MATH 504 PROBLEM SET 5

TOM BENHAMOU, UNIVERSITY OF ILLINOIS AT CHICAGO

- Problem 1. Let S be a stationary set in a regular cardinal λ . Show that exactly one of the following holds:
 - (a) There is a stationary set $S' \subseteq S$ such that for every $\alpha \in S'$, α is regular.
 - (b) There is a stationary set $S' \subseteq S$ and $mu < \lambda$ such that for every $\alpha \in S$, $cf(\alpha) = \mu$.

Moreover prove that in case (1), $\{\alpha \in S' \mid S \cap \alpha \text{ is not stationary in } \alpha\}$ is stationary. [Hint: Let C be a club, consider $\min(S \cap \lim(C))$.]

- Problem 2. A cardinal κ is called a *Mahlo Cardinal* is $\{\alpha < \kappa \mid \alpha \text{ is regular}\}$ is stationary in κ .
 - (a) Prove that if κ is Mahlo, then $\{\alpha < \kappa \mid \alpha \text{ is a strongly inaccessible cardinal}\}$ is a stationary.
 - (b) Conclude that if κ is Mahlo then κ is the κ th-inaccessible.
 - (c) Conclude that the first inaccessible is not Mahlo.
- Problem 3. Prove the other direction of Födor's Lemma: If $A \subseteq \kappa$ is a set such that for every regressive function $f: A\kappa$ there is an unbounded $B \subseteq A$ such that f | B is constant, then A is stationary [Hint: Assume toward a contradiction that C is a club disjoint from A and define $f: A \to \kappa$ by $f(\alpha) = \max(\alpha \cap C)$, this is a regressive function!]
- Problem 4. Prove that if $X, Y \in V_{\alpha}$, then:
 - (a) $X \cap Y, X \cup \alpha, X \setminus \alpha, X \Delta Y \in V_{\alpha}$ (Since the sup is taken over less elements so $Rank(X \cap Y), \dots \leq Rank(X)$), and in general, if $Z \subseteq X$ then $Rank(Z) \leq Rank(X)$.
 - (b) $P(X) \in V_{\alpha+1}$ (Since $Rank(P(X)) = sup(Rank(Y) + 1 | Y \subseteq X) = \alpha + 1$.
 - (c) $X \times Y \in V_{\alpha+2}$. (Since for every $x \in X, y \in Y$, $Rank(\langle x, y \rangle) \leq \alpha$, then $X \times Y \subseteq V_{\alpha+1}$ and therefore $X \times Y \in V_{\alpha+2}$.
 - (d) If E is a relation on X, then $E \in V_{\alpha+2}$ (Since $E \subseteq X \times Y$).
 - (e) If E is an equivalence relation, for $a \in X$, $[a]_E \in V_{\alpha}$.
 - (f) Also $X/E \in V_{\alpha+1}$.

Problem 5. Let M be any class, prove the following:

- (a) $M \models Ax0$ iff $M \neq 0$.
- (b) If M is a transitive class, then $M \models$ extensionality.
- (c) If $\forall x, y \in M \exists z \in M. \{x, y\} \subseteq z$ then $M \models$ pairing.
- (d) If $\forall x \in M \exists y \in M . \cup x \subseteq y$, then $M \models$ union.

[Recall that $M \models \phi$ is the statement ϕ^M .]

- Problem 6. Suppose that M is a class such that for every x, if $x \subseteq M$ then $x \in M$. Prove that $WF \subseteq M$.[Hint, prove by induction that $V_{\alpha} \subseteq M$].
- Problem 7. Write the relativization of the Power set Axiom, the Axiom of Choice, the Axiom of Foundation, and the Axiom of infinity to a class $M = M_{\phi}$.