MATH 504 PROBLEM SET 8

TOM BENHAMOU, UNIVERSITY OF ILLINOIS AT CHICAGO

Problem 1. The following enumeration refers to the enumeration in the exercises section of chapter VII in Kunen's book "Set Theory: An Introduction to Independence Proofs":
$(A 5),(A 7),(A 8),(B 5),(B 6),(B 13)$
Problem 2. Suppose that P, Q are two posets in the ground model M and π : $P \rightarrow Q$ is a projection, i.e.
(a) π is order-preserving: $p^{\prime} \leq p \rightarrow \pi\left(p^{\prime}\right) \leq \pi(p)$.
(b) for all $p \in P$ and $q \leq \pi(p)$, there is $p^{\prime} \leq p$, such that $\pi\left(p^{\prime}\right) \leq q$. Suppose that G is a P-generic filer over V. Show that

$$
H:=\{q \mid \exists p \in G, \pi(p) \leq q\}
$$

is a Q-generic filter over V.
Problem 3. In several arguments, we will reach the conclusion that some condition $p \in \mathbb{P}$ forces some contradiction. Prove that if ϕ is a contradiction then there is no p such that $p \Vdash \phi$. [Remark: this is a one-line proof.]
(1) Let $\mathbb{P}=\operatorname{Add}(\omega, 1)$ be the Cohen forcing. Let G be M-generic for \mathbb{P}. Show that for any $A \in M[G], A \subseteq\left(\omega_{1}\right)^{M}$, there is $B \in M,|B|=\omega_{1}$ such that either $B A$ or $B \subseteq \omega_{1} \backslash A$.
[Hint: Let $\underset{\sim}{A}$ be a name for A. In M, let
$D=\left\{p \in \mathbb{P}\left|\exists B,|B|=\omega_{1} \wedge[p \Vdash \hat{B} \subseteq \underset{\sim}{A}] \vee\left[p \Vdash \hat{B} \subseteq \hat{\omega}_{1} \backslash \underset{\sim}{A}\right]\right\}\right.$
It suffices to prove that D is dense. Let $p \in \operatorname{Add}(\omega, 1)$ be any condition, for each $\alpha<\omega_{1}$, find $p_{\alpha} \leq p$ such that $p_{\alpha} \| \hat{\alpha} \in \underset{\sim}{A}$. Use the pigeonhole principle to find now a single $p^{*} \leq p$ which decides $\hat{\alpha} \in \underset{\sim}{A}$ for ω_{1}-many α 's.]

