MATH 504 PROBLEM SET 4

TOM BENHAMOU, UNIVERSITY OF ILLINOIS AT CHICAGO

Problem 1. Prove that $c f\left(2^{<\kappa}\right) \geq c f(\kappa)$ and prove that under $G C H, c f\left(2^{<\kappa}\right)=$ $c f(\kappa)$.
Problem 2. Prove Hausdorff's formula:

$$
\forall \alpha, \beta, \aleph_{\alpha+1}^{\aleph_{\beta}}=\aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1}
$$

Problem 3. Define β_{α} by induction on α :

$$
\beth_{0}=\aleph_{0}, \beth_{\alpha+1}=2^{\beth_{\alpha}}
$$

and for limit δ,

$$
\beth_{\delta}=\sup _{\alpha<\delta} \beth_{\delta}
$$

(a) Prove that $G C H$ is equivalent to the statement $\forall \alpha . \aleph_{\alpha}=\beth_{\alpha}$.
(b) Prove that α is weakly inaccessible iff α is regular and

$$
\forall \beta<\alpha . \aleph_{\beta}<\alpha
$$

(c) Prove that α is strongly inaccessible iff α is regular and

$$
\forall \beta<\alpha . \beth_{\beta}<\alpha
$$

(d) Conclude that under $G C H$ weakly and strongly inaccessible coincide.
Problem 4. Suppose that $\left\langle\kappa_{i} \mid i<\lambda\right\rangle$ is a sequence of cardinals. Define:

$$
\begin{gathered}
\sum_{i<\lambda} \kappa_{i}=\left|\biguplus_{i<\lambda}\{i\} \times \kappa_{i}\right| \\
\prod_{i<\lambda} \kappa_{i}=\left\{f \in^{\lambda}\left(\sup _{i<\lambda} \kappa_{i}\right) \mid \forall i<\lambda . f(i)<\kappa_{i}\right\}
\end{gathered}
$$

Denote by $\kappa=\sup _{i<\lambda} \kappa_{i}$.
(a) Prove that $\sum_{i<\lambda} \kappa_{i}=\lambda \cdot \kappa$.[Hint: Prove a double inequality.]
(b) $\prod_{i<\lambda} \kappa_{i}=(\kappa)^{\lambda}$ [Hint: One direction is easy. For the other direction, split $\lambda=\uplus_{i<\lambda} A_{i}$ where $\left|A_{i}\right|=\lambda$ (just since $|\lambda \times \lambda|=$ $|\lambda|)$ and prove: $\left.\prod_{i<\lambda} \kappa_{i}=\prod_{i<\lambda}\left(\prod_{j \in A_{i}} \kappa_{j}\right) \geq \prod_{i<\lambda} \kappa=\kappa^{\lambda}\right]$
(c) Prove that $\tau^{\sum_{i<\lambda} \kappa_{i}}=\prod_{i<\lambda} \tau^{\kappa_{i}}$.
(d) Prove the following variation of König's Theorem: If for every $i \in I, \kappa_{i}<\lambda_{i}$ then

$$
\sum_{i \in I} \kappa_{i}<\prod_{i \in I} \lambda_{i}
$$

[Hint: Suppose that there is an onto function $F: \uplus_{i \in I}\{i\} \times \kappa_{i} \rightarrow$ $\prod_{i \in I} \lambda_{i}$, and let $Z_{i}=F\left[\{i\} \times \kappa_{i}\right]$, now use $\left|Z_{i}\right| \leq \kappa_{i}<\lambda_{i}$ to "diagonalize", i.e. find a function $g \in \prod_{i \in I} Z_{i}$ such that for every $i \in I$ and every $f \in Z_{i}, g(i) \neq f(i)$. Using g derive the usual contradiction.]
(e) Conclude that for every cardinal $\kappa, 2^{\kappa}>\kappa$. [Hint: $1+1+1+$ $1 \ldots+1<2 \cdot 2 \cdot 2 \ldots \cdot 2$.
(f) Conclude our version of König's lemma that if $\lambda \geq c f(\kappa)$ then $\kappa^{\lambda}>\kappa$.
Problem 5. Prove that the following sets are clubs at κ :
(a) $\left\{\omega^{\alpha} \mid \alpha<\kappa\right\}$ (here ω^{α} is computed using ordinal exponentiation).
(b) $c l(A)$ for an unbounded set A.
(c) For a limit cardinal κ (of uncountable cofinality), $\{\alpha<\kappa \mid$ α is a cardinal $\}$.
(d) If κ is strongly inaccessible then $\{\alpha<\kappa \mid \alpha$ is a strong limit cardinal $\}$ is a club.
(e) Prove or disprove: If A is not a club and B is not a club then $A \cap B$ is not a club.
(f) Prove or disprove: If A is disjoint to a club and B is disjoint to a club then $A \cup B$ is disjoint to a club
Problem 6. Let κ be a regular cardinal and $f: \kappa^{n} \rightarrow \kappa$ be any n-ary function. Denote by

$$
C_{f}=\left\{\alpha<\kappa \mid f^{\prime \prime} \alpha^{n} \subseteq \alpha\right\}
$$

where $\kappa^{n}=\underbrace{\kappa \times \kappa \times \ldots \times \kappa}_{n \text {-times }}$.
(a) Prove that C_{f} is a club at κ.
(b) Prove that if C is a club at κ then there is $f: \kappa \rightarrow \kappa$ such that $C_{f} \subseteq C$ [Hint: Let $f: \kappa \rightarrow C$ be an order isomorphism (prove first that $\operatorname{otp}(C,<)=\kappa)$ then prove that $C_{f} \subseteq C$.]

