MATH 504 PROBLEM SET 8

TOM BENHAMOU, UNIVERSITY OF ILLINOIS AT CHICAGO

Problem 1. The following enumeration refers to the enumeration in the exercises section of chapter VII in Kunen's book "Set Theory: An Introduction to Independence Proofs":

(A5), (A7), (A8), (B5), (B6), (B13)

Problem 2. Suppose that P, Q are two posets in the ground model M and π : $P \to Q$ is a projection, i.e.

(a) π is order-preserving: $p' \leq p \rightarrow \pi(p') \leq \pi(p)$.

(b) for all $p \in P$ and $q \leq \pi(p)$, there is $p' \leq p$, such that $\pi(p') \leq q$. Suppose that G is a P-generic filer over V. Show that

$$H := \{q \mid \exists p \in G, \pi(p) \le q\}$$

is a Q-generic filter over V.

- Problem 3. In several arguments, we will reach the conclusion that some condition $p \in \mathbb{P}$ forces some contradiction. Prove that if ϕ is a contradiction then there is no p such that $p \Vdash \phi$. [Remark: this is a one-line proof.]
 - (1) Let $\mathbb{P} = Add(\omega, 1)$ be the Cohen forcing. Let G be M-generic for \mathbb{P} . Show that for any $A \in M[G]$, $A \subseteq (\omega_1)^M$, there is $B \in M$, $|B| = \omega_1$ such that either BA or $B \subseteq \omega_1 \setminus A$.

[Hint: Let A be a name for A. In M, let

$$D = \{ p \in \mathbb{P} \mid \exists B, |B| = \omega_1 \land [p \Vdash \hat{B} \subseteq \underline{A}] \lor [p \Vdash \hat{B} \subseteq \hat{\omega}_1 \setminus \underline{A}] \}$$

It suffices to prove that D is dense. Let $p \in Add(\omega, 1)$ be any condition, for each $\alpha < \omega_1$, find $p_\alpha \leq p$ such that $p_\alpha || \hat{\alpha} \in A$. Use the pigeonhole principle to find now a single $p^* \leq p$ which decides $\hat{\alpha} \in A$ for ω_1 -many α 's.]