MATH 504 PROBLEM SET 3

TOM BENHAMOU, UNIVERSITY OF ILLINOIS AT CHICAGO

Problem 1. Prove that there is a n ordinal α such that $\omega^{\alpha}=\omega$ (here ω^{α} stands for ordinal exponentiation) and prove that the minimal such ordinal is countable.
Problem 2. Prove Using Zorn's lemma that for every infinite set $A, A \times A \sim A$. [Hint: consider $\Sigma=\{B \subseteq A \mid B \times B \sim B\}$ ordered by inclusion. Prove that this order satisfies the assumptions of Zorn's lemma and let B^{*} be maximal. Then $B^{*} \times B^{*} \sim B^{*}$. Split into cases: $A \backslash B^{*} \precsim$ B^{*}, in this case prove that $A \sim B^{*}$ and conclude that $A \times A \sim A$. In the second case, choose $X \subseteq A \backslash B^{*}$ of cardinality B^{*} and prove that $\left(B^{*} \cup X\right) \times\left(B^{*} \cup X\right) \sim B^{*} \cup X$.]

Problem 3. For an ordinals α, consider the following order on $\alpha \times \alpha$:

$$
\langle x, y\rangle \prec\langle a, b\rangle \Leftrightarrow(\max (x, y)<\max (a, b)) \vee\left(\max (x, y)=\max (a, b) \wedge(x, y)<_{\text {Lex }}(a, b)\right.
$$

you already prove that this is a well order.
(a) Prove by transfinite induction on α that $\operatorname{otp}\left(\aleph_{\alpha} \times \aleph_{\alpha}, \prec\right)=$ \aleph_{α}. [For limit cardinals use $\aleph_{\delta} \times \aleph_{\delta}=\cup_{\alpha<\delta} \aleph_{\alpha} \times \aleph_{\alpha}$ and at successor step $\aleph_{\alpha+1}$, not that $\gamma:=\operatorname{otp}\left(\aleph_{\alpha+1} \times \aleph_{\alpha+1}, \prec\right) \geq \aleph_{\alpha}$ and assume toward a contradiction that $\gamma>\aleph_{\alpha+1}$. there is a pair $\langle\beta, \rho\rangle \in \aleph_{\alpha+1} \times \aleph_{\alpha+1}$ such that $\operatorname{otp}(\beta \times \gamma, \prec)=\aleph_{\alpha+1}$, then pick $\delta=\max (\beta, \gamma)$ and prove using the induction hypothesis that $\aleph_{\alpha+1} \leq|\delta \times \delta|=\aleph_{\alpha}$, and derive a contradiction.]
(b) Conclude using the axiom of choice again that for every set S, $A \times A \sim A$.
Problem 4. Prove that $\mathbb{R} \times \mathbb{R} \sim \mathbb{R}$ [Hint: Use the fact that $\mathbb{R} \sim{ }^{\mathbb{N}}\{0,1\}$ and construct a function witnessing $\left.{ }^{\mathbb{N}}\{0,1\} \times{ }^{\mathbb{N}}\{0,1\} \sim{ }^{\mathbb{N}}\{0,1\}\right]$
Problem 5. Let $r_{1}, r_{2} \in \mathbb{R}$ (be Dedekind cuts) define

$$
r_{1}+r_{2}=\left\{x+y \mid x \in r_{1}, y \in r_{2}\right\}
$$

Prove that
(a) $r_{1}+r_{2}$ is a Dedekind cut.
(b) $r+0=r$.
(c) $\left(r_{1}+r_{2}\right)+r_{3}=r_{1}+\left(r_{2}+r_{3}\right)$.

Problem 6. Prove that if $\langle A, R\rangle$ is a separable order (namely a total order with a countable dense subset) then $|A| \leq 2^{\aleph_{0}}$.
Problem 7. Prove that for every $a, b \in \mathbb{Q}$, if $a<b$ then $\mathbb{Q} \cap(a, b)$ is order isomorphic to \mathbb{Q}. [Hint: Cantor's theorem.]

Problem 8. Prove that for every $\alpha<\omega_{1}$ there is $X_{\alpha} \subseteq \mathbb{Q}$ such that otp $\left(X_{\alpha},<\right.$ $)=\alpha$. [Hint: Prove it by transfinite induction, and the previous exercise.]

