MATH 504 PROBLEM SET 7

TOM BENHAMOU, UNIVERSITY OF ILLINOIS AT CHICAGO

Let M be a countable transitive model of enough ZFC.

- Problem 1. Let $\mathbb{P} \in M$ be a forcing notion. a condition $p \in \mathbb{P}$ is called an atom ant two extension $q, r \leq_{\mathbb{P}} p$ are compatible, namely $\neg(p \perp q)$. Show that if p is an atom then there is an M-generic filter $G \in M$ such that $p \in G$.
- Problem 2. Show that if $\mathbb{P} \in M$ is atomless (namely splitting) then there are 2^{ω} -many distinct *M*-generic filters.
- Problem 3. Prive that there is a bijection between (not necessarily generic) filters $G \subseteq Add(\omega, 1)$ and (partial) functions $f: \omega \to 2$.
- Problem 4. Prove that if $S \subseteq \omega_1$ is a stationary set then S is fat, namely, for every $\alpha < \omega_1$ there is a closed $A \subseteq S$ such that $\operatorname{otp}(A) = \alpha$ [Hint: by induction on α , the only problematic case is successor of a limit δ . In this case, set $C = \{\nu < \omega_1 \mid \exists A \subseteq S \text{ closed } \wedge \operatorname{ot}(A) = \alpha \wedge \sup(A) = \nu\}$, prove that C is a club and take $\nu \in C \cap S$.]
- Problem 5. Let $\mathbb{P}(S)$ be a forcing for shooting a club through the stationary set S. Let G be an M-generic filter. Prove that $C := \cup G$ is a club at ω_1 and $C \subseteq S$. [Hint: use the previous problem to show that C is unbounded.]
- Problem 5. Prove that the following are equivalent for any filter $G \subseteq \mathbb{P} \in M$:
 - G is M-generic.
 - For any dense subset $D \subseteq \mathbb{P}$ such that $D \in M$ is open (namely if $p \in D$ and $q \leq_{\mathbb{P}p}$ then $q \in D$), $D \cap G \neq \emptyset$.
 - G intersect every set $D \subseteq \mathbb{P}$, $D \in M$ which is pre-dense (namely if $\{q \in \mathbb{P} \mid \exists p \in D.q \leq_P p\}$ is a dense set)
 - G intersect every $\mathcal{A} \subseteq \mathbb{P}$, $\mathcal{A} \in M$ which is a maximal antichain (namely, for every distinct $p, q \in \mathcal{A}$, $p \perp q$ and for every $r \in \mathbb{P}$ there is $p \in \mathcal{A}$ such that $\neg(r \perp p)$)
- Problem 6. Let \mathbb{P} be a forcing notion and let $D \subseteq \mathbb{P}$ be dense such that $D \in M$. We consider $D \cup \{1_{\mathbb{P}}\}$ as a forcing notion by restricting the order of $\leq_{\mathbb{P}}$ to D (we abuse notation and keep denoting it by \leq_P .
 - (a) Prove that if $G \subseteq \mathbb{P}$ is *M*-generic then $G \cap D$ is *M*-generic for $\langle D, \leq_{\mathbb{P}} \rangle$.
 - (b) Prove that if $H \subseteq D$ is *M*-generic then $G := \{q \in \mathbb{P} \mid \exists p \in H.q \geq_{\mathbb{P}p}\}$ is *M*-generic for \mathbb{P} .
- Problem 7. We say that $\mathbb{P}_1, \mathbb{P}_2$ are isomorphic if there is $\pi : \mathbb{P}_1 \to \mathbb{P}_2$ which is order preserving, 1-1 and $Im(\pi)$ is dense in \mathbb{P}_2 . Prove that if

 $\mathbb{P}_1 \simeq \mathbb{P}_2$ then for every *M*-generic filter *G* for \mathbb{P}_1 , $\pi_*(G) := \{q \in \mathbb{P}_2 \mid \exists p \in \mathbb{P}_1.q \geq_{\mathbb{P}_2\pi(p)}\}$ is *M*-generic for \mathbb{P}_2 .

Problem 8. Recall that $\widetilde{Add}(\omega, \omega_2) := \{f : \omega_2 \times \omega \to 2 \mid |f| < \omega\}$. Let G be *M*-generic for $Add(\omega, \omega_2)$.

(a) Prove that for every $\alpha < \omega_2, \cup G$ is a function $\cup G : \omega_2 \times \omega \to 2$.

(b) Define $g_{\alpha} : \omega \to 2$ by $g_{\alpha}(b) = (\cup G)(\alpha, n)$. Prove that if $\alpha \neq \beta$ then $g_{\alpha} \neq g_{\beta}$.

Remark 0.1. This is the forcing we are going to use to prove the consistency of $ZFC + \neg CH$. You can imagine that if M[G] is the ZFC model which if produces from M and G then in M[G] we will have ω_2 -many different function from ω to 2 and therefore $2^{\omega} \geq \omega_2$. However, there is another delicate point, as cardinals are not absolute notion even for transitive models. So all we get so far is that in M[G], $2^{\omega} \geq (\omega_2)^M$. The next crucial step would be to prove that $(\omega_2)^M = \omega_2$ and then $M[G] \models \neg CH$.