MATH 504 PROBLEM SET 3

TOM BENHAMOU, UNIVERSITY OF ILLINOIS AT CHICAGO

- Problem 1. Prove that there is a n ordinal α such that $\omega^{\alpha} = \omega$ (here ω^{α} stands for ordinal exponentiation) and prove that the minimal such ordinal is countable.
- Problem 2. Prove Using Zorn's lemma that for every infinite set $A, A \times A \sim A$. [Hint: consider $\Sigma = \{B \subseteq A \mid B \times B \sim B\}$ ordered by inclusion. Prove that this order satisfies the assumptions of Zorn's lemma and let B^* be maximal. Then $B^* \times B^* \sim B^*$. Split into cases: $A \setminus B^* \preceq B^*$, in this case prove that $A \sim B^*$ and conclude that $A \times A \sim A$. In the second case, choose $X \subseteq A \setminus B^*$ of cardinality B^* and prove that $(B^* \cup X) \times (B^* \cup X) \sim B^* \cup X$.]

Problem 3. For an ordinals α , consider the following order on $\alpha \times \alpha$:

$$\langle x, y \rangle \prec \langle a, b \rangle \Leftrightarrow (\max(x, y) < \max(a, b)) \lor (\max(x, y) = \max(a, b) \land (x, y) <_{Lex} (a, b)$$

you already prove that this is a well order.

- (a) Prove by transfinite induction on α that $otp(\aleph_{\alpha} \times \aleph_{\alpha}, \prec) = \aleph_{\alpha}$. [For limit cardinals use $\aleph_{\delta} \times \aleph_{\delta} = \bigcup_{\alpha < \delta} \aleph_{\alpha} \times \aleph_{\alpha}$ and at successor step $\aleph_{\alpha+1}$, not that $\gamma := otp(\aleph_{\alpha+1} \times \aleph_{\alpha+1}, \prec) \ge \aleph_{\alpha}$ and assume toward a contradiction that $\gamma > \aleph_{\alpha+1}$. there is a pair $\langle \beta, \rho \rangle \in \aleph_{\alpha+1} \times \aleph_{\alpha+1}$ such that $otp(\beta \times \gamma, \prec) = \aleph_{\alpha+1}$, then pick $\delta = \max(\beta, \gamma)$ and prove using the induction hypothesis that $\aleph_{\alpha+1} \le |\delta \times \delta| = \aleph_{\alpha}$, and derive a contradiction.]
- (b) Conclude using the axiom of choice again that for every set S, $A \times A \sim A$.
- Problem 4. Prove that $\mathbb{R} \times \mathbb{R} \sim \mathbb{R}$ [Hint: Use the fact that $\mathbb{R} \sim \mathbb{N}\{0,1\}$ and construct a function witnessing $\mathbb{N}\{0,1\} \times \mathbb{N}\{0,1\} \sim \mathbb{N}\{0,1\}$]
- Problem 5. Let $r_1, r_2 \in \mathbb{R}$ (be Dedekind cuts) define

$$r_1 + r_2 = \{x + y \mid x \in r_1, y \in r_2\}$$

Prove that

- (a) $r_1 + r_2$ is a Dedekind cut.
- (b) r + 0 = r.

(c) $(r_1 + r_2) + r_3 = r_1 + (r_2 + r_3).$

- Problem 6. Prove that if $\langle A, R \rangle$ is a separable order (namely a total order with a countable dense subset) then $|A| \leq 2^{\aleph_0}$.
- Problem 7. Prove that for every $a, b \in \mathbb{Q}$, if a < b then $\mathbb{Q} \cap (a, b)$ is order isomorphic to \mathbb{Q} . [Hint: Cantor's theorem.]

Problem 8. Prove that for every $\alpha < \omega_1$ there is $X_{\alpha} \subseteq \mathbb{Q}$ such that $otp(X_{\alpha}, <) = \alpha$. [Hint: Prove it by transfinite induction, and the previous exercise.]