. □

We cannot prove the existence of an inductive set based on the axioms so
far.

Axiom (Ax7. Infinity). There exists an inductive set.

Corollary 4.5. Ax7 holds if and only the set of natural numbers exists.

Proof. We have already mentioned that if the set of natural numbers exists
then it is an inductive set. For the other direction, we can use any inductive
set and the axiom of comprehension to prove the existence of the set of
natural numbers. □

Definition 4.6. Denote by N = ω the set of all natural numbers.

Corollary 4.7 (Induction principle for ω). If T ⊆ ω is inductive then T =
ω.

The reason this is called the induction principle is that when we prove
something by induction what we actually prove is that the set of natural
numbers for which a certain statement is true is an indutive set and by the
previous corollary this set must be all of ω.
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Example 4.8. Prove that every natural number n is either 0 or there is
m ∈ ω such that n = m+ 1.

Proof. The set {0}∪{n ∈ N | ∃m ∈ N, m+1 = n} is inductive and therefore
equals N. □

4.1.1. The recursion theorem and the arithmetic operations. recursion is a
definition technique, but what does it define? sequences:

Definition 4.9. A sequence of elements of a set A is a function f : N → A
enumerated by the natural numbers.

Example 4.10. In calculus we denote a sequence by (an)
∞
n=0, for example

an = 1
n+1 . Formally this is just a function a : N → R defined by a(n) = 1

n+1 ,

and we identify between a(n) and an.

Definition 4.11. A recursive definition of a sequence h : ω → A has two
parts:

(1) The initial value of the sequence: A definition for h(0) ∈ A.
(2) The recursive condition: A Function F which is used to compute the

next element in the sequence h(n + 1) from the previous elements.
Namely F (h(n)) = h(n+ 1).

Remark 4.12. A more general form of recursion allows F to use finitely many
values from A.

Example 4.13. Define h(0) = 1 and h(n + 1) = h(n) + 2n + 1. Then
F : N → N can be taken as F (x) = x + 2n + 1. It is not hard to prove by
induction that h(n) = (n+ 1)2

Example 4.14. Define n! as follows: 0! = 1 and (n+1)! = (n+1) ·n!. This
means that F (⟨a1, ..., an⟩) = (n+ 1) · a1 · ... · an is as wanted.

Definition 4.15 (Arithmetic operations). (1) We define n +m for ev-
ery n by recursion on m:

n+ 0 = n and n+ (m+ 1) = (n+m) + 1.

(2) n ·m by recursion on m:

n · 0 = and n · (m+ 1) = (n ·m) + n.

(3) nm is defined by recursion on m:

n0 = 1 and n(m+1) = (nm) · n.

Let us proof for example that addition is commutative:

Theorem 4.16. For every n,m, n+m = m+ n

Proof. By induction on n we prove that for every m, n +m = m + n. For
n = 0, we prove by induction on m that 0+m = m+0. For m = 0, we have
that 0 + 0 = 0 + 0. Suppose this is true for m and let us prove for m+ 1:

0 + (m+ 1) = (0 +m) + 1 = (m+ 0) + 1 = m+ 1 = (m+ 1) + 0
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Suppose this is true for n and let us prove it for n+ 1. Again by induction
on m we prove that (n + 1) + m = m + (n + 1). For m = 0 we prove as
before. Suppose this holds for m and let us prove for m+ 1

(n+1)+(m+1) = ((n+1)+m)+1 = (n+(m+1))+1 = ((m+1)+n)+1 = (m+1)+(n+1)

□

The proof of the theorem below is as above and summarizes some of the
most important properties of the arithmetic operations

Theorem 4.17. (1) Associativity: (n + m) + k = m + (n + k) and
(n ·m) · k = m · (n · k).

(2) Commutativity: n+m = m+ n and n ·m = m · n.
(3) Distributivity: n · (m+ k) = n ·m+ n · k.
(4) No zero divisors: n ·m = 0 ⇒ n = 0 ∨m = 0.

Proof. Let us prove associativity for addition. For k = 0 (n + m) + 0 =
n+m = n+ (m+0). Suppose this was true for k and let us prove for k+1

(n+m)+(k+1) = ((n+m)+k)+1 = (n+(m+k))+1 = n+((m+k)+1) = n+(m+(k+1))

Let us prove (3) by induction on k. n · (m+ 0) = n ·m and n ·m+ n · 0 =
n ·m+ 0 = n ·m. Suppose this was true for k and let up prove for k + 1:

n·(m+(k+1)) = n·((m+k)+1) = n·(m+k)+n = (n·m+n·k)+n = n·m+(n·k+n) = n·m+n·(k+1)

Let us prove (1) for the multiplication by induction on k we prove the
equality for every n,m. For k = 0 we have that (n ·m) · 0 = 0 by definition
of the multiplication. Also n · (m · 0) = n · 0 = 0 by definition.

Suppose this was true for some k and let us prove for k + 1

(n·m)·(k+1) = (n·m)·k+(n·m) = n·(m·k)+(n·m) = n·(m·k+m) = n·(k+1))

Let us prove (4). Suppose that n,m ̸= 0. Then n = k+1 and m = r+1 by
previous results (See example). Then n ·m = (k+1) · (r+1) = (k+1) · r+
(k+1) = ((k+1) ·r+k)+1 which is a successor and therefore non zero. □

Problem 11. Prove the power identities:

(1) nm+k = nm · nk.
(2) (n ·m)k = nk ·mk

(3) (nm)k = nm·k.

Solution 8. By induction on k, nm+0 = nm and nm · n0 = nm · 1 = nm.
Suppose this was true for k and let us prove for k + 1, then

nm+(k+1) = n(m+k)+1 = nm+k ·n = (nm ·nk) ·n = nm · (nk ·n) = nm · (nk+1)

Theorem 4.18 (The Recursion theorem). Let F : A → A and a ∈ A. Then
there is a unique function f : ω → A such that:

(1) f(0) = a.
(2) For every n ∈ ω, f(n+ 1) = F (f(n)).
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Proof. Clearly there is at most one such function f (prove it by induction!).
To see the existence, consider the set T of all partial function g such that:

(1) 0 ∈ dom(g) and g(0) = a.
(2) For every m ∈ ω, if m+1 ∈ dom(g) then m ∈ dom(g) and moreover

g(m+ 1) = F (g(m)).

We claim that f = ∪T is as wanted. To see that f is total we show that
dom(f) = ∪g∈T dom(g) is an inductive set. We have the function g0 =
{⟨0, a⟩} ∈ T so 0 ∈ dom(g0) ⊆ dom(f). Suppose that n ∈ dom(f) and
g ∈ T such that n ∈ dom(g). If n + 1 ∈ dom(g) we are done. otherwise,
define g′ = g ∪ {⟨n + 1, F (g(n))⟩}, it is not hard to check that also g′ ∈ T
and also n+ 1 ∈ dom(g′) ⊆ dom(f), as desired.

To see that f is univalent, we prove that {n | ∃!m, ⟨n,m⟩ ∈ f} is in-
ductive. For n = 0, if ⟨0,m⟩ ∈ f there there is g ∈ T such that g(0) = m.
it follows that m = a and hence there is exactly one such m. Suppose
this is true for n and let us prove that n + 1 is in the set. Assume that
⟨n + 1,m1⟩ ∈ g1 and ⟨n + 1,m2⟩ ∈ g2 for g1, g2 ∈ T . Then n ∈ dom(g1),
n ∈ dom(g2) and by the induction hypothesis g1(n) = g2(n). It follows that
m1 = g1(n+ 1) = F (g1(n)) = F (g2(n)) = g2(n+ 1) = m2.

To conclude that f has the desired property prove that f ↾ dom(g) = g
for every g ∈ T .

□

Definition 4.19 (The order of the natural numbers). We define n < m if
and only if n ∈ m.

Theorem 4.20. (1) < is a strong linear order on N.
(2) < is well-ordered, namely, for every ∅ ≠ X ⊆ N, there is n ∈ X

such that n ≤ m for every m ∈ X.
(3) For every n,m, k ∈ N,

(a) n < m iff n+ k < m+ k.
(b) If k ̸= 0 then n < m iff n · k < m · k.

Proof. (1), (2) will be part of a more general theorem later. Let us prove
(3a) and leave (3b) as an exercise. We prove it by induction on k. For
k = 0 the equivalence is clear. Suppose this is true for k and let us prove for
k+1. If n < m we want to prove that n+(k+1) < m+(k+1). Towards a
contradiction, if n+(k+1) ≥ m+(k+1), thenm+k ∈ (n+k)+1 = n+k∪{n+
k}. Then either m+ k = n+ k which contradicts the induction hypothesis,
or m + k ∈ n + k and therefore m + k < n + k which also contradicts the
induction hypothesis. If n+(k+1) < m+(k+1), then n+ k < m+ k, just
otherwise, n + k ≥ m + k and therefore (m + k) + 1 ⊆ (n + k) + 1 which
implies that m+ (k + 1) ≤ n+ (k + 1), contradiction. □

Corollary 4.21 (The cancellation law). Suppose that n+m = n′ +m then
n = n′.

Proof. Since < is a linear order we split into cases:
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(1) If n < n′ then n+m < n′ +m contradicting the assumption.
(2) The case n′ < n is similar.
(3) n = n′ is the only possible case.

□

4.2. Defining the integers and rationals. We have the set N together
with +, · defined and has the usual properties. Recall that we have defined
the following relation on N2: ⟨n,m⟩ ∼Z ⟨k, l⟩ iff n + l = k + m. We will
suppress the Z as there is only one relation in this subsection. We already
claimed previously that this is an equivalence relation. Let us prove it since
this requires some gentile properties of addition:

Proposition 4.22. ∼ is an equivalent relation.

Proof. reflexivity and symmetry are easy to verify. and only requires that
n + m = m + n. As for transitivity, suppose that n + l = k + m and
k + r = s + l we wand to prove that n + r = s + m Indeed, n + r + l =
k+m+r = s+ l+m = s+m+ l. By the cancellation law, n+r = s+m. □

We think of [< n,m >]∼ = n−m.

Definition 4.23. Z = N2/ ∼.

We identify N inside Z by n 7→ [⟨n, 0⟩]∼. Also we denote by −n = [⟨0, n⟩]∼
and more generally −[⟨n,m⟩]∼ = [⟨m,n⟩]∼.

Definition 4.24. We define [⟨n,m⟩]∼ + [⟨n′,m′⟩]∼ = [⟨n+ n′,m+m′⟩]∼.

We already proved this operation does not depend on the choice of rep-
resentatives. Also we define z1 − z2 as z1 + (−z2).

Exercise 9. Define properly multiplication (think of (n−m) · (n′−m′) and
prove it does not depend on the choice of representatives.

Definition 4.25. We define the order by [⟨n,m⟩] < [⟨n′,m′⟩] iff n +m′ <
n′ +m

Proposition 4.26. The usual properties of addition/multiplication and the
order on the integers hold. In particular we have commutativity of addition
and multiplication, and the following cancellations role: for every a, b and
every c ̸= 0,

a · c = b · c ⇒ a = b

Remark 4.27. In fact Z with addition and multiplication is an integral do-
main: a ring with no zero divisors.

We can repeat the same construction we had from N to Z in order to
construct Q from Z replacing addition with multiplication:

Definition 4.28. Define an equivalence relation ∼ on Z× Z \ {0} by

⟨z1, z2⟩ ∼ ⟨t1, t2⟩ iff z1t2 = z2t1
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Again, this is an equivalence relation due to the properties of multiplica-
tion on Z.

Definition 4.29. Q = (Z× Z \ {0})/ ∼

Definition 4.30. [⟨z1, z2⟩]∼ + [⟨t1, t2⟩]∼ = [⟨z1t2 + t1z2, z2t2⟩]∼
[⟨z1, z2⟩]∼ · [⟨t1, t2⟩]∼ = [⟨z1t1, z2t2⟩]∼
if s, t ̸= 0 define ([⟨s, t⟩]∼)−1 = [⟨t, s⟩]∼.

We think of [⟨t, s⟩]∼ as t
s and identify z 7→ [⟨z, 1⟩]∼.

Problem 12. Prove that for every [⟨n,m⟩]∼ ∈ Q there is n′,m′ ∈ Z such
that m′ > 0 and [⟨n,m⟩]∼ = [⟨n′,m′⟩]∼.

Definition 4.31. Suppose that n, n′ ∈ Z andm,m′ ∈ N+. Define [⟨n,m⟩]∼ <
[⟨n′,m′⟩]∼ iff nm′ < mn′.

Again one should check that all the regular properties of the operations
and order

Proposition 4.32. Q as no least and last element and it is dense in itself.

Proof. To see there is no last element (a similar proof shows that there is
no least element), let [⟨n,m⟩]∼ ∈ Q be any rational number, and assume
without loss of generality that m > 0. Then nm < (n + 1)m by properties
of < on Z. By definition of < on Q it follows that [⟨n,m⟩]∼ < [⟨n+1,m⟩]∼.

To see that Q is dense in itself, let [⟨n1,m1⟩]∼, [⟨n2,m2⟩]∼ ∈ Q be such
that q1 := [⟨n1,m1⟩]∼ < [⟨n2,m2⟩]∼ =: q2 and m1,m2 > 0 (We calculate

the average
n1
m1

+
n2
m2

2 = n1m2+n2m1
2m1m2

). Define q3 := [⟨n1m2 + n2m1, 2m1m2⟩]∼
and let us prove that q1 < q3 < q2. Indeed, q1 < q3 since

n1(2m1m2) = n1m1m2 + n1m1m2 <
Since n1m2<n2m1

n1m1m2 +m1n2m1

= m1(n1m2 + n2m1)

Also to see that q3 < q2,

m2(n1m2+n2m1) = m2n1m2+m2n2m1 <
Since n1m2<n2m1

m2n2m1+n2m1m2 = 2n2m1m2

□

Theorem 4.33. Q is countable i.e. there is a bijection between N and Q.

We will prove this theorem later.

Theorem 4.34 (Cantor). If ⟨A,≤A ⟩ is a countable ordered set with no
least and last element which is dense in itself the ⟨A,≤A ⟩ ≃ ⟨Q,≤ ⟩.

Proof. Suppose that Q = {qn | n ∈ N} is an enumeration of Q an A = {an |
n ∈ N} is an enumeration of A. We construct the isomorphism f : Q → A
by induction. We start with q0 and define f(q0) = a0. Let us do q1 for
clarity reasons. We split into cases
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(1) If q0 < q1, then pick am for the minimal m such that a0 < am.
Note that such an m exists since A has no last element. Define
f(q1) = am.

(2) If q1 < q0 we choose am for the minimal m such that am < a0 and
define f(q1) = am.

Now before taking care of q2, we make sure we took care of a1, if a1 = am
we are done. Otherwise, we take a1 and split into cases:

(1) If a1 < am, a0, then we choose qk for the minimal k such that qk <
q0, q1 and define f−1(a1) = qk or equivalently, we define f(qk) = a1.

(2) If a1 > am, a0 we act similarly.
(3) If min{a0, am} < a1 < max{a0, am} (namely am < a1 < a0 or

a0 < a1 < am), then we choose qk, for the minimal k such that
min{q0, q1} < qk < max{q0, q1} and define f−1(a1) = qk.

In general we assume that at the nth step f is defined on {q1i , ..., qiN } such
that {0, ..., n} ⊆ {i1, ..., iN} and qi1 < ... < qiN . Moreover, we assume that
{a0, ..., an} ⊆ {f(qi1), ..., f(qiN )} and f(qi1) < .... < f(qiN ). If n + 1 ∈
{i1, ..., iN} we do nothing at the Q side. Otherwise, we split into cases:

(1) If qn+1 < qi1 , we choose m such that am < f(qi1) (which exists since
there is no least element in A) and define f(qin+1) = am.

(2) If qn+1 > qiN , we act similarly.
(3) Otherwise, there is a unique 1 ≤ r < N such that qir < qn+1 < qir+1 ,

we choose f(qir) < am < f(qir+1) which exists since A is dense in
itself and define f(qn+1) = am.

If an+1 ∈ {f(qi1), ..., f(qiN ), am}, then we do nothing on the A side. Other-
wise, we again split into the same cases according to the interval that an+1

fall in and choose qk in the corresponding interval in the Q-side, then we
define f−1(an+1) = qk. The function f which we define is clearly order-
preserving, as we made sure to choose the images and preimages in the cor-
rect interval. It is one-to-one since we always choose different elements and
it is onto as for each n, at the nth stage we ensured that {q0, ...qn} ⊆ dom(f)
and {a0, ..., an} ⊆ im(f). □

4.3. The real numbers. The previous construction applied to Q will in
fact result in Q and will not add anything new. How do we construct the
reals? what is the missing property of Q that defers it from the reals? This is
not an algebraic property but rather a topological/order-theoretic property:

Definition 4.35. Let ⟨A,<A ⟩ be a linearly ordered set. A set X ⊆ A is
called:

(1) Bounded from above (below) is there is a ∈ A such that for every
x ∈ X, x ≤A a (x ≥A a). a is called an upper (lower) bound

(2) Bounded if it is both bounded from above and below.
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Definition 4.36. A least upper bound (last lower bound) of a set X ⊆ A
is an element a ∈ X which is an upper (lower) bound and for any upper
(lower) bound b ∈ A, a ≤A b (a ≥A b).

Example 4.37. 2.5 is an upper bound for the open interval (0, 2) ⊆ R.
However 2 is the least upper bound for that set.

Example 4.38. For Q, consider X = {q ∈ Q | q2 < 2}. Then X is
bounded by 2 for example but there is no least upper bound of X in Q.
To see this, suppose otherwise, and let q∗ be such a least upper bound.
Since q∗ = m

n ∈ Q, it is impossible that (q∗)2 = 2. If (q∗)2 < 2, consider

q′ = 2q∗+2
q∗+2 . Then one can check that:

(1) q∗ < q′.
(2) (q′)2 < 2.

Contradicting that q∗ is an upper bound.

If q∗ > 2, then again we define the same q′ = 2q∗+2
q∗+2 . This time we have:

(1) q∗ > q′.
(2) (q′)2 > 2

From (2) it follows that whenever q2 < 2 then q2 < (q′)2 and therefore
q < q′. Hence q′ is an upper bound for X contradicting that q∗ is the least
upper bound.

Definition 4.39. A linearly ordered setA is called complete if every bounded
non-empty set has a least upper bound.

The completeness property of the reals is what enables taking limits in
calculus and is in fact equivalent to many known theorems from calculus
(for example that every Cauchy sequence converges).

There is a general method to “complete” an order i.e.adding those miss-
ing points. We will introduce the construction only for Q and refer the
reader to the literature for the general construction. This idea is due to
Dedikind and was used by him in a very similar way in his famous prime
ideal decomposition theorem (Dedekind-Kummer theorem).

Definition 4.40. A set B ⊆ Q is called a Dedekind cut if:

(1) B ̸= ∅.
(2) B is bounded from above i.e. there is q ∈ Q such that for every

b ∈ B, b < q.
(3) B is downward closed i.e. if whenever b ∈ B and q ∈ Q, is such that

q < b, then q ∈ B.
(4) B has no last element i.e. for every q ∈ B there is p ∈ B such that

q < p.

Definition 4.41.

R := {X ∈ P (Q) | X is a Dedekind cut}

Definition 4.42. The order of R is r < s iff r ⊆ s.
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< is a linear ordering of R.

Proof. The fact that it is a strong order is easy. Let us check that the order
is linear. Let r1, r2 ∈ R. Suppose that r1 ̸= r2 and let us split into cases:

(1) If there is q ∈ r1 \ r2, then for every p ∈ r2, we must have that
p < q, just otherwise, q ≤ p and then q ∈ r2 since p ∈ r2 and r2 is
downward closed, which is a contradiction. Hence p ∈ r1 since r1 is
downward closed and q ∈ r1. We conclude that r2 ⊊ r1.

(2) The case where there is q ∈ r2 \ r2 is symmetric.

□

There is a standard way to identify Q inside R, by q 7→ Q<[q] := {p ∈ R |
p < q}.

Problem 13. This function is an embedding of Q in R.

Example 4.43. The set X = {q ∈ Q | q < 0 ∨ q2 < 2} is a Dedekind cut
and there is no q ∈ Q such that X = Q<[q]

Theorem 4.44. Q is dense in R

Proof. If X1 < X2 are any cuts, fix any q ∈ X2 \ X1 then X1 ≤ q < X2.
Since X2 has no maximal element, there is q′ ∈ X2 such that q < q′, then
clearly, X1 < q′ < X2. □

Theorem 4.45. R is complete

Proof. Let F ⊆ R be a non empty bounded set of reals, then
⋃
F ∈ R is a

Dedekind cut which is the supremum of F . □

Theorem 4.46. R is the unique (up to isomorphism) ordered ⟨A,R⟩ set
such that:

(1) ⟨A,R⟩ has no first and last element.
(2) ⟨A,R⟩ contains a countable dense subset. (separability)
(3) ⟨A,R⟩ is complete.

Lemma 4.47. For every r ∈ R, r = supQ ∩ (−∞, r).

Proof. Clearly r is an upper bound for Q ∩ (−∞, r) and therefore supQ ∩
(−∞, r) ≤ r. If r′ < r, then since Q is dense in R, there is q ∈ Q such that
r′ < q < r and therefore r′ is not a bound for Q ∩ (−∞, r). □

Proof of Theorem. Let ⟨S,≤S ⟩ be an ordered set with a countable dense
subset A with no least and last element. By Cantor’s Theorem A ≃ Q and
let f : Q → A be the witnessing isomorphism. Define F : R → S by F (r) =
sup f ′′Q ∩ (−∞, r). This is a well-defined function since S is complete. We
leave to the reader to check that this is indeed an isomorphism. □

Definition 4.48. We define the operations on R as follows:

A+B = {a+ b | a ∈ A, b ∈ B}
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Proposition 4.49. If r1, r2 ∈ R then r1 + r2 ∈ R

Proof. Let us check the three properties of a Dedekind cut:

(1) Since r1, r2 ̸= ∅, there are qi ∈ ri, i = 1, 2 and thus q1 + q2 ∈ r1 + r2
which implies that r1 + r2 ̸= ∅.

(2) Let qi be an upper bound for ri for i = 1, 2. Then for every p1+p2 ∈
r1 + r2, where pi ∈ ri, then p1 ≤ q1 an p2 ≤ q2. Hence, we have that

p1 + p2 ≤ q1 + q2.

It follows that q1 + q2 is an upper bound.
(3) Let us prove that r1+r2 is downward closed. Let q < q1+q2 ∈ r1+r2.

Then q − q1 < q2 ∈ r2 and therefore q − q1 ∈ r2 as r2 is downward
closed. It follows that q = q1 + (r − q1) ∈ r1 + r2 as wanted.

(4) Let us prove that r1 + r2 has no last element. Let q1 + q2 ∈ r1 + r2.
Then there is p1 ∈ r1 and p2 ∈ r2 such that q1 < p1 and q2. It follows
that q1 + q2 < p1 + p2 ∈ r1 + r2 as wanted.

□

Let us give another example.

Proposition 4.50. For every real number r, r + 0 = r

Proof. Let us prove double inclusion. Let q + p ∈ r + 0. Then p < 0 and
therefore q+p < q. Since r is downward closed, q+p ∈ r. Let q ∈ r. Since r
has no last element, there is p ∈ r such that q < p. It follows that q− p < 0
and therefore q = p+ (q − p) ∈ r + 0. □

Definition 4.51. For x ∈ R we define:

−x = {q ∈ Q | ∃s > q, −s /∈ x}.

Problem 14. Prove that −x ∈ R.

Proposition 4.52. x+ (−x) = 0.

Proof. Let us prove a double inclusion.

(1) Let q + p ∈ x + (−x), then there is s > p such that −s /∈ x. In
particular, since q ∈ x, q < −s. We conclude that q + p < q + s <
−s+ s = 0 (the last equality is equality of rationals).

(2) Let p < 0, then −p
2 > 0. Let t ∈ x be any element. Find n ∈ N+ be

the least such that t + n · (−p
2) /∈ x (such an n exists since x ̸= Q)

Let q = t + (n − 1) · (−p
2). So q ∈ x and if we let s = p

2 − q, then
−s = q − p

2 /∈ x. Moreover, p − q < p
2 − q = s. By definition

p− q ∈ −x. We conclude that

p = q + (p− q) ∈ x+ (−x).

□

Definition 4.53. |x| = x ∪ −x.

Definition 4.54. Define x · y as follows:
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(1) If x, y ≥ 0, define x · y = 0 ∪ {p · q | p ∈ x, q ∈ y and p, q ≥ 0}.
(2) If x, y < 0, define x · y = |x| · |y|.
(3) If x < 0 ≤ y or y < 0 ≤ x then x · y = −(|x| · |y|).

Theorem 4.55. Let
√
2 = {q ∈ Q | q < 0 ∨ q2 < 2}. Then (

√
2)2 = 2

Proof. √
2 ·

√
2 = 0 ∪ {p · q | p, q ∈

√
2 and p, q ≥ 0}

Let p, q ≥ 0 be such that p, q ∈
√
2. Without loss of generality suppose that

p ≤ q. Hence p · q ≤ p · p < 2 hence p · q ∈ 2. For the other direction, let
p < 2. If p ≤ 0 then clearly p ∈

√
2 ·

√
2. So suppose that p > 0

Lemma 4.56. There is N such that for every k ≥ N , there is m ∈ N such
that kp < m2 < 2k

Proof of Lemma. Find N0 ∈ N so that N0p ≥ 1 (N0 can be any number
which is at least the denominator of |p|) For every k ≥ N0, we find nk such
that n2

k ≤ kp < (nk + 1)2. Note that the sequence nk is weakly monotone
with k and goes to infinity with k. Note that:

(nk + 1)2

kp
− 1 ≤ 2nk + 1

n2
k

→k→∞ 0

Hence there is N ≥ N0 such that for every k ≥ N

(nk + 1)2

kp
− 1 <

2− p

p

For every such k we have that kp < (nk + 1)2 < 2k as wanted.
□

To conclude the theorem we find any n such that n2 ≥ N and then
n2p < m2 < n22 for some m. Hence p < m

n
2 < 2. Note that m

n ∈
√
2 and

therefore p < m
n
2 ∈

√
2
√
2. By downward closure, p ∈

√
2
√
2. □

A decimal representation of a real number r is an integer number n
and a sequence (ak)

∞
k=1 such that ak ∈ {0, ..., 9} and n.a1a2...aN := n +∑N

k=1
ak
10k

→N→∞ r. We denote that by n.a1a2a3.... Note that a real num-
ber can have two representations:

Example 4.57. 1.99999.... = 2.00000... Since the constant function 2 =
2+ 0

10 +
0

100 ... converges to 2 but also, by the standard formula for the sum
of a geometric series,

1 +

N∑
k=1

9

10k
= 1 +

9

10
(
1− 1

10N

1− 1
10

) →N→∞ 1 +
9

10

1

1− 1
10

= 1 + 1 = 2

The next theorem shows that avoiding representations ending with infin-
itely many zeros results in a unique representation.

Theorem 4.58. Let r be a real number. Then there is a unique integer n
and sequence (ak)

∞
k=1 such that r = n.a1a2a3...
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Proof. Existence: n is defined to be the maximal integer such that n < r. in
particular n < r ≤ n+1 and so 0 < r−n ≤ 1. There is an a1 ∈ {0, ..., 9} such
that a1

10 < r−n ≤ a1+1
10 (equivalent to n+ a1

10 < r) hence 0 < r− (n.a1) ≤ 1
10 .

Suppose we have defined a1, ..., ak ∈ {0, ..., 9} such that 0 < r−(n.a1....ak) ≤
1

10k
. Let ak+1 ∈ {0, ..., k} be such that ak

10k+1 < r − (n.a1....ak) ≤ ak+1
10k+1 . It

follows that 0 < r−(n.a1....akak+1) <≤ 1
10k+1 . Since

1
10k

→k→∞ 0, it follows
that n.a1a2a3... = r. Note that the sequence ak cannot be eventually zero
since this would mean that for some N r − n.a1a2...aN = 0 contradicting
the choice of aN so that this difference is greater than 0. For uniqueness,
suppose that a0.a1a2... = r = b0.b1b2.... Suppose a contradiction that there
is k such that ak ̸= bk and let k be minimal. Without loss of generality
assume that ak < bk Let us split into cases:

(1) If k = 0, we find any M > 0 such that bM > 0. Such an M exists by
our assumption that the sequence is not eventually 0. Note that for
every m ≥ M ,

b0.b1b2....bm ≥ b0.b1b2....1 > b0 ≥ a0.a1a2...am

Since this strong inequality holds for a tail of m’s, the limits cannot
be the same, contradiction.

(2) If k > 0, we find any M > 0 such that bM > 0. Note that for every
m ≥ M ,

b0.b1b2....bm ≥ b0.b1b2....bM > b0.b1...bk ≥ a0.a1...(ak + 1) ≥ a0.a1a2...am

contradicting the limit equality.

□

Theorem 4.59. R is not countable

Cantor’s original proof. Suppose otherwise, then R = {rn | n ∈ N}. Let us
define a sequence:

a0 < a1 < a2...an < ... < bn < bn−1... < b2 < b1 < b0

as follows: a0 = r0 and b0 = rk for the minimal k such that rk > a0. Suppose
that an < bn were defined and let an+1 = rk for the minimal k such that
an < rk < bn. Let bn+1 = rk for the minimal k such that an+1 < rk < bn.
By the completeness of R there is a = supn<ω an. Note that for every n,
an < a < bn. There is k∗ such that a = rk∗ and there if l > k∗ such that
for some n, bn = rl. This means that at stage n − 1, we had an−1 < bn−1

and we chose bn = rk for the minimal k such that an−1 < rk < bn−1 and
this minimal k was l. However, an−1 < a = rk∗ < bn−1 also satisfies this
property and k∗ < l, contradiction. □

4.4. Two questions about the real numbers.

Question 1. Can the real numbers be well-ordered?
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Definition 4.60. An ordered set ⟨A,R⟩ is called c.c.c (countable chain
condition) if whenever I is a set of disjoint open intervals in A, then I is at
most countable.

Problem 15. R is c.c.c.

Question 2. Suslin hypothesis: If we replace separability by c.c.c do we still
obtain a characterization of R

5. Equinumerability

Definition 5.1. Let A,B be any sets. We say that:

(1) A ≈ B “A and B are equinumerable” if there is a bijection f : A →
B.

(2) A ≺ B ”A is at most the size of B” if there is an injective function
f : A → B.

(3) A ̸≈ B if ¬(A ≈ B), namely if there is no bijection f : A → B.
(4) A ≺ B if A ⪯ B and A ̸≈ B.

Example 5.2. (1) {1, 2, 3} ≈ {2, 7, 19} as witnessed by the bijection

f(x) =


2 x = 1

7 x = 2

19 x = 3

(2) N ≈ Neven as witnessed by the function f : N → Neven, f(n) = 2n.
(3) A ⪯ P (A) for every setA as witnessed by the function f : A → P (A),

f(a) = {a}.
(4) (0, 1) ≃ (1, 3) as given by f : (0, 1) → (1, 3), f(x) = 2x+ 1.
(5) {X ∈ P (N) | 0 ∈ X} ≈ P (N) by f : P (N) → {X ∈ P (N) | 0 ∈ X},

f(X) = {0} ∪ {x+ 1 | x ∈ X}.
(6) N×N ⪯ P (N) witnessed by f : N×N → P (N), f(⟨n,m⟩) = {n, n+

m}.
(7) A ⊆ B → A ⪯ B as witnessed by the function f : A → B, f(a) = a.
(8) Clearly A ≈ B implies A ⪯ B.

Claim 5.2.1. for any sets A,B,C:

(1) A ≈ A.
(2) A ≈ B → B ≈ A.
(3) A ≈ B ∧B ≈ C → A ≈ C and A ⪯ B ⪯ C → A ⪯ C.

Are there two infinite sets which are not equinumerable?

Proposition 5.3. N ≃ Z

Proof. Define f : N → Z by

f(n) =

{
n
2 n ∈ Neven

−n+1
2 n ∈ Nodd
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N Z

0
1
2
3
4
5
6
7
8
9

−5
−4
−3
−2
−1
0
1
2
3
4
5

□

Z is like ”two copies” of N. What about infinitely many copies of N?
N× N.

Proposition 5.4. N ≈ N× N

Proof. Define f : N× N → N by f(⟨n,m⟩) = 2n(2m+ 1)− 1. □

We will have an easier proof later.

Proposition 5.5. Let A,A′, B,B′ be sets such that A ≈ A′ and B ≈ B′.
Then:

(1) P (A) ≈ P (A′).
(2) A×B ≈ A′ ×B′.

(3) BA ≈ B′
A′.

(4) If A,B are disjoint and A′, B′ are disjoint then A ⊎B ≈ A′ ⊎B′.

The above proposition is true upon replacing ≈ by ⪯ everywhere.

Proof. Let us prove for example (1). Let f : A → A′ be a bijection. One
should check that F : P (A) → P (A′) defined by F (X) = f ′′X is a bijection.

□

Example 5.6. N ≃ Z× Z.

What about Q? clearly N ⪯ Q

Claim 5.6.1. (AC) Suppose that A ̸= ∅. Then A ⪯ B iff there is f : B → A
onto.

Proof. Suppose that g : A → B is one-to-one. Let us a∗ ∈ A be some
elements. Define f : B → A by

f(b) =

{
a∗ b /∈ Im(g)

g−1(b) b ∈ Im(g)

This is well defined since g is invertible on its image. For the other direction,
suppose that f : B → A is onto. Let us define g : A → B one-to-one. For
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every a ∈ A, since f is onto, there is some (choose!) ba ∈ f−1[{a}]. Define
g(a) = ba. Then g is one to one since if a ̸= a′ then ba ∈ f−1[{a}] and
ba′ ∈ f−1[{a′}] which are disjoint sets and therefore ba ̸= ba′ . Hence g is
one-to-one. □

Example 5.7. Q ⪯ Z× Z ≈ N. The function f : Z× Z → Q defined by

f(⟨z1, z2⟩) =

{
z1
z2

z2 ̸= 0

0 else

is onto

So we are in the situation where N ⪯ Q and Q ⪯ N. Does it mean that
N ≈ Q? Yes! but this requires a highly non-trivial theorem which we will
prove later. Instead, let us give direct proof:

Theorem 5.8. N ≈ Q

Proof. We are about to construct a function f : N+ → Q+ = {q ∈ Q |
q > 0} one-to-one and onto, by recursion on N+. To do so, we think of the
Q+ as elements in the matrix N+ × N+

We go by induction on the diagonal rows (namely pair ⟨k1, k2⟩ such that
k1 + k2 = n starting at n − 2). We define f(1) = 1/1 = 1. Suppose we
reached the nth row. In row n + 1, we keep defining f on new (finitely
many) values only for those pairs which represent a rational number which
haven’t appeared before (to ensure the function is one-to-one). The resulting
function f is a bijection from N+ to Q+. Let us now define a function
g : N → Q by

g(n) =


0 n = 0

f(n2 ) n ∈ Neven \ {0}
−f(n+1

2 ) n ∈ Nodd

□

So far we failed to find two infinite sets which are not equinumerable.

Theorem 5.9. (AC) If A is infinite then N ≺ A.

Proof. We construct the function f : N → A by recursion, there is always
a possibility to continue the definition of f and pick a new element since
otherwise, A was finite. □

Definition 5.10. A set A is countable if A ≈ N. A is uncountable if N ≺ A.
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Theorem 5.11. The following sets are countable: Z,Neven,Q,N×N,Nn(n ≥
1)

Proof. It remains to show that Nn is countable. We prove that by induction
on n. For n = 1, this is clear. Suppose that Nn ≈ N, then

Nn+1 ≈ Nn × N ≈ N× N ≈ N.
□

Theorem 5.12 (Cantor’s Diagonalization Theorem). N ≺ N{0, 1}

Proof. It is not hard to prove that N ⪯ N{0, 1}. So it remains to prove that
N ̸≈ N{0, 1}. Assume toward a contradiction that F : N → N{0, 1} was onto.
Let us show how to produce a function g : N → {0, 1} (i.e. an element in
the range of F ) such that for every n, F (n) ̸= g (i.e. g is not in the image
of F ). This will produce a contradiction to the assumption that F is onto.

For each n, F (n) : N → {0, 1} so we write it as a binari sequence

fn := F (n) = ⟨F (n)(0), F (n)(1), F (n)(2), ...⟩
So the list of functions F (0), F (1), F (2) can be written in a matrix:

f0(0) f0(1) f0(2) f0(3) . . . f0(n) . . .

f1(0) f1(1) f1(2) f1(3) . . . f1(n) . . .

f2(0) f2(1) f2(2) f2(3) . . . f2(n) . . .

f3(0) f3(1) f3(2) f3(3) . . . f3(n) . . .
...

...
...

...
. . . . . .

. . .

fn(0) fn(1) fn(2) fn(3) . . . fn(n) . . .
...

...
...

...
. . .

...
. . .

Note that each value in this matrix is 0 or 1. We would like to define a
function g : N → {0, 1}, namely a binary sequence ⟨g(0), g(1), g(2), ...⟩ such
that g defers from each row at some n. so we change the values from 0 to
1, Start by setting g(0) = 0 if f0(0) = 1 or g(0) = 1 if f0(0) = 0 (”flip the
bit”) algebraically we can write that as 1− f0(0). Moving to f1, we flip the
value f1(1) and define g(1) = 1 − f1(1). In general, we flip the values on
the diagonal and define g(n) = 1 − fn(n). To that g is as wanted, suppose
toward a contradiction that g = fn for some n, then by function equality we
get that 1− fn(n) = g(n) = fn(n) hence fn(n) =

1
2 , contradiction. □

Corollary 5.13. For every set A, A ≺ A{0, 1}.

Proof. If A = ∅ this is straightforward. So assume A ̸= ∅. Toward a
contradiction, suppose that F : A → A{0, 1} is onto and denote by fa =
F (a). Define g : A → {0, 1} by

g(a) = 1− fa(a)

The continuation is as before. □

Theorem 5.14. P (A) ≈ A{0, 1}
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Proof. For a subset B ⊆ A we define the indicator function χA
B : A → {0, 1}

by

χA
B(a) =

{
1 a ∈ B

0 a /∈ B

The function χA : P (A) → A{0, 1} defined by χA(B) = χA
B is a bijection

(prove that!). □

Theorem 5.15 (Cantor’s Theorem). A ≺ P (A)

Proof. a 7→ {a} is an injection from A to P (A) hence A ⪯ P (A). Suppose
toward a contradiction that A ≈ P (A), then by the previous theorem A ≈
A{0, 1}, contradiction. □

Corollary 5.16. N ≺ P (N) ≺ P (P (N)) ≺ ...

Theorem 5.17 (Cantor-Schröeder-Bernstein). Let A,B be sets and supose
that A ⪯ B ∧B ⪯ A then A ≈ B.

Proof. Let f : A → B and g : B → A be injective functions. And let
k = g ◦f : A → A be the injective composition of those functions. Note that
g : B → Im(g) is invertible and let g−1 : Im(g) → B be the inverse map.
Define the following sequence of sets:

A0 = A \ Im(g), An+1 = k′′An

Let D = ∪n∈NAn. Now we are ready to define the function h : A → B which
is going to be a bijection:

h(x) =

{
g−1(x) x /∈ D

g−1(k(x)) x ∈ D

Let us prove that h is well defined (i.e. that we can apply g−1 in the
definition of h) Indeed, if x ∈ D then k(X) = g(f(x)) ∈ Im(g) and if
x /∈ D, then in particular x /∈ A0 = A \ Im(g). Hence x ∈ Im(g).

Claim 5.17.1. x ∈ D if and only if h(x) ∈ g−1′′D.

Proof. If x /∈ D, then h(x) = g−1(x), and since g−1 is one-to-one, g−1(x) /∈
g−1′′D. If x ∈ D, then x ∈ An for some n and therefore k(x) ∈ K ′′An =
An+1 ⊆ D. It follows that h(x) = g−1(k(x)) ∈ g−1′′D. □

h is one-to-one: Suppose that y = h(x1) = h(x2). If y /∈ g−1′′D, then
by the claim x1, x2 /∈ D and therefore g−1(x1) = h(x1) = h(x2) = g−1(x2).
Since g−1 is one-to-one, x1 = x2. If y ∈ g−1′′D, then x1, x2 ∈ D and
therefore g−1(k(x1)) = h(x1) = h(x2) = g−1(k(x2)). Since both g−1, k are
one -to-one we have that x1 = x2.

h is onto: Let b ∈ B and consider g(b) ∈ Im(g). If g(b) /∈ D, then
h(g(b)) = g−1(g(b)) = b. If g(b) ∈ D, then there is n such that g(b) ∈ An.
Note that n > 0 since A0 = A \ Im(g). Hence g(b) ∈ k′′An−1 and there if
a ∈ An−1 ⊆ D such that k(a) = g(b). It follows that h(a) = g−1(k(a)) =
g−1(g(b)) = b. □
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Example 5.18. Prove that NN ≈ P (N)

Proof. On one hand we have P (N) ≈ N{0, 1} ⪯ NN (the last equality is due
to inclusion) on the other hand we have NN ⊆ P (N × N) ≈ P (N). So by
Cantor-Schroeder-Berstein P (N) ≈ NN. □

Theorem 5.19. R ≈ N{0, 1}
Proof. On one hand we have that every x ∈ R is a Dedekind cut so x ∈ P (Q)
and therefore

R ⪯ P (Q) ≈ P (N) ≈ N{0, 1}
For the other direction, we will define a function F : N{1, 2} → R defined by

F (f) = 0.f(0)f(1)f(2)...

is one-to-one as every decimal representation is not eventually 0. Also it is
clear that {0, 1} ≈ {1, 2} hence

N{0, 1} = N{1, 2} ⪯ R
By Cantor- Schroeder-Berstein, R ≈ N{0, 1} □

In particular R is uncountable.

Problem 16. Prove that N{0, 1} × N{0, 1} ≈ N{0, 1} [Hint: consider the
interweaving function that take two binary sequences ⟨a0, a1, ...⟩, ⟨b0, b1, ...⟩
and outputs ⟨a0, b0, a1, b1, a2, b2, ...⟩]

About this result, Cantor said: “My eyes can see it but I cannot believe
it”.

Theorem 5.20. for every n ≥ 1, Rn ≈ R.

Proof. It suffices to prove that R × R ≈ R and then the same inductive
argument as with the case of the natural numbers will work. Indeed,

R× R ≈ N{0, 1} × N{0, 1} ≈ N{0, 1} ≈ R
□

Theorem 5.21. For every α < β reals [α, β] ≈ (α, β) ≈ (α,∞) ≈ R

Proof. First we note that tn : (−π
2 ,

π
2 ) → R is one-to-one and onto hence

(−π
2 ,

π
2 ) ≈ R. Since (−π

2 ,
π
2 ) ⊆ [−π

2 ,
π
2 ] ⊆ (π2 ,∞) ⊆ R we also have that all

those sets are equinumerable. Now it is not hard to find bijections of the
from f(x) = ax+ b which moves (α, β) to (−π

2 ,
π
2 ) and [α, β] to [−π

2 ,
π
2 ] and

(α,∞) to (−π
2 ,∞). □

Definition 5.22. The continuum hypothesis (CH): Every set A ⊆ R is
either finite, countable, or is equinumerable to the reals.

Theorem 5.23 (Godel and Cohen). The continuum hypothesis cannot be
proven nor refuted from ZFC.

Theorem 5.24. (AC) The countable union of at most countable sets is at
most countable
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Proof. Let An be a sequence of sets such that for each n, An is at most
countable. Let us define Bn as follows, B0 = A0 and Bn+1 = An+1 \
(∪n

k=0Ak). Since Bn ⊆ An, our assumption that An is at most countable
implies that there is fn : Bn → N which is one-to-one. Note that if n ̸= m
then Bn∩Bm = ∅ and also that

⋃
n∈NAn =

⋃
n∈NBn. Define g :

⋃
n∈NAn →

N×N by g(n) = ⟨mn, fmn(n)⟩, where mn ∈ N is the unique index such that
n ∈ Bmn . Then g is one-to-one and therefore

⋃
n∈NAn ⪯ N× N ⪯ N. □

Corollary 5.25. The following sets are countable: {X ∈ P (N) | X is finite },
the set of finite sequence of natural numbers, the set of all algebraic numbers.

Proof. (1) Clearly A1 := {X ∈ P (N) | X is finite } is infinite and there-
fore N ⪯ A1. To see that it is at most uncountable, note that
A1 = ∪n∈NP ({0, ..., n}) which is a countable union of finite (so at
most countable) sets and therefore A1 is at most countable.

(2) We are asked to prove that the set ∪n∈N+Nn is countable. It is clearly
infinite and is already given to us as a countable union of countable
sets which is therefore at most countable.

(3) An algebraic number is a real number r which is a root of a non-
zero polynomial with integer coefficients. Let Z[x] denote the set of
all polynomials with integer coefficients. Then each non-zero poly-
nomial has some degree n ∈ N and has the form p(x) = znx

n +
zn−1x

n−1+ ...z1x+z0. Let Zn[X] be the set of all polynomials of de-
gree at most n. Then clearly, Zn[X] ≈ Zn+1 and therefore Zn[X] is
countable. Note that Z[X] = ∪n∈NZn[X] and therefore is a countable
union of countable sets (hence countable). Now the set of algebraic
numbers is just ∪p(x)∈Z[X]roots(p(x)) where roots(p(x)) = {r ∈ R |
p(r) = 0}. Recall that every polynomial has only finitely many roots
and therefore the set of algebraic numbers is a countable union of
finite sets and therefore at most countable.

□

Corollary 5.26. The following sets are uncountable: {X ∈ P (N) | X ≈ N},
R \Q, {r ∈ R | r is transendental},

Proof. Lets just prove one of them. If for example R\Q was countable, then
R = Q ∪ (R \ Q) would have been a countable union of countable sets and
therefore countable. Contradiction. □

6. Cardinal numbers

With finite sets we have a natural number assigned to each finite set A
according to the number of elements in A which we dented by |A|. This
number determines completely when to sets are equinumerable:

Proposition 6.1. Let A,B be two finite sets. Then A ≈ B if and only if
|A| = |B|.
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We would like to extend this also to infinite sets and assign a quan-
tity/number, which we call a cardinal, to each set which will determine the
equinumerability relation. A first attempt would be to define that a cardinal
is just an ≈-equivalence class. Indeed, we saw the following: For every sets
A,B,C

(1) A ≈ A.
(2) A ≈ B ⇒ B ≈ A.
(3) A ≈ B ∧B ≈ C ⇒ A ≈ C.

Does it mean that ≈ is an equivalence relation?
The problem is that there is no set on which this relation is defined and

therefore there is no formal object which is the ≈-equivalence class.
To overcome this difficulty, we will need to choose somehow a represen-

tative κC ∈ C for every ≈-equivalence class C and we would like to write for
every X ∈ C, |X| = κC . For example, since n = {0, ..., n−1} has n elements,
we can choose κC = n as the representative of the class C = {A | A ≈ n}.
Then we need to prove the following:

Definition 6.2. For every finite set A there is a unique n such that A ≈ n.

Another equivalence class is the class of countable sets:

Definition 6.3. Denote by ℵ0 = N. We define |A| = ℵ0 if and only if A is
countable.

For now, let us assume that we have made such a canonical choice (this
will be formally defined later) so if κ is a cardinal and A ≈ κ we may write
|A| = κ.

Definition 6.4. Let κ, λ be cardinals. we define:

(1) κ+ λ = |A⊎B| where A,B are disjoint sets such that |A| = κ and
|B| = λ.

(2) κ · λ = |A×B| where |A| = κ and |B| = λ.
(3) κλ = |BA| where |A| = κ and |B| = λ.

We need to check that these operations does not depend on the choice of
A,B.

Exercise 10. If A ≈ A′ and B ≈ B′ then:

(1) Given that A,B are disjoint and A′, B′ are disjoint, A⊎B ≈ A′⊎B′.
(2) A×B ≈ A′ ×B′.

(3) BA ≈ B′
A′

Proof. Let us prove (1) for example. Fix a bijections f : A → A′ and
g : B → B′. Define h : A ⊎B → A′ ⊎B′ by

h(x) =

{
f(x) x ∈ A

g(x) x ∈ B

One should check that h is indeed a bijection. □
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Theorem 6.5 (Basic properties). Let κ, λ, σ be any cardinals (finite or
infinite) then

(1) κ+ λ = λ+ κ , κ · λ = λ · κ (commutativity)
(2) (κ+ λ) + σ = κ+ (λ+ σ), κ · (λ · σ) = (κ · λ) · σ.(Associativity)
(3) κ · (λ+ σ) = κ · λ+ κ · σ.(Distributively)
(4) κ + 0 = κ, κ · 0 = 0, κ · 1 = κ, κ1 = κ, 1κ = 1, 00 = 1, for κ > 0,

0κ = 0. (Neutral elements)
(5) For every n κ+ κ+ κ+ κ+ ...+ κ︸ ︷︷ ︸

n times

= n ·κ , κ · κ · κ · κ · ... · κ︸ ︷︷ ︸
n times

= κn.

Proof. Let us prove for example (3), Let A,B,C be such that |A| = κ,
|B| = λ, |C| = σ such that B∩C = ∅. We need to prove that A× (B⊎C) ≈
(A×B)⊎(A×C). Note that indeed A×B∩A×C = A×(B∩C) = A×∅ = ∅
and that A× (B ∪C) = (A×B) ∪ (A×C). Since we have set equiality we
have in particular equinumerability.

Let us prove for example in (2) that κ × λ = λ × κ. We need to prove
that A × B ≈ B × A. Clearly the function f : A × B → B × A defined by
f(⟨a, b⟩) = ⟨b, a⟩ a bijection between these sets.

Let us prove in (4) that 00 = 1. We need to prove that ∅∅ ≈ 1. Indeed,
one should check formally that ∅ : ∅ → ∅ is the unique function in that set
hence ∅∅ = {∅} (which actually equals 1 = {0} = {∅}).

□

Remark 6.6. It should be proven (and the proof is omitted here) that for
natural numbers this is the usual definition of addition, multiplication and
power.

Proposition 6.7. (1) ℵ0 + ℵ0 = ℵ0.
(2) ℵ0 + n = ℵ0.
(3) ℵ0 · ℵ0 = ℵ0.

Proof. For (1), ℵ0 = |Neben| and also ℵ0 = |Nodd| which are disjoint sets.
Hence

ℵ0 + ℵ0 = |Neven ∪ Nodd| = |N| = ℵ0

For (2), let n ∈ N. Then N \ {0, ..., n− 1} is countable (witnessed by the
function m 7→ m+n). Hence ℵ0+n = |(N \ {0, ..., n− 1})∪{0, ..., n− 1}| =
|N| = ℵ0.

For (3), we saw that N× N ≈ N which implies that ℵ0 · ℵ0 = ℵ0 □

Corollary 6.8. |R| = 2ℵ0

Proof. Indeed, we prove that R ≈ N{0, 1} and by definition of exponent,
|R| = 2ℵ0 . □

Proposition 6.9. (1) 2ℵ0 + 2ℵ0 = 2ℵ0.
(2) 2ℵ0 + ℵ0 = 2ℵ0.
(3) 2ℵ0 · 2ℵ0 = 2ℵ0.
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Proof. For (1) R ≈ [0,∞) ≈ (−∞, 0) and therefore

2ℵ0 + 2ℵ0 = |(−∞, 0) ∪ [0,∞)| = |R| = 2ℵ0 .

For (2), Note that (0, 1) ⊆ R \ N ⊆ R. So by Cantor-Schroeder-Bernstein,
R \ N ≈ R. Hence

2ℵ0 + ℵ0 = |(R \ N) ∪ N| = |R| = 2ℵ0 .

For (3), we have seen that R× R ≈ R □

Definition 6.10. We define κ ≤ λ if A ⪯ B where |A| = κ and |B| = λ

Problem 17. Prove that κ ≤ λ does not depend on the choice of represen-
tatives.

By cantor-Schroeder-Bernstein theorem we have that:

Corollary 6.11. κ ≤ λ and λ ≤ κ then κ = λ.

Zermelo’z theorem says that every two cardinalities are comperable:

Theorem 6.12 ((AC)). For every two cardinals κ, λ, either κ ≤ λ or λ ≤ κ.

Theorem 6.13 (Monotonicity). If κ ≤ λ and σ ≤ τ then

(a) κ+ σ ≤ λ+ τ .
(b) κ · σ ≤ λ · τ .
(c) κσ ≤ λτ (except for the case 00 = 1 > 0 = 0κ for every κ > 0).

Proof. Let us prove fr example (c). The assumption κ ≤ λ and σ ≤ τ
translates to sets A,B,C,D of cardinality κ, λ, σ, τ respectively such that
A ⪯ B and C ⪯ D. We need to prove that AC ⪯ BD. Let us split into
cases:

(1) If B = ∅, then also A = ∅ (since A ⪯ B).
(a) If D = ∅ then also C = ∅ and then CA = {∅} = DB.
(b) D ̸= ∅, in this case, the assumptions of the theorem implies that

τ ̸= ∅ and therefore CA = ∅ = DB.
(2) Suppose that B ̸= ∅ and let b∗ ∈ B be any element and let F :

A → B, G : C → D be injections. We need to define an injection
Φ : CA → DB. For a function f : C → A, we define Φ(f) : D → B
by

Φ(f)(d) =

{
b∗ d /∈ Im(G)

F (f(G−1(b))) d ∈ Im(G)

Let us prove that Φ is one-to-one. Let f, g : C → A, and assume that
f ̸= g. We need to prove that Φ(f) ̸= Φ(g). By function inequality,
there is c ∈ C such that f(c) ̸= g(c). Consider d = G(c) ∈ Im(G).
Then by definition

Φ(f)(d) = F (f(G−1(d))) = F (f(G−1(G(c)))) = F (f(c)) ̸=
F is 1-1

F (g(c)) = ... = Φ(g)(d)

□
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Corollary 6.14. 2ℵ0 · ℵ0 = 2ℵ0

Proof. 2ℵ0 = 2ℵ0 · 1 ≤ 2ℵ0 · ℵ0 ≤ 2ℵ0 · 2ℵ0 = 2ℵ0 . □

Definition 6.15. We denote by κ < λ if κ ≤ λ and κ ̸= λ

Corollary 6.16. For every cardinal κ, κ < 2κ.

Proof. Let A be of cardinality κ. By Cantor’s theorem A ≺ A{0, 1}. By
definition 2κ = |A{0, 1}| hence κ < 2κ. □

Rules of exponent:

Theorem 6.17. (1) (κλ)σ = κσ·λ.
(2) κλ+σ = κλ · κσ.
(3) (κ · λ)σ = κσ · λσ

Proof. Let us prove for example (1). Let A,B,C be of cardinalities κ, λ, σ
respectively. we need to prove that

C(BA) ≈ C×BA

Define Φ : C×BA → C(BA) as follows. For every f : C × B → A, let
Φ(f) : C → BA be the that takes c ∈ C and outputs Φ(f)(c) : B → A,
which in turn is defined by(

Φ(f)(c)
)
(b) = f(⟨c, b⟩)

Let us check that the function Ψ : C(BA) → C×BA defined by Ψ(g)(⟨c, b⟩) =
(g(c))(b) is inverse to Φ. We shall only prove that Ψ◦Φ = IdC×BA and leave
to the reader the second composition. Let f : C ×B → A we need to prove
that Ψ(Φ(f)) = f so let ⟨c, b⟩ ∈ C ×B, then

Ψ(Φ(f))(⟨b, c⟩) = (Φ(f)(c))(b) = f(⟨c, b⟩)
as wanted. □

Corollary 6.18. (ℵ0)ℵ0 = 2ℵ0 and (2ℵ0)ℵ0 = 2ℵ0

Proof. 2ℵ0 ≤ (ℵ0)
ℵ0 ≤ (2ℵ0)ℵ0 ≤ 2ℵ0·ℵ0 = 2ℵ0 □

7. The Axiom of Choice

Every time we perform the following:

“X ̸= ∅ let x ∈ X”

we are making a choice. This line can appear only finitely many times in
a formal proof and therefore we are allowed to choose finitely many times.
However, we encounter a problem if we would like to choose infinitely many
times.

Definition 7.1. Let F be set of non-empty sets. A choice function for F
is a function f : F → ∪F such that for each A ∈ F , f(A) ∈ A.

Example 7.2. Let F = P (N) \ {∅}, then f(X) = min(X) is a choice
function for F .
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Problem 18. Find a choice function for P (Q) \ {∅}

Example 7.3. Let F = P (R) \ {∅}. Then it is provable that there is no
explicit choice function for F .

Axiom (Ax9. Choice). For every set F such that ∅ /∈ F , there exists a
choice function.

We denote the axiom of choice by AC. Here are some basic theorems
which use the axiom of choice:

(1) If g : A → B is onto then there is f : B → A such that g ◦ f = IdB.
(2) If A is infinite then N ≾ A.
(3) A ≾ B iff there is a function f : B → A which is onto.
(4) The countable union of countable sets is countable.

Other non set-theoretic examples:

(1) Every field has an algebraically closed closure.
(2) Every ideal is contained in a maximal ideal.
(3) There exists a set which is not Lebesgue measurable.
(4) Tychonoff’s theorem: a product of compact topological spaces is

compact.
(5) Hahn-Banach theorem.
(6) Completeness theorem for first order logic.
(7) the compactness theorem for first order logic.
(8) R can be well ordered.

List of axioms of the system ZF (Zermelo -Frenkel):

Ax0. Existence
Ax1. Extensionality.
Ax2. Foundation (will be introduced later)
Ax3. Comprehention.
Ax4. Pairing
Ax5. Union.
Ax6. Replacement.
Ax7. Infinity.
Ax8. Powerset.

The axioms of the system ZFC(Zermelo-Frenkel-Choice) are ZF +AC.

Theorem 7.4. The following are equivalent:

(1) AC.
(2) Every set can be well ordered (The well order theorem).
(3) Zermelo’s Theorem.
(4) Zorn’s lemma.

We will introduce and prove the equivalent statements above in the next
few sections.

Corollary 7.5 (AC). There is a system of representatives for all possible
cardinalities.
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Corollary 7.6 (AC). For any set A, A×A ≈ A.

How do we avoid choice:

Theorem 7.7. Suppose that A is a set of open pairwise disjoint intervals
in R, then |A| ≤ ℵ0.

Proof. We are not allowed to use AC. Let us pick (one choice!) a bijection
between Q and N and assume that Q = {qn | n ∈ N}. Let us define
f : A → Q by setting f(X) = qn for the minimal n such that qn ∈ X ∩ Q.
Then f exists by the axiom of comprehension (and others in ZF). since the
intevals are pairwise disjoint, it is not hard to check that f is one-to-one and
therefore |A| ≤ ℵ0. □

8. well orders and ordinals

Recall that a (strong) order on a set A is a relation R which is transitive,
reflexive, and strongly-anti-symmetric. R is total if every any two members
a, b ∈ A are R-comparable, namely: a = b ∨ aRb ∨ bRa.

Definition 8.1. An total order R on A is called a well-order if:

∀X ⊆ A.X ̸= ∅ ⇒ ∃minR(X)

where minR(X) is a (unique) element in x ∈ X such that ∀y ∈ X.x ̸= y ⇒
xRy.

Example 8.2. • Every total order on a finite set is a well-order.
• N with the regular order is a well order.
• N× N with the lexicographic order is a well order.
• Consider the following order of NN given by fRg iff f(n∗) < g(n∗)
where n∗ = min{n | f(n) ̸= g(n)}. Then R is a total ordering of NN
which is not a well-order.

Theorem 8.3. (AC) Every set can be well-ordered.

The proof for this will be given later. For now let us prove the other
direction:

The well order Theorem implies the axiom of choice: Let F be any family
of non-empty sets. Let A =

⋃
F . By the well order theorem, there is a well

ordering ≺ on A. Define a choice function f : F → A by f(X) = min≺X.
Note that since ∅ /∈ F , f is well-defined. □

Definition 8.4. Let ⟨A,R⟩ be an ordered set, define AR[x] = {y ∈ A |
yRx}.
Lemma 8.5. If ⟨A,R⟩ is a well order then for any x ∈ A, ⟨A,R⟩ ̸≃
⟨AR[x], R⟩.
Proof. Suppose that f : R → AR[x] witnesses otherwise, let B = {y |
f(y)Ry}. B is not empty since f(x) ∈ AR[x] and therefore f(x)Rx. Let x∗ =
minR(B), then f(x∗)Rx∗ and since f is order preserving f(f(x∗))Rf(x∗),
hence f(x∗) ∈ B, contradictiong the minimality of x∗. □
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Problem 19. Find a counter-example for the previous lemma in case that
⟨A,R⟩ is not well ordered.

Lemma 8.6. Suppose ⟨A,R⟩, ⟨B,S⟩ are well-orders and ⟨A,R⟩ ≃ ⟨B,S⟩.
Then the isomorphism between them is unique.

Proof. Suppose that g1, g2 are two isomorphisms and toward contradiction
assume that g1 ̸= g2. Let x∗ = min{x ∈ A | g1(x) ̸= g2(x)}. Then g1(x

∗) ̸=
g2(x

∗). Without loss of generality, suppose taht b := g1(x
∗)Sg2(x

∗) and
let yRx∗ be such that g2(y) = b, then g1(y)Sg1(x

∗) = b = g2(y), thus
g1(y) ̸= g2(y) and therefore y ∈ {x | g1(x) ̸= g2(x)} contradiction the
minimality of x∗. □

Definition 8.7. Let ⟨A,R⟩ be a well-ordering A set X ⊆ A is called an
initial segment if ∀y ∈ X∀z ∈ A.zRy → z ∈ X.

Lemma 8.8. Let ⟨A,R⟩ be a well-ordering and X ⊆ A. Then X is an
initial segment iff X = A or ∃x ∈ A.AR[x] = X.

Proof. Exercise. [Hint: define x = minA \X] □

Theorem 8.9 (The trichotomy theorem of well-ordering). Let ⟨A,R⟩ ,⟨B,S⟩
be well-ordering. Then exactly one of the following holds:

(1) ⟨A,R⟩ ≃ ⟨B,S⟩.
(2) there is x ∈ A such that ⟨AR[x], R⟩ ≃ ⟨B,S⟩.
(3) there is y ∈ B such that ⟨A,R⟩ ≃ ⟨BS [y], S⟩.

Proof. Let

f = {⟨a, b⟩ ∈ A×B | ⟨AR[a], R⟩ ≃ ⟨BS [b], S⟩}
First we claim that dom(f), Im(f) are initial segments. To see this, is
suffices to prove that they are downward closed. For example, if a′Ra and
a ∈ dom(f) then there is b such that ⟨AR[a], R⟩ ≃ ⟨BS [b], S⟩. Let g :
AR[a] → BS [b] be an isomorphism witnessing this. Note that AR[a

′] is an
initial segment of AR[a] and therefore g ↾AR[a

′] is defined, order preserving
and 1 − 1. Let b′ = g(a′), it is not hard to verify that Im(g) = BS [b

′]
and therefore g ↾ AR[a

′] witnesses the fact that ⟨AR[a
′], R⟩ ≃ ⟨BS [b

′], S⟩
which implies that a′ ∈ dom(f). Similarily, Im(f) is an initial segment.
Also f must be (univalent and) injective since otherwise, we would have
had a1Ra2 such that b = f(a1) = f(a2) and in particular ⟨AR[a1], R⟩ ≃
⟨BS [b], S⟩ ≃ ⟨AR[a2], R⟩ which contradicts the lemma that a well ordering
is not isomorphic to its proper initial segments.

Finally, we claim that it is impossible that both dom(f), Im(f) are proper
initial segment, sense otherwise, dom(f) = AR[x] and Im(f) = BS [y] and
we let x′ = minA \ AR[x] and y′ = minB \ BS [y], then we can extend f
to be defined on AR[x

′] by sending f(x) = y witnessing that x′ ∈ dom(f),
contradiction. □

Corollary 8.10. The Well-ordering theorem implies Zermelo’s theorem.
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Proof. Let A,B be two set. Find any well orderings R,S on A,B respec-
tively. By the trichotomy theorem Either (1) holds in which case we have
produced bijection witnessing A ≈ B, or (2), in which case there is an injec-
tive function f : B → A which witnesses that B ≺ A, or (3) which similarly
implies A ⪯ B. □

8.1. ordinals. The basic theory is due to Von Neuman.

Definition 8.11. A set x is called trastivie if

∀y ∈ x∀z ∈ y.z ∈ x

Or equivalently,
∀y ∈ x.y ⊆ x

Example 8.12. ∅, {∅}, {∅, {∅}}, {∅, {∅}, {{∅}}}
Exercise 11. If F is a set of transitive sets then

⋃
F ,

⋂
F are both transitive

sets.

Transitive sets are sets for which the ∈-relation is transitive.

Definition 8.13. A set α is called an ordinal if α is a transitive set and

∈α:= {⟨x, y⟩ ∈ α2 | x ∈ y}
is a well order on α.

Remark 8.14. The axiom of foundation and the axiom of choice will later
tell us that an infinite decreasing ∈- sequence does not exist and therefore
it will suffice to require that ∈α is a total order.

Axiom (Ax. 2 Foundation). For every set A ̸= ∅ there is x ∈ A such that
x ∩A = ∅.
Proposition 8.15 (AC). The following are equivalent:

(1) The axiom of foundation.
(2) There is no infinite deceasing sequence in the ∈-relation.

Proof. (1) implies (2) is clear and does not require the axiom of choice. For
the other direction, let us prove that ¬(1) implies ¬(2). Let A be a set
witnessing the failure of the axiom of foundation. Let f be a choice function
for P (A) \ {∅}. We would like to construct a decreasing sequence in the
∈-relation. We shall define a sequence an ∈ A recursively. Since A ̸= ∅ let
a0 = f(A) be an element. Suppose we have defined an ∈ an−1 ∈ ... ∈ a1 ∈ a0
and let us define an+1. By our assumption on A, there is no element x ∈ A
such that A ∩ x = ∅, and therefore an ∩A ̸= ∅. Let an+1 = f(A ∩ an), then
an+1 ∈ an ∩A. □

Example 8.16. ∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}} the set {∅, {∅} {{∅}}}
is an example of a transitive set which is not an ordinal (since ∅ and {{∅}}
are not ∈-comperable). If x = {x} then x is not an ordinal since we will
have x ∈ x and therefore ∈ is not anti reflexive. For the same reason, for
every ordinal α, α /∈ α.
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Theorem 8.17. (1) If α is an ordinal and x ∈ α then x is an ordinal
and x = α∈[x].

(2) α ⊆ β iff α ∈ β ∨ α = β.
(3) If α, β are ordinals such that α ≃ β then α = β.
(4) For every two ordinal α, β, α ∈ β ∨ β ∈ α ∨ α = β.
(5) If C is a set of ordinals then there is min∈(C).
(6) If C is a set of ordinals then ∪C is an ordinal and had the property

of supremum, namely, it is an upper bound of C: ∀α ∈ C.α ⊆ ∪C
and if β is an upper bound for C then ∪C ⊆ β.

Proof. (1) exercise. (2), from right to left is easy. From left to right, suppose
that α ⊆ β and α ̸= β, let γ = min(β \ α), we claim that γ = α. If x ∈ γ,
then x ∈ β and bu minimality of γ, x ∈ α. If x ∈ α, then x ∈ β by
inclusion. x, γ are comparable in ∈, but γ = x and γ ∈ x is ruled out since
γ ∈ β \ α, so x ∈ γ. By double inclusion α = γ. For (3), suppose that there
is x ∈ α such that f(x) ̸= x and let x be the minimal such x. Then x is an
ordinal and x = f [x] ⊆ β, but then x ∈ β and x ∈ f(x) so there is y ∈ α
such that f(y) = x ̸= y but then y ∈ x since f is order-preserving which
contradicts the minimality of x. (4) follows from (1), (3) and the trichotomy
theorem □

Corollary 8.18. ¬∃z.∀x.x is an ordinal ⇒ x ∈ z

Proof. Otherwise, let On = {α ∈ z | α is an ordinal} (which exists by com-
prehansion), then On is a transitive set (by (1) of the previous theorem) and
∈ well orders On (by (3) and (5)) and therefore On is itself an ordinal, so
On ∈ On. However, no ordinal can be a member of itself, contradiction. □

We denote the class of all ordinals by On.

Remark 8.19. As we have just proved, there is no formal object which is On
in the mathematical universe, thus, there is no formal distinction between
”x ∈ On” and ”x is an ordinal”, or ”A ⊂ On” and ”∀x ∈ A, x is an ordinal”.

Axiom (Ax6. Replacment). The axiom of replacement states that for every
set A and every formula ϕ(x, y) such that ∀a ∈ A∃!yϕ(a, y), the set {y |
∃a ∈ A, ϕ(a, y)} exists.

Theorem 8.20. For any well-ordered set ⟨A,R⟩ there is a unique ordinal
α such that ⟨A,R⟩ ≃ ⟨α,∈ ⟩. We call this α the order-type of ⟨A,R⟩ and
denote it by otp(A,R).

Proof. Uniqueness follows from before. To prove existence, let B = {a ∈ A |
∃x ∈ On.⟨AR[a], R⟩ ≃ ⟨x,∈ ⟩}. Note that for every a ∈ B, there is a unique
ordinal x which witness a ∈ B. So we may apply replacement to B and form
the set C = {x ∈ On | ∃a ∈ B.⟨AR[a], R⟩ ≃ ⟨x,∈ ⟩}. We claim that C is an
ordinal. First, since C is a set of ordinal, the ∈ relation on C is a well order.
To see that C is transitive, note that if y ∈ x ∈ C and ⟨AR[a], R⟩ ≃ ⟨x,∈ ⟩
then there is b ∈ AR[a] such that ⟨AR[b], R⟩ ≃ ⟨y,∈ ⟩. Hence b ∈ B and
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y ∈ C. It follows that C is an ordinal. A similar argument proves that B is
an initial segment of A and if B = AR[c] for some c then c ∈ B by definition
so B = A. □

Remark 8.21. Without the axiom of replacement, one cannot prove theorem
4.8 as there is a model of ZFC − {Ax6} for which theorem 4.8 fails.

Notation 8.22. α < β iff α ∈ β and α ≤ β iff α < β ∨ α = β iff α ⊆ β.

Theorem 8.23. (1) If α is an ordinal then ∅ ≤ α.
(2) If α is an ordinal then α + 1 := α ∪ {α} is an ordinal and is the

successor of α in the sense that it is the minimal ordinal greater
than α.

(3) If A is a set of ordinals without a greatest element then supA := ∪A
is an ordinal strictly greater then all the ordinals in A.

Proof. Exercise. □

Definition 8.24. A successor ordinal is an ordinal of the form α + 1, oth-
erwise it is called limit.

Theorem 8.25 (Hertog’s Theorem). For every set A there is an ordinal α
such that α ̸⪯ A i.e. there is no injection from α into A.

Proof. Suppose otherwise, that there is a set A such that for every ordinal
α there is an injection of α into A. In particular, for every ordinal β ≥ α,
β ∼ α. Let S = {R ∈ P (A × A) | X ∈ P (A), R well-orders X}. S exists
by the power set axiom and comprehension. Define for each R ∈ S, F (R) =
otp(α,R). Then by replacement the following is a set exists E = {F (R) |
R ∈ S}. By our assumption, for every ordinal β, there is an injection
f : β → A and therefore we can translate the order (β,∈) to a well order
R on a subset X ⊆ A such that otp(α,R) = β. In other words we conclude
that β ∈ E and therefore E = On. This is a contradiction to the fact that
On was already proven not to be a set. □

Corollary 8.26. There is an uncountable ordinal

Proof. otherwise every ordinal can be injected into N contradicting Hartog’s
theorem. □

Definition 8.27. Let ω1 be the least uncountable cardinal.

Proposition 8.28. ω1 = {α ∈ On | α is countable}
Proof. If α is countable then it is impossible that ω1 ≤ α since this would
mean that ω1 ⊆ α, contradiction α being countable. Hence α ∈ ω1. If α is
uncountable then ω1 ≤ α since ω1 is minimal. Hence α /∈ ω1, as wanted. □

Corollary 8.29. Zermelo’s theorem implies the well order theorem.

Proof. Let A be any set. Then there is α such that α ̸⪯ A. By Zermelo’s
theorem this must imply that A ⪯ α and therefore there is an injection
f : A → α. Now we can define a well ordering on A as follows: a ⪯ b iff
f(a) < f(b). Hence A can be well ordered. □
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8.2. Transfinite recursion and induction. We will formulate the induc-
tion and recursion theorem in a way that can be applied to what we call
classes. Formally, a class does not exist as a mathematical object (as we
have seen for V and for On). Given a formula π(x) with a free variable x
(we allow other free variables, indeed, the class we are defining might de-
pend on parameters) we think of the class Cϕ as the ”collection” (whatever
that means) Cϕ = {x | ϕ(x)}. So whenever Cϕ appears in a mathematical
statement, it should be clear how to replace Cϕ by ϕ, for example:

(1) ∀x ∈ Cϕ.x satisfy... just mean ∀x.ϕ(x) ⇒ x satisfy...
(2) Cϕ ⊆ On means

∀x.ϕ(x) ⇒ x is an ordinal.

Note that if Cϕ is a class and A is a set then Cϕ∩A = {x ∈ A | ϕ(x)} which
is a set that exists by comprehansion.

The next theorems are formulated for classes and take their usual meaning
when the class is in fact a set:

Theorem 8.30. Let 0 ̸= C be a class of ordinal (formally, let ϕ be a formula
such that (∃x.ϕ(x))∧(∀x.ϕ(x) ⇒ x is an ordinal)). Then there is y = min(C)
(formally, ∃y.ϕ(y) ∧ ∀x.ϕ(x) → x ≥ y).

Proof. Let α ∈ C be any ordinal, then D = α+ 1 ∩C is a non-empty set of
ordinals, and therefore y = min(D) exists. Let us prove that y = min(C).
let x ∈ C, then either x > α in which chase x > α ≥ y of x ≤ y but then
x ∈ D and therefore x ≥ y. □

Formally, what we have above is a theorem scheme, one for every formula
ϕ. This theorem enables us to prove the induction theorem over all the
ordinal!:

Theorem 8.31 (The induction theorem). Let C be a class of ordinals such
that for every ordinal α, if α ⊆ C then α ∈ C, then C = On.

Proof. Suppose otherwise, let β = min(On \ C). Then for every α < β,
α ∈ C, but then β ∈ C by our assumption. Contradiction. □

Corollary 8.32. Let C be a class of ordinals such that

(1) α ∈ C ⇒ α+ 1 ∈ C.
(2) For every limit ordinal δ, if ∀β < δ, β ∈ C then ∈ C.

Then C = On.

Theorem 8.33 (The recursion theorem). Suppose that F (x, y) is a formula
such that ∀x∃!y.F (x, y). Then one can write down a formula G(v, w) such
that

∀α ∈ On.∃!w.G(α,w) ∧ ∀α ∈ On∃x.∃y.(x = G ↾ α ∧ F (x, y) ∧G(α, y)

Before proving the theorem, let us explain the formulation of the theo-
rem. The formula F (x, y) is thought of as the formula f(x) = y for some
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”function” f : V → V which accommodates some recursive information.
Then the theorem says that there is a function g : On → V (which is given
by the formula G(v, w)) such that for every α ∈ On, g(α) = f(g ↾ α)).

To see how this relates to the usual way we define functions recursively,
recall that in a recursive definition of a function, we assume that ∀β < α,
g(β) has already been defined (in other words, g ↾ α has been defined) and
given this unknown definition we define g(α). The purpose of the function
f is to take that unknown x = g ↾α, which can be have any possible values,
and the output g(x) is what we would have wanted for the value of g(α) to
be. The recursion theorem simply tells you that given a function f (which
is defined on any possible sequence x) the function g which satisfies g(α) =
f(g ↾α) exists. Since we are talking about classes, this is all formulated with
formulas instead of functions.

Remark 8.34. In many situations we use the induction and recursion theorem
simultaneously when we define a function g and assume that g↾α has already
been defined and satisfies some properties, then we define g(α) and prove it
satisfies some properties.

Example 8.35. Ordinal arithmetic: for a fixed α, we define:

• α+ β by recursion on β
(1) α+ 0 = α.
(2) α+ (β + 1) = (α+ β) + 1.
(3) For a limit ordinal δ, we define α+ δ = supβ<δ α+ β.

• α · β by recursion on β
(1) α · 0 = α.
(2) α · (β + 1) = (α · β) + α.
(3) For a limit ordinal δ, we define α · δ = supβ<δ α · β.

• αβ by recursion on β
(1) α0 = 1.
(2) αβ+1 = αβ · α.
(3) For a limit ordinal δ, we define αδ = supβ<δ α

β.

1 + ω = supn<ω 1 + n = ω < ω1

2 · ω = supn<ω 2 · n = ω < ω + ω = ω + 2
2ω = supn<ω 2n = ω (so 2ω as ordinals and as cardinal is not the same!)

ω + ω2 = ω2

(ω + 1)2 = (ω + 1) · (ω + 1) = (ω + 1) · ω + ω + 1 = ω2 + ω + 1.

Proposition 8.36. (1) If α < β then for every γ, γ + α < γ + β.
(2) (α+ β) + γ = α+ (β + γ)

Proof. For (1), We prove by trasfinite induction of β that for every α < β
and every γ, γ + α < γ + β. For β = 0, the claim is vacuously true (since
there is no α < 0). Suppose that the claim holds for β and let us prove it
for β + 1. Let α < β + 1 and γ be any ordinal. Let us split into cases:
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• If α < β, then by the induction hypothesis and the definition of ”+” in
the successor case,

γ + α < γ + β < (γ + β) + 1 = γ + (β + 1)

• If α = β, then as in the first case we get γ + β < γ + (β + 1).
For limit β, let α < β, then α+ 1 < β. By the induction hypothesis applies
to α+ 1 and the definition of ”+” is the limit case,

γ + α < γ + (α+ 1) ≤ sup
δ<β

α+ δ = α+ β

For (2), agan we prove it by induction on γ, for every α, β.
• For γ = 0 we have that:

(α+ β) + 0 = α+ β = α+ (β + 0)

• At successor step γ + 1, we have that

(α+β)+(γ+1) = ((α+β)+γ)+1 = (α+(β+γ))+1 = α+((β+γ)+1) = α+(β+(γ+1))

• At limit steps γ, suppose that for every δ < γ we have that (α+β)+δ =
α+ (β + δ), then

(α+ β) + γ = sup
δ<γ

(α+ β) + δ = sup
δ<β

α+ (β + δ) =∗ α+ (β + γ)

To see why ∗ holds, we will use (1) and the definition of supremum.
Indeed, if δ < γ then from (1) we get that β + δ < β + γ and therefore
(again from (1)), α+(β+ δ) < α+(β+γ). Hence supδ<γ α+(β+ δ) ≤
α+(β+ γ). Note that β+ γ = supδ<γ β+ δ by definition and therefore
(since β+δ is strictly incresing with δ) we conclude that β+γ is a limit
ordinal and that sup{α+ ρ | ρ < β + γ}. It follows that

α+ (β + γ) = sup
ρ<β+γ

α+ ρ

Hence we need to check that

sup
δ<γ

α+ (β + δ) = sup
ρ<β+γ

α+ ρ

We have that {β+ δ | δ < γ} ⊆ β+γ so ” ≤ ” is clear (the sup is taken
over more elements). For the other direction, let ρ < β + γ then there
is δ < γ such that β+δ > ρ and by (1) we have that α+(β+δ) > α+ρ
so ” ≥ ” follows.

□

The next theorem concludes the equivalence between AC, the well-order
theorem and Zermelo’s theorem:

Theorem 8.37. The axiom of choice implies the well-order theorem.
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Proof. Let A be a set and let f be a choice function for P (A) \ {∅}. Fix
any x /∈ A (which exists since A cannot be the set of all sets). Define by
recursion a function g from On to A ∪ {x} as follows:

H(α) =

{
f(A \ {H(β) | β < α}) {H(β) | β < α} ⊊ A

x otherwise

Note that there must be α such that H(α) = x, just otherwise, for each α,
H(α) ∈ A\{H(β) | β < α} and therefore H(α) ̸= H(β) for every α ̸= β. So
for every α, H ↾α is an injection of α into A contradicting Hartog’s theorem.
Let α be the minimal ordinal such that H(α) = x. In follows that {H(β) |
β < α} = A and therefore H ↾ α is a bijection from α into A. Now we can
define a well ordering of A using H−1. □

8.3. cardinals. Recall that if A can be well ordered, then there α such that
A ≈ α

Definition 8.38. Suppose that A can be well ordered. Denote by |A| to be
the minimal ordinal α such that A ≈ α.

Definition 8.39. An ordinal α is called a cardinal if α = |α|. Equivalently,
if for every β < α, β < |α|.

Clearly, if α, β are cardinals then α ̸≈ β.

Corollary 8.40. If every set can be well-ordered then for every set A there
is a unique cardinal |A| such that A ≈ |A|.

Exercise 12. (1) If |α| ≤ β ≤ α then |α| = |β|.
(2) n ̸≈ n+ 1 for every n. [Hint: induction.]
(3) If |α| = n then α = n.

Corollary 8.41. ω is a cardinal and every n ∈ ω is a cardinal.

Proof. Otherwise, |ω| < ω and therefore |ω| = n so there |ω| < n + 1 < ω,
but then |n+ 1| = |ω| = n, contradicting the n ̸∼ n+ 1. □

So we now have sets which are not countable. But what about uncount-
able sets? the problem is that P (ω) might not admit a well order.

Theorem 8.42. For every ordinal α there is a cardinal κ such that α < κ.

Proof. Suppose otherwise, that there is an ordinal α such that for every
cardinal κ is at most α. In particular, for every ordinal β ≥ α, β ∼ α.
Let S = {R ∈ P (α × α) | R well-orders α}. S exists by the power set
axiom and comprehansion. Define for each R ∈ S, F (R) = otp(α,R). Then
by replacement the following is a set exists {E = F (R) | R ∈ S}. By
our assumption, for every β ≥ |α|, β ∼ α, and we can translate the order
(β,∈) to a well order R on α such that otp(α,R) = β. We conclude that
E = {β ∈ On | β ≥ |α|}. This is a contradiction to the fact that On was
already proven not to be a set (Show that the set E cannot be a set!). □
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Definition 8.43. For every α, denote by α+ the minimal cardinal α < κ. a
cardinal of the form α+ is called a successor cardinal and a cardinal κ such
that for every α < κ, α+ < κ is called a limit cardinal.

Definition 8.44 (The ℵ hierarchy). By transfinite recursion we define ℵα

for every ordinal α ∈ On. ω0 = ℵ0 := ω ωα+1 = ℵα+1 := ℵ+
α and for a limit

δ, ωδ = ℵδ := supα<δ ℵα.

Theorem 8.45. (1) Every ℵα is a cardinal
(2) For every infinite cardinal κ, there is α such that ℵα = κ.
(3) If α < β then ℵα < ℵβ.
(4) ℵα is limit cardinal iff α is a limit ordinal and ℵα is a successor cardinal

iff α is a successor ordinal.

Proof. For (1), we go by induction of α, the base case and succesoor case are
easy by the definition of ℵα+1. For limit δ, suppose toward a contradiction
that |ℵδ| < ℵδ, then by definition of sup, there is α < δ such that |ℵδ| < ℵα.
Since δ is limit, we have that α+ 1 < δ and therefore

ℵα < ℵα+1 ≤ ℵδ

Which implies by previous exercises that |ℵα| = |ℵδ| < ℵα, contradicting
the fact that ℵα is a cardinal by the induction hypothesis. As for (2), let κ
be a cardinal and let δ = sup{γ | ℵγ ≤ κ}. We claim that ℵδ = κ. Let us
split into cases: if δ = max({γ | ℵγ ≤ κ}), then ℵδ ≤ κ and by maximality
ℵδ+1 = ℵ+

δ > κ. It follows that κ = |κ| = ℵδ. If δ is limit, then again, since

ℵδ = supα<δ ℵα, it follows that ℵδ ≤ κ. It follows again that ℵ+
δ > κ and

thus ℵδ = |κ| = κ. (3) and (4) are left as exercises. □

9. Zörn’s Lemma

Definition 9.1. Let ⟨Σ,≤ ⟩ be a partially ordered set. A chain in Σ is a
subset X ⊆ Σ such that every x, y ∈ X are comparable in ≤.

Example 9.2. {{0, ..., n} | n ∈ N} is a chain in ⟨P (N),⊆ ⟩.

Definition 9.3. Let ⟨Σ,≤ ⟩ be a partially ordered set. A maximal element
is Σ is some σ ∈ Σ such that there is no x ∈ Σ such that σ < x.

Example 9.4. On N \ {0, 1} define the order n ≺ m iff m divides n. Then
maximal elements are exactly prime numbers.

Theorem 9.5 ((AC) Zörn’s Lemma). Suppose that ⟨Σ,≤ ⟩ is an ordered
set such that:
(1) Σ ̸= ∅.
(2) Every chain in Σ has an upper bound in Σ.
Then Σ has a maximal element.

Theorem 9.6. Zorn’s lemma implies the axiom of choice
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Proof. Let F be a set of non-empty sets. Define

Σ = {f ∈ P (F ×
⋃

F) | f is a choice function on some X ⊆ F}

We order Σ by inclusion.

Problem 20. Prove that for every f, g ∈ Σ, f ⊆ g iff dom(f) ⊆ dom(g)
and g ↾ dom(f) = f .

Let us prove the Σ satisfies the assumptions of Zörn’s Lemma. Indeed
∅ ∈ Σ since it is a choice function on the empty set, hence Σ ̸= ∅. Let C ⊆ Σ
be a chain. We claim that F :=

⋃
C =

⋃
f∈C f is an upper bound in Σ.

Clearly, F includes f for every f ∈ C (by definition). Let us prove that
F ∈ Σ.

???
□

Corollary 9.7. (AC) Every vector space has a base.

Proof. □

Theorem 9.8 (Blass). If every vector space has a base then AC holds.

Proof that AC implies Zorn’s Lemma. □

10. Cardinal Arithmetics

Theorem 10.1. For every cardinal κ, κ · κ = κ.

Notation 10.2. κ<λ = supδ<λ κ
δ.

Corollary 10.3 (AC). If κ, λ are infinite then:
(1) κ+ λ = κ · λ = max(κ, λ).
(2) Suppose that for every α < κ, Xα is a set such that |Xα| ≤ κ. Then

| ∪α<κ Xα| ≤ κ
(3) For δ ≤ κ, κδ = |[κ]δ| where κδ = {X ∈ P (κ) | |X| = δ}.
(4) κ<ω = κ.

Proof. For (2), for each α < κ choose a function fα : κ → Xα which is
onto. Then define a function f : κ × κ → ∪α<κXα by f(α, β) = fα(β).
Then f is onto and therefore | ∪α<κ Xα| ≤ κ · κ = κ. For (3), The function
F (f) = Im(f) is an onto fnction from δκ to [κ]δ. For the other direction,
δκ ⊆ {R ∈ P (κ × δ) | |R| = δ}. Since |P (κ × δ)| = |P (κ) we get that
|δκ| ≤ |[κ]δ|. For (4), note that κn = κ for every n ≥ 1 (by induction and
since κ · κ = κ) and therefore κ<ω = supn<ω κn = κ □

It follows that κ<δ = |[κ]<δ| where [A]<δ = {B ⊆ A | |B| < δ}. Also from
(1) we see that only the exponent operation is left unsettled. As we will see
later, ZFC cannot determine theses values. However, there are some cases
which are settled, in the rest of this chapter we investigate what restrictions
ZFC pose one these values:
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Theorem 10.4. If λ ≥ ω and 2 ≤ κ ≤ λ then

κλ = 2λ

Proof. 2λ ≤ κλ ≤ (2κ)λ = 2κ·λ = 2λ. □

In case λ < κ we can say a bit more about κλ but we need the following
definition:

Definition 10.5. Let α be an ordinal. We define cf(α) to be the minimal
γ such that there is an cofinal/unbounded function f : γ → α14.

Example 10.6. cf(ω) = ω, cf(ω1) = ω1 (since if α < ω1 and f : α → ω1,
we have that sup(f) is a countable union of countable sets so | sup(f)| = ω.
It follows that sup(f) < ω1.

Remark 10.7. (1) cf(α) ≤ α.
(2) cf(α+ 1) = 1.
(3) there is always f : cf(α) → α which is cofinal and strictly increasing.

Exercise 13. If α is a limit ordinal and f : α → β is cofinal and strictly
increasing then cf(α) = cf(β).

Exercise 14. For every limit ordinal α, cf(ℵα) = α.

Corollary 10.8. cf(cf(β)) = cf(β).

Definition 10.9. a limit ordinal κ called regular if cf(κ) = κ, otherwise it
is called singular.

Corollary 10.10. If κ is regular then κ is a cardinal.

Example 10.11. ω is regular and ω1 is regular. cf(ℵω) = ω < ℵω is
singular.

Theorem 10.12 (AC). For every κ, κ+ is regular.

Proof. Otherwise, there is a function f : λ → κ+ for some λ ≤ κ. For every
α < λ, let Xα = f(α), then |Xα| ≤ κ and therefore |κ+| = | ∪α<λ Xα| ≤ κ,
contradiction. □

Is there a limit regular cardinal greater than ℵ0?

Definition 10.13. A cardinal κ is called
(1) Weakly inaccessible if it regular and a limit cardinal.
(2) Strongly inaccessible if it is regular and

∀λ < κ.2λ < κ

weakly and strongly inaccessible cardinals are so-called ”large cardinals”,
these are cardinals which ZFC cannot prove their existence.

Lemma 10.14 (Konig’s Lemma). Let κ be an infinite cardinal, and assume
that cf(κ) ≤ λ, then κλ > κ

14f : γ → α is cofinal/unbounded if Im(f) is inbounded in α.
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Proof. Let f : λ → κ be cofinal. Suppose toward a contradiction that there
is G : κ → λκ which is onto. Define g : λ → κ by

g(α) = min(κ \ {G(µ)(α) | µ < f(α)})

To see that g /∈ Im(G), let ρ < κ then there is β < λ such that ρ < f(β).
Hence g(β) /∈ {G(µ)(β) | µ < f(β)} and in particular g(β) ̸= G(ρ)(β), hence
g ̸= G(ρ). This is a contradiction to the fact he G is onto. □

Corollary 10.15. For any infinite cardinal κ, cf(2κ) > κ.

Proof. Note that (2κ)κ = κ, hence by the contrapositive of Konig’s lemma,
we get cf(2κ) > κ. □

10.1. The continuum function. The function α 7→ 2ℵα is called the con-
tinuum function and as we will see, its values are highly undetermined by
ZFC.

Definition 10.16 (AC). The Generalized Continuum Hypothesis (GCH) is
the statement that for every α, 2ℵα = ℵα+1.

Under GCH, all the values of κλ (and therefore the continuum function)
can easily be computed,

Theorem 10.17 (AC+GCH). Let λ, κ be infinite cardinals. Then:
(1) If λ ≥ κ, then κλ = λ+.
(2) If cf(κ) ≤ λ < κ then κλ = κ+.
(3) If λ < cf(λ) then κλ = κ

Proof. It remains to prove 3, so κ ≤ κλ = supδ<κ δ
λ ≤ supδ<κ δ

+ = κ □

Let us define the beth function:

Definition 10.18. ℶ0 = ℵ0, ℶα+1 = 2ℶα and for limit δ, ℶδ = supα<δ ℶα.

Exercise 15. GCH is equivalent to the statement that for every α, ℶα = ℵα.

To summarize what we know about the continuum function, we have the
following theorem:

Theorem 10.19. (1) κ < λ ⇒ 2κ ≤ 2λ. (Monotonicity)
(2) cf(2κ) > κ. (Konig’s lemma)

(3) If κ is limit then 2κ = (2<κ)cf(κ).

Proof. We need to prove (3), κ = supi<cf(κ) κi. So the map

X ⊆ κ 7→ ⟨X ∩ κi | i < cf(κ)⟩

is a 1− 1 function from P (κ) to cf(κ)([κ]<κ). Hence

2κ ≤ (2<κ)cf(κ) ≤ (2κ)cf(κ) = 2κ·cf(κ) = 2κ

□
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In case κ is regular, (3) is not very interesting and as we will see, constrains
(1), (2) are the only limitations ZFC pose on the continuum function in
ZFC. However, (3), suggests that for singular cardinals the situation is
very different and depends heavily on thecontinuum function restricted to
cardinals below it and on the exponent values. For example we have the
following corollary:

Corollary 10.20. If κ is singular, and the continuum function is eventually
constant below κ with value λ, then 2κ = λ.

Definition 10.21. A cardinal κ is strong limit if ∀ν < κ.2ν < κ.

Note that a strong limit cardinal is in particular a limit cardinal.

Exercise 16. (1) Prove that there is a strong limit cardinal and that the
least such carinal is of cofinality ω.

(2) Prove that if κ is strong limit then:

∀ν, λ < κ.λν < κ

(3) If κ is strong limit then 2κ = κcf(κ)

Definition 10.22. The Singular Cardinal Hypothesis is the statement:

For every strong limit singular cardinal κ, 2κ = κ+

There is another formulation which implies the above, which involves all
singular cardinals:

For every singular cardinal κ, 2cf(κ) < κ ⇒ κcf(κ) = κ+

We will leave it as an exercise to prove that the second formulation deter-
mines the continuum function for all singular cardinals. While the second
version implies the first, it is known that the two formulations are not equiv-
alent.

11. Appendix

11.1. Induction and Recursion. Induction and recursion and extremely
related techniques, however, they have totally different purposes:

Important: Induction is a proof technique while Recursion is a definition
technique.

11.2. Recursion. As we said, recursion is a definition technique, but what
does it define? sequences:

Definition 11.1. A sequence of elements of a set A is an list of elements of
A enumerated by the natural numbers.15

Example 11.2. The following are examples of sequences:
(1) The sequence an = n is the sequence 0, 1, 2, 3, 4, ...

15The real definition of a sequence involves the concept of functions which we will study
later.
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(2) The sequence bn = 1
n+1 is the sequence 1, 12 ,

1
3 , ...

(3) The sequence cn = (−1)n is the sequence 1,−1, 1,−1, 1, ...
(4) The sequence dn of the sum of angles in degrees of a polygon with

n + 3 vertexes, is the sequence 180o, 360o, 540o, ... and actually dn =
(n+ 1) · 180o.

Definition 11.3. A recursive definition of a sequence has two parts:
(1) Initial values of the sequence: A definition of the first few values of the

sequence.
(2) The recursive condition: A formula to compute the next element in the

sequence from the previous elements.

Remark 11.4. The number of previous elements required to define the next
element is called the depth of the recursion. The depth of the recursion
determined how many initial values should we specify.

Example 11.5. (1) a0 = 0, an+1 = an + 1, the depth is 1.
(2) An arithmetic sequence is a sequence of the form a0 = a and an+1 =

an + d, for some given a, d. For example: a0 = 5 and an+1 = an − 7.
(3) A geometric sequence is a sequence of the form a0 = a and an+1 = an ·q

for some given a, q for example a0 = 5 and an+1 = an · (−7).
(4) a0 = a1 = 1 and an+1 = an + an−1. Here the depth is 2. This is called

the Fibonacci sequence.
(5) 0! = 1 and (n+ 1)! = n! · (n+ 1).
(6) a1 = ∅ and an+1 = {an}. We are allowed to start the enumeration from

a natural number grater than 0.

11.3. induction. One of the most common techniques for proving Univer-
sal statements of the form ∀n ∈ N... is a proof by induction. Let us explain
our goal and the idea behind induction.

Suppose we would like to prove a claim of the form

“For every natural number n, q(n) (some property of n)”

This is extremely important that the statement speaks about natural num-
bers. In order to prove such statement, we can use a proof by induction.
The point is to prove an infinite chain of implications:

q(0) ⇒ q(1) ⇒ q(2) ⇒ ...q(n) ⇒ q(n+ 1) ⇒ ...

This is done by proving for a general n that q(n) ⇒ q(n + 1), this is
called the inductive step. Then the final step is to prove q(0) which is called
the base of the induction. If we proved both the base of the induction and
the induction step then we can now derive the property for every natural
number since:

• q(0) is true by the base.
• q(0) ⇒ q(1), then q(1) is true.
• q(1) ⇒ q(2), then q(2) is true, and so on.

Practically, since q(n) ⇒ q(n + 1) is a universal implication, a proof by
induction for the claim ∀n ∈ N.q(n) has the following structure:
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(1) The base of the induction: Proof for q(0).
(2) Induction hypothesis: “Suppose that q(n) holds”, here n is a general

variable.
(3) Induction step: We need to prove that q(n+ 1) holds, under the given

induction assumption that q(n) holds.

Example 11.6. Prove by induction the following claims:
(1) ∀n ∈ N.n2 ≥ n.

Proof. The induction base: We need to prove that for n = 0, 02 ≥ 0,
this is indeed true since 02 = 0.
The induction hypothesis(Abbreviated I.H.): Let n be any nat-
ural number, and suppose that n2 ≥ n.
The induction step: We need to prove that (n+1)2 ≥ n+1. Indeed,

(n+ 1)2 = n2 + 2n+ 1 ≥
Since n≥0

n2 + 1 ≥
I.H.

n+ 1

□
(2) ∀n ≥ 1(n+ 1 ≤ 2n).16

Proof. The induction base: We need to prove the claim for n = 1.
Indeed,

1 + 1 = 2 ≤ 2 = 2 · 1
The induction Hypothesis: Suppose that for a general n ≥ 1, n+1 ≤
2n.
The induction step: We need to prove that (n + 1) + 1 ≤ 2(n + 1).
Indeed,

(n+ 1) + 1 ≤
I.H

2n+ 1 ≤ 2n+ 2 = 2 · (n+ 1)

□
(3) ∀n > 3.2n < n!.

Proof. The induction base: We need to prove the claim for n = 4,
indeed 24 = 16 ≤ 24 = 4!.
The induction hypothesis: Suppose that for a general n > 3, 2n <
n!.
The induction step: We need to prove that 2n+1 < (n+1)!. Indeed,

2n+1 = 2n · 2 ≤
I.H.

n! · 2 ≤
Since n>3

n! · (n+ 1) =
Recursive def

(n+ 1)!

□
(4) A general term for an arithmetic sequence. Suppose that an = an−1+d

is an arithmetic sequence. Then for every n ∈ N, an = a0 + d · n.
(homework: geometric sequence and sum of squares)
Proof. The induction base: For n = 0, we need to prove that a0 =
a0 + d · 0. This is clearly true.

16We can start the induction from a natural number greater than 0, this only changes
the base of the induction.
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The induction hypothesis: Suppose that for a general n, an = a0 +
dn.
The induction step: We need to prove that an+1 = a0 + d(n + 1).
Using the recursive definition of an, we have that:

an+1 = an + d =
I.H.

a0 + dn+ d = a0 + d(n+ 1)

□
(5) The partial sum of a arithmetic sequence. Suppose that an = an−1 + d

is an arithmetic sequence. Then for every N ∈ N,
N∑
i=0

ai = a0 + a1 + ...+ aN = (N + 1)(a0 + dN/2)

Proof. The induction base: We need to prove the formula for N = 0,
a0 = (0 + 1)(a0 + d · 0/2). This is clear.
The induction hypothesis: Suppose that the formula is true for a
general N , namely, we assume that truth of the equality

N∑
i=0

ai = a0 + a1 + ...+ aN = (N + 1)(a0 + dN/2)

The induction step:

N+1∑
i=0

ai = a0 + ...+ aN︸ ︷︷ ︸∑N
i=0 ai

+ aN+1 =
I.H.

(N +1)(a0+ dN/2)+ aN+1 =
Previous exercise

= (N +1)(a0 + dN/2) + a0 + d(N +1) = (N +2)an + (N +1)d(N/2+ 1) =

(N + 2)a0 + (N + 2)d(N + 1)/2 = (N + 2)(a0 + d(N + 1)/2)

□
For example, consider the arithmetic sequence an = n (here a0 = 0 and
d = 1) then we can apply the formula to conclude that

0 + 1 + 2 + ...+ 1000 = 1001(0 + 1 · 1000/2) = 1001 · 500 = 500, 500

(6) Prove that for any given n lines in the plane, no two are parallel, and

no three intersect at a single point17, have exactly n(n−1)
2 points of

intersection. (homework: the sum of angles of a polygon)
Proof. Let dn denote the number of intersection points of n non-concurrent
lines. We firs construct a recursive formula for dn. Clearly, d1 = 0 (and
d2 = 1, d3 = 3). Given n non-concurrent lines, they have dn intersec-
tion points. Adjoining a new line to them, it intersect each of the lines
exactly once (since it is not parallel to any of them) and the points of
intersection are different since no three lines intersect at a point. Hence

dn+1 = dn︸︷︷︸
The intesection points of the old lines

+ n︸︷︷︸
the intersections with the new line

17Such lines are called non-concurrent lines.
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Now let us prove by induction that dn = n(n−1)
2 .

The induction base: Indeed d1 = 0 = 0·(−1)
2 .

The induction hypothesis: Suppose that for a general n, dn =
n(n−1)

2 .

The induction step: We need to prove that dn = (n+1)n
2 . We use the

recursive description of dn+1,

dn+1 = dn + n =
n(n− 1)

2
+ n = n(

n− 1

2
+ 1) = n

n− 1 + 2

2
=

n(n+ 1)

2
□

(7) Define the recursive sequence a0 = ∅, an+1 = P (an). Then for every
n ∈ N, an ⊆ an+1.
Proof. The induction base: For n = 0 we need to prove that a0 ⊆ a1.
By definition a0 = ∅, and we have already prove that the empty set is
included in every set. In particular a0 = ∅ ⊆ a1.
The induction hypothesis: Suppose that for a general n, an ⊆ an+1.
The induction step: We need to prove that an+1 ⊆ an+2. This is
an inclusion proof, so let X ∈ an+1. We need to prove that X ∈ an+2.
By definition, an+1 = P (an), and by the assumption, X ∈ P (an). By
definition of the power set, X ⊆ an. By the induction hypothesis,
an ⊆ an+1. We already saw that if a ⊆ b ∧ b ⊆ c then a ⊆ c. It our
case, we conclude that X ⊆ an+1. Again by the definition of the power
set, X ∈ P (an+1) = an+2, as wanted.

□


