MATH 504 PROBLEM SET 2

TOM BENHAMOU, UNIVERSITY OF ILLINOIS AT CHICAGO

(1) Prove the lemma from class: Let $\langle A, R \rangle$ be a well-ordering and $X \subseteq A$. Then X is an initial segment iff X = A or $\exists x \in A.A_R[x] = X$. Hint: define $x = \min A \setminus X$

(2) Show that $\alpha < \beta$ implies that $\gamma + \alpha < \gamma + \beta$ and $\alpha + \gamma \le \beta + \gamma$. Give an example to show that the " \le " cannot be replaced by "<". Also, show:

$$\alpha \leq \beta \rightarrow \exists! \delta (\alpha + \delta = \beta).$$

(3) Show that if $\gamma > 0$, then $\alpha < \beta$ implies that $\gamma \cdot \alpha < \gamma \cdot \beta$ and $\alpha \cdot \gamma \leq \beta \cdot \gamma$. Give an example to show that the " \leq " cannot be replaced by "<". Also, show:

$$(\alpha \leq \beta \land \alpha > 0) \to \exists ! \delta, \xi (\xi < \alpha \land \alpha \cdot \delta + \xi = \beta).$$

(4) Verify that ordinal exponentiation satisfies:

$$\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$$
 and $(\alpha^{\beta})^{\gamma} = \alpha^{\beta\cdot\gamma}$.

- (5) Let α be a limit ordinal. Show that the following are equivalent:
 - (a) $\forall \beta, \gamma < \alpha(\beta + \gamma < \alpha)$.
 - (b) $\forall \beta < \alpha (\beta + \alpha = \alpha)$.
 - (c) $\forall X \subset \alpha$ (type(X) = $\alpha \lor$ type($\alpha \land X$) = α).
 - (d) $\exists \delta (\alpha = \omega^{\delta})$ (ordinal exponentiation).

Such α are called *indecomposable*.

(6) Prove the Cantor Normal Form Theorem for ordinals: Every non-0 ordinal α may be represented in the form:

$$\alpha = \omega^{\beta_1} \cdot l_1 + \cdots + \omega^{\beta_n} \cdot l_n,$$

where $1 \le n < \omega, \alpha \ge \beta_1 > \cdots > \beta_n$, and $1 \le l_i < \omega$ for i = 1, ..., n. Furthermore, this representation is unique. α is called an *epsilon number* iff $n = 1, l_1 = 1$, and $\beta_1 = \alpha$ (i.e., $\omega^{\alpha} = \alpha$). Show that if κ is an uncountable cardinal, then κ is an epsilon number and there are κ epsilon numbers below κ ; in particular, the first epsilon number, called ϵ_0 , is countable. All exponentiation is ordinal exponentiation in this exercise.

(7) a.
$$\alpha + \beta = \text{type}(\alpha \times \{0\} \cup \beta \times \{1\}, R)$$
, where
 $R = \{\langle\langle \xi, 0 \rangle, \langle \eta, 0 \rangle \rangle : \xi < \eta < \alpha\} \cup \{\langle\langle \xi, 1 \rangle, \langle \eta, 1 \rangle \rangle : \xi < \eta < \beta\} \cup [(\alpha \times \{0\}) \times (\beta \times \{1\})].$
(7) b. $\alpha \cdot \beta = \text{type}(\beta \times \alpha, R)$, where R is lexicographic order
on $\beta \times \alpha$:

$$\langle \xi, \eta \rangle R \langle \xi', \eta' \rangle \leftrightarrow (\xi < \xi' \lor (\xi = \xi' \land \eta < \eta')).$$

(7) Prove that the following definition of ordinal exponentiation is equivalent to Definition 9.5: Let

$$F(\alpha,\beta) = \{ f \in {}^{\beta}\alpha \colon |\{\xi \colon f(\xi) \neq 0\}| < \omega \}.$$

If $f, g \in F(\alpha, \beta)$ and $f \neq g$, say $f \lhd g$ iff $f(\xi) < g(\xi)$, where ξ is the largest ordinal such that $f(\xi) \neq g(\xi)$. Then $\alpha^{\beta} = \text{type}(\langle F(\alpha, \beta), \lhd \rangle)$.

(8) Prove that if α is an ordinal and $x \in \alpha$ then x is an ordinal and $x = \alpha_{\in}[x]$.

(9) Prove the following:

- (1) If α is an ordinal then $\emptyset \leq \alpha$.
- (2) If α is an ordinal then $\alpha + 1 := \alpha \cup \{\alpha\}$ is an ordinal and is the successor of α in the sense that it is the minimal ordinal greater than α .
- (3) If A is a set of ordinals without a greatest element then $\sup A := \bigcup A$ is an ordinal strictly greater then all the ordinals in A.