The Galvin property at successors of singulars

Tom Benhamou

Department of Mathematics Tel Aviv University

January 25, 2024

Benhamou, T.

Advances in Set Theory, August 2022

January 25, 2024 1 / 14

・ロト ・回ト・モート

Benhamou, T.

・ロト ・四ト ・ヨト ・ヨト

Galvin's Theorem

In a paper by Baumgartner, Hajnal and Maté [1], the following theorem due to F. Galvin was published:

・ロト ・日下・ ・ ヨト・

Theorem 1 (Galvin's Theorem)

イロト イヨト イヨト イ

Theorem 1 (Galvin's Theorem)

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every normal filter U over κ , and for any collection $\langle A_{\alpha} | \alpha < \kappa^+ \rangle \in [U]^{\kappa^+}$ consisting of κ^+ -many sets, there is a subcollection $\langle A_i | i \in I \rangle$, of size κ (i.e. $I \in [\kappa^+]^{\kappa}$) such that $\cap_{i \in I} A_i \in U$.

< D > < A > < B > <</p>

Theorem 1 (Galvin's Theorem)

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every normal filter U over κ , and for any collection $\langle A_{\alpha} \mid \alpha < \kappa^+ \rangle \in [U]^{\kappa^+}$ consisting of κ^+ -many sets, there is a subcollection $\langle A_i \mid i \in I \rangle$, of size κ (i.e. $I \in [\kappa^+]^{\kappa}$) such that $\cap_{i \in I} A_i \in U$.

In particular, if *GCH* holds and κ is a regular cardinal then from κ^+ -many clubs, one can always extract κ -many for which the intersection is a club.

Image: A image: A

Theorem 1 (Galvin's Theorem)

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every normal filter U over κ , and for any collection $\langle A_{\alpha} \mid \alpha < \kappa^+ \rangle \in [U]^{\kappa^+}$ consisting of κ^+ -many sets, there is a subcollection $\langle A_i \mid i \in I \rangle$, of size κ (i.e. $I \in [\kappa^+]^{\kappa}$) such that $\cap_{i \in I} A_i \in U$.

In particular, if *GCH* holds and κ is a regular cardinal then from κ^+ -many clubs, one can always extract κ -many for which the intersection is a club. Let us put this combinatorical/saturation property into a definition:

A D M A B M A B M

Theorem 1 (Galvin's Theorem)

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every normal filter U over κ , and for any collection $\langle A_{\alpha} \mid \alpha < \kappa^+ \rangle \in [U]^{\kappa^+}$ consisting of κ^+ -many sets, there is a subcollection $\langle A_i \mid i \in I \rangle$, of size κ (i.e. $I \in [\kappa^+]^{\kappa}$) such that $\cap_{i \in I} A_i \in U$.

In particular, if *GCH* holds and κ is a regular cardinal then from κ^+ -many clubs, one can always extract κ -many for which the intersection is a club. Let us put this combinatorical/saturation property into a definition:

Image: A math a math

Theorem 1 (Galvin's Theorem)

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every normal filter U over κ , and for any collection $\langle A_{\alpha} \mid \alpha < \kappa^+ \rangle \in [U]^{\kappa^+}$ consisting of κ^+ -many sets, there is a subcollection $\langle A_i \mid i \in I \rangle$, of size κ (i.e. $I \in [\kappa^+]^{\kappa}$) such that $\cap_{i \in I} A_i \in U$.

In particular, if *GCH* holds and κ is a regular cardinal then from κ^+ -many clubs, one can always extract κ -many for which the intersection is a club. Let us put this combinatorical/saturation property into a definition:

Definition 2 (Galvin's Property)

Let \mathcal{F} be a filter over κ and $\mu \leq \lambda$. Denote by $Gal(\mathcal{F}, \mu, \lambda)$ the following statement:

イロト イヨト イヨト イヨ

Theorem 1 (Galvin's Theorem)

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every normal filter U over κ , and for any collection $\langle A_{\alpha} \mid \alpha < \kappa^+ \rangle \in [U]^{\kappa^+}$ consisting of κ^+ -many sets, there is a subcollection $\langle A_i \mid i \in I \rangle$, of size κ (i.e. $I \in [\kappa^+]^{\kappa}$) such that $\cap_{i \in I} A_i \in U$.

In particular, if *GCH* holds and κ is a regular cardinal then from κ^+ -many clubs, one can always extract κ -many for which the intersection is a club. Let us put this combinatorical/saturation property into a definition:

Definition 2 (Galvin's Property)

Let \mathcal{F} be a filter over κ and $\mu \leq \lambda$. Denote by $Gal(\mathcal{F}, \mu, \lambda)$ the following statement:

$$\forall \langle A_i \mid i < \lambda \rangle \in [\mathcal{F}]^{\lambda} \exists I \in [\lambda]^{\mu} . \cap_{i \in I} A_i \in \mathcal{F}$$

イロト イヨト イヨト イヨ

Benhamou, T.

・ロト ・四ト ・ヨト ・ヨト

メロト メポト メヨト メヨト

Galvin's Theorem \equiv If $\kappa^{<\kappa} = \kappa$ the $Gal(U, \kappa, \kappa^+)$ holds for every normal U over κ .

メロト メロト メヨトメ

- Galvin's Theorem \equiv If $\kappa^{<\kappa} = \kappa$ the $Gal(U, \kappa, \kappa^+)$ holds for every normal U over κ .
- $\ \, {\rm \ensuremath{ {\rm o} }} \ \, {\rm If} \ \, \mu' \leq \mu \leq \lambda \leq \lambda' \ \, {\rm then} \ \, {\rm \textit{Gal}}(\mathcal F,\mu,\lambda) \Rightarrow {\rm \textit{Gal}}(\mathcal F,\mu',\lambda').$

メロト メタトメ ヨトメ

- Galvin's Theorem ≡ If κ^{<κ} = κ the Gal(U, κ, κ⁺) holds for every normal U over κ.
- $\ \, \hbox{ If } \mu' \leq \mu \leq \lambda \leq \lambda' \ \hbox{then } \ \, \emph{Gal}(\mathcal{F},\mu,\lambda) \Rightarrow \emph{Gal}(\mathcal{F},\mu',\lambda').$
- If (e.g.) \mathcal{F} contains all the final segments and $\mu = cf(\kappa)$ then $\neg Gal(\mathcal{F}, \mu, \mu)$.

Image: A math a math

- Galvin's Theorem ≡ If κ^{<κ} = κ the Gal(U, κ, κ⁺) holds for every normal U over κ.
- $early for all for all (\mathcal{F}, \mu, \lambda) \Rightarrow Gal (\mathcal{F}, \mu', \lambda').$
- If (e.g.) \mathcal{F} contains all the final segments and $\mu = cf(\kappa)$ then $\neg Gal(\mathcal{F}, \mu, \mu)$.
- \mathcal{F} is μ -complete \iff for every $\mu' < \mu$, $Gal(\mathcal{F}, \mu', \mu')$.

A D F A A F F A

- Galvin's Theorem ≡ If κ^{<κ} = κ the Gal(U, κ, κ⁺) holds for every normal U over κ.
- $early for all for all (\mathcal{F}, \mu, \lambda) \Rightarrow Gal (\mathcal{F}, \mu', \lambda').$
- If (e.g.) \mathcal{F} contains all the final segments and $\mu = cf(\kappa)$ then $\neg Gal(\mathcal{F}, \mu, \mu)$.
- \mathcal{F} is μ -complete \iff for every $\mu' < \mu$, $Gal(\mathcal{F}, \mu', \mu')$.

Most of the work presented here is the the results of two projects.

Image: A math a math

- Galvin's Theorem ≡ If κ^{<κ} = κ the Gal(U, κ, κ⁺) holds for every normal U over κ.
- $\label{eq:alpha} \mbox{ If } \mu' \leq \mu \leq \lambda \leq \lambda' \mbox{ then } \mbox{ Gal}(\mathcal{F},\mu,\lambda) \Rightarrow \mbox{ Gal}(\mathcal{F},\mu',\lambda').$
- If (e.g.) \mathcal{F} contains all the final segments and $\mu = cf(\kappa)$ then $\neg Gal(\mathcal{F}, \mu, \mu)$.
- \mathcal{F} is μ -complete \iff for every $\mu' < \mu$, $Gal(\mathcal{F}, \mu', \mu')$.

Most of the work presented here is the the results of two projects. The first is a joint project with **Alejandro Poveda** and **Shimon Garti** where we studied the Galvin property on filters and some applications of it, we were specially interested with the club filter.

Image: A matching of the second se

- Galvin's Theorem ≡ If κ^{<κ} = κ the Gal(U, κ, κ⁺) holds for every normal U over κ.
- $\label{eq:alpha} \mbox{ If } \mu' \leq \mu \leq \lambda \leq \lambda' \mbox{ then } \mbox{ Gal}(\mathcal{F},\mu,\lambda) \Rightarrow \mbox{ Gal}(\mathcal{F},\mu',\lambda').$
- If (e.g.) \mathcal{F} contains all the final segments and $\mu = cf(\kappa)$ then $\neg Gal(\mathcal{F}, \mu, \mu)$.
- \mathcal{F} is μ -complete \iff for every $\mu' < \mu$, $Gal(\mathcal{F}, \mu', \mu')$.

Most of the work presented here is the the results of two projects. The first is a joint project with **Alejandro Poveda** and **Shimon Garti** where we studied the Galvin property on filters and some applications of it, we were specially interested with the club filter. The second project, joint with **Moti Gitik**, where we were mostly focused on κ -complete ultrafilters.

イロト 不得 トイヨト イヨト

メロト メロト メヨトメ

• Density of old sets in Prikry extensions[7],[2]: Let U be a κ -complete ultrafilter and $\mu \leq \lambda$. Then the following are equivalent:

・ロト ・ 日 ・ ・ 回 ト ・

• Density of old sets in Prikry extensions[7],[2]: Let U be a κ -complete ultrafilter and $\mu \leq \lambda$. Then the following are equivalent:

• *Gal*(*U*, *μ*, *λ*)

・ロト ・日下・ ・ ヨト・

- Density of old sets in Prikry extensions[7],[2]: Let U be a κ -complete ultrafilter and $\mu \leq \lambda$. Then the following are equivalent:
 - $Gal(U, \mu, \lambda)$
 - Every set of ordinals $x \in V^{Prikry(U)}$ with $|x|^{V^{Prikry(U)}} = \lambda$ contains a set $y \in V$ with $|y|^V = \mu$.

Image: A math a math

- Density of old sets in Prikry extensions[7],[2]: Let U be a κ -complete ultrafilter and $\mu \leq \lambda$. Then the following are equivalent:
 - $Gal(U, \mu, \lambda)$
 - Every set of ordinals $x \in V^{Prikry(U)}$ with $|x|^{V^{Prikry(U)}} = \lambda$ contains a set $y \in V$ with $|y|^V = \mu$.
- Adding Cohens with Prikry[5]: Gal(U, κ, λ) implies that Prikry(U) does not add λ-many mutually generic Cohen functions to κ.

Image: A matching of the second se

- Density of old sets in Prikry extensions[7],[2]: Let U be a κ -complete ultrafilter and $\mu \leq \lambda$. Then the following are equivalent:
 - $Gal(U, \mu, \lambda)$
 - Every set of ordinals $x \in V^{Prikry(U)}$ with $|x|^{V^{Prikry(U)}} = \lambda$ contains a set $y \in V$ with $|y|^V = \mu$.
- Adding Cohens with Prikry[5]: Gal(U, κ, λ) implies that Prikry(U) does not add λ-many mutually generic Cohen functions to κ.
- Quotients of Prikry-type forcings[4]: Some generalization of Galvin's property (which hold for normal filters) is used to prove that quotients of a forcing \mathbb{P} are κ^+ -cc in $V^{\mathbb{P}}$, where \mathbb{P} can be the Magidor-Radin forcing, the Prikry forcing with P-points (and potentially other Prikry-type forcings).

イロト イヨト イヨト イヨト

- Density of old sets in Prikry extensions[7],[2]: Let U be a κ -complete ultrafilter and $\mu \leq \lambda$. Then the following are equivalent:
 - $Gal(U, \mu, \lambda)$
 - Every set of ordinals $x \in V^{Prikry(U)}$ with $|x|^{V^{Prikry(U)}} = \lambda$ contains a set $y \in V$ with $|y|^V = \mu$.
- Adding Cohens with Prikry[5]: Gal(U, κ, λ) implies that Prikry(U) does not add λ-many mutually generic Cohen functions to κ.
- Quotients of Prikry-type forcings[4]: Some generalization of Galvin's property (which hold for normal filters) is used to prove that quotients of a forcing \mathbb{P} are κ^+ -cc in $V^{\mathbb{P}}$, where \mathbb{P} can be the Magidor-Radin forcing, the Prikry forcing with P-points (and potentially other Prikry-type forcings).
- Partition relations[2]: For example, if there is a uniform ultrafilter such that $Gal(U, \kappa^+, \lambda)$ holds then $\binom{\lambda}{\kappa} \to \binom{\kappa^+}{\kappa}$.

< □ > < □ > < □ > < □ > < □ >

- Density of old sets in Prikry extensions[7],[2]: Let U be a κ -complete ultrafilter and $\mu \leq \lambda$. Then the following are equivalent:
 - $Gal(U, \mu, \lambda)$
 - Every set of ordinals $x \in V^{Prikry(U)}$ with $|x|^{V^{Prikry(U)}} = \lambda$ contains a set $y \in V$ with $|y|^V = \mu$.
- Adding Cohens with Prikry[5]: Gal(U, κ, λ) implies that Prikry(U) does not add λ-many mutually generic Cohen functions to κ.
- Quotients of Prikry-type forcings[4]: Some generalization of Galvin's property (which hold for normal filters) is used to prove that quotients of a forcing \mathbb{P} are κ^+ -cc in $V^{\mathbb{P}}$, where \mathbb{P} can be the Magidor-Radin forcing, the Prikry forcing with P-points (and potentially other Prikry-type forcings).
- **Partition relations**[2]: For example, if there is a uniform ultrafilter such that $Gal(U, \kappa^+, \lambda)$ holds then $\binom{\lambda}{\kappa} \to \binom{\kappa^+}{\kappa}$.
- Kurepa trees[3]: If U is a κ -complete ultrafilter, such that $Cub_{\kappa} \subseteq U$ which concentration on E_{μ}^{κ} for some $\mu < \kappa$, then there is no Slim S-Kurepa tree for every stationary $S \subseteq E_{\mu}^{\kappa}$.

< □ > < □ > < □ > < □ > < □ >

- Density of old sets in Prikry extensions[7],[2]: Let U be a κ -complete ultrafilter and $\mu \leq \lambda$. Then the following are equivalent:
 - $Gal(U, \mu, \lambda)$
 - Every set of ordinals $x \in V^{Prikry(U)}$ with $|x|^{V^{Prikry(U)}} = \lambda$ contains a set $y \in V$ with $|y|^V = \mu$.
- Adding Cohens with Prikry[5]: Gal(U, κ, λ) implies that Prikry(U) does not add λ-many mutually generic Cohen functions to κ.
- Quotients of Prikry-type forcings[4]: Some generalization of Galvin's property (which hold for normal filters) is used to prove that quotients of a forcing \mathbb{P} are κ^+ -cc in $V^{\mathbb{P}}$, where \mathbb{P} can be the Magidor-Radin forcing, the Prikry forcing with P-points (and potentially other Prikry-type forcings).
- **Partition relations**[2]: For example, if there is a uniform ultrafilter such that $Gal(U, \kappa^+, \lambda)$ holds then $\binom{\lambda}{\kappa} \to \binom{\kappa^+}{\kappa}$.
- Kurepa trees[3]: If U is a κ -complete ultrafilter, such that $Cub_{\kappa} \subseteq U$ which concentration on E_{μ}^{κ} for some $\mu < \kappa$, then there is no Slim S-Kurepa tree for every stationary $S \subseteq E_{\mu}^{\kappa}$.
- Some consistently new instances of $\lambda \to (\lambda, \omega + 1)$, relation to strong generating sequence of ultrafilters, and more...

<ロト <回ト < 回ト

We can either try to relax the assumption of Galvin's theorem $\kappa^{<\kappa} = \kappa$ or improve the consequent. Let us start with the latter,

We can either try to relax the assumption of Galvin's theorem $\kappa^{<\kappa} = \kappa$ or improve the consequent. Let us start with the latter,

Theorem 4

< D > < A > < B > <</p>

We can either try to relax the assumption of Galvin's theorem $\kappa^{<\kappa} = \kappa$ or improve the consequent. Let us start with the latter,

Theorem 4

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every filter U which is Rudin-Keisler equivalent to a finite product of P-point filters, $Gal(U, \kappa, \kappa^+)$ holds.

Image: A math a math

We can either try to relax the assumption of Galvin's theorem $\kappa^{<\kappa} = \kappa$ or improve the consequent. Let us start with the latter,

Theorem 4

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every filter U which is Rudin-Keisler equivalent to a finite product of P-point filters, $Gal(U, \kappa, \kappa^+)$ holds.

The proof of this theorem can be adapted to work for filters of the form:

Image: A math a math

We can either try to relax the assumption of Galvin's theorem $\kappa^{<\kappa} = \kappa$ or improve the consequent. Let us start with the latter,

Theorem 4

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every filter U which is Rudin-Keisler equivalent to a finite product of P-point filters, $Gal(U, \kappa, \kappa^+)$ holds.

The proof of this theorem can be adapted to work for filters of the form: $U - \lim_{\alpha} U_{\alpha}$,

Image: A image: A

We can either try to relax the assumption of Galvin's theorem $\kappa^{<\kappa} = \kappa$ or improve the consequent. Let us start with the latter,

Theorem 4

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every filter U which is Rudin-Keisler equivalent to a finite product of P-point filters, $Gal(U, \kappa, \kappa^+)$ holds.

The proof of this theorem can be adapted to work for filters of the form: $U - \lim_{\alpha} U_{\alpha}$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta}))$,

A D M A B M A B M

We can either try to relax the assumption of Galvin's theorem $\kappa^{<\kappa} = \kappa$ or improve the consequent. Let us start with the latter,

Theorem 4

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every filter U which is Rudin-Keisler equivalent to a finite product of P-point filters, $Gal(U, \kappa, \kappa^+)$ holds.

The proof of this theorem can be adapted to work for filters of the form: $U - \lim_{\alpha} U_{\alpha}$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta}))$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta} - \lim_{\gamma} U_{\alpha,\beta,\gamma}))$,

Image: A math a math

We can either try to relax the assumption of Galvin's theorem $\kappa^{<\kappa} = \kappa$ or improve the consequent. Let us start with the latter,

Theorem 4

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every filter U which is Rudin-Keisler equivalent to a finite product of P-point filters, $Gal(U, \kappa, \kappa^+)$ holds.

The proof of this theorem can be adapted to work for filters of the form: $U - \lim_{\alpha} U_{\alpha}$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta}))$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta} - \lim_{\gamma} U_{\alpha,\beta,\gamma}))$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta} - \lim_{\gamma} U_{\alpha,\beta,\gamma})...)$

イロト イヨト イヨト イ

We can either try to relax the assumption of Galvin's theorem $\kappa^{<\kappa} = \kappa$ or improve the consequent. Let us start with the latter,

Theorem 4

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every filter U which is Rudin-Keisler equivalent to a finite product of P-point filters, $Gal(U, \kappa, \kappa^+)$ holds.

The proof of this theorem can be adapted to work for filters of the form: $U - \lim_{\alpha} U_{\alpha}$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta}))$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta} - \lim_{\gamma} U_{\alpha,\beta,\gamma}))$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta} - \lim_{\gamma} U_{\alpha,\beta,\gamma})...)$

Corollary 5

< □ > < □ > < □ > < □ > < □ >

We can either try to relax the assumption of Galvin's theorem $\kappa^{<\kappa} = \kappa$ or improve the consequent. Let us start with the latter,

Theorem 4

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every filter U which is Rudin-Keisler equivalent to a finite product of P-point filters, $Gal(U, \kappa, \kappa^+)$ holds.

The proof of this theorem can be adapted to work for filters of the form: $U - \lim_{\alpha} U_{\alpha}$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta}))$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta} - \lim_{\gamma} U_{\alpha,\beta,\gamma}))$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta} - \lim_{\gamma} U_{\alpha,\beta,\gamma})...)$

Corollary 5

In L[U], every κ -complete (even σ -complete) ultrafilter W satisfy Gal(W, κ , κ^+).

< □ > < □ > < □ > < □ > < □ >

We can either try to relax the assumption of Galvin's theorem $\kappa^{<\kappa} = \kappa$ or improve the consequent. Let us start with the latter,

Theorem 4

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every filter U which is Rudin-Keisler equivalent to a finite product of P-point filters, $Gal(U, \kappa, \kappa^+)$ holds.

The proof of this theorem can be adapted to work for filters of the form: $U - \lim_{\alpha} U_{\alpha}$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta}))$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta} - \lim_{\gamma} U_{\alpha,\beta,\gamma}))$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta} - \lim_{\gamma} U_{\alpha,\beta,\gamma})...)$

Corollary 5

In L[U], every κ -complete (even σ -complete) ultrafilter W satisfy Gal(W, κ , κ^+).

Question

We can either try to relax the assumption of Galvin's theorem $\kappa^{<\kappa} = \kappa$ or improve the consequent. Let us start with the latter,

Theorem 4

Suppose that $\kappa^{<\kappa} = \kappa$. Then for every filter U which is Rudin-Keisler equivalent to a finite product of P-point filters, $Gal(U, \kappa, \kappa^+)$ holds.

The proof of this theorem can be adapted to work for filters of the form: $U - \lim_{\alpha} U_{\alpha}$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta}))$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta} - \lim_{\gamma} U_{\alpha,\beta,\gamma}))$, $U - \lim_{\alpha} (U_{\alpha} - \lim_{\beta} (U_{\alpha,\beta} - \lim_{\gamma} U_{\alpha,\beta,\gamma})...)$

Corollary 5

In L[U], every κ -complete (even σ -complete) ultrafilter W satisfy Gal(W, κ , κ^+).

Question

Is it consistent to have a filter/ultrafilter U which is not of the previous form for which $Gal(U, \kappa, \kappa^+)$ holds?

Benhamou, T.

イロト イヨト イヨト イ

Finding non-Galvin filters is relatively easy.

Finding non-Galvin filters is relatively easy.

Definition 6

・ロト ・日下・ ・ ヨト・

Finding non-Galvin filters is relatively easy.

Definition 6

A family of subsets of κ , $\langle A_i \mid i < \lambda \rangle$ with the property that for every $I, J \in [\lambda]^{<\kappa}$, $I \cap J = \emptyset \Rightarrow (\cap_{i \in I} A_i) \cap (\cap_{j \in J} A_j^c) \neq \emptyset$ is called a κ -independent family of size λ ,

Image: A math a math

Finding non-Galvin filters is relatively easy.

Definition 6

A family of subsets of κ , $\langle A_i \mid i < \lambda \rangle$ with the property that for every $I, J \in [\lambda]^{<\kappa}$, $I \cap J = \emptyset \Rightarrow (\cap_{i \in I} A_i) \cap (\cap_{j \in J} A_j^c) \neq \emptyset$ is called a κ -independent family of size λ ,

 κ -independent families of size 2^{κ} always exist given that $\kappa^{<\kappa} = \kappa$. Moreover, without this cardinal arithmetic assumptions, λ -many mutually generic Cohen functions over a regular κ form a κ -independent family.

Image: A image: A

Finding non-Galvin filters is relatively easy.

Definition 6

A family of subsets of κ , $\langle A_i \mid i < \lambda \rangle$ with the property that for every $I, J \in [\lambda]^{<\kappa}$, $I \cap J = \emptyset \Rightarrow (\cap_{i \in I} A_i) \cap (\cap_{j \in J} A_j^c) \neq \emptyset$ is called a κ -independent family of size λ ,

 κ -independent families of size 2^{κ} always exist given that $\kappa^{<\kappa} = \kappa$. Moreover, without this cardinal arithmetic assumptions, λ -many mutually generic Cohen functions over a regular κ form a κ -independent family.

Proposition 1

・ロト ・日下・ ・ ヨト・

Finding non-Galvin filters is relatively easy.

Definition 6

A family of subsets of κ , $\langle A_i \mid i < \lambda \rangle$ with the property that for every $I, J \in [\lambda]^{<\kappa}$, $I \cap J = \emptyset \Rightarrow (\cap_{i \in I} A_i) \cap (\cap_{j \in J} A_i^c) \neq \emptyset$ is called a κ -independent family of size λ ,

 κ -independent families of size 2^{κ} always exist given that $\kappa^{<\kappa} = \kappa$. Moreover, without this cardinal arithmetic assumptions, λ -many mutually generic Cohen functions over a regular κ form a κ -independent family.

Proposition 1

Let \mathcal{F} be the κ -complete filter generated by a κ -independent family of size λ , then $\neg Gal(\mathcal{F}, \kappa, \lambda)$.

イロト イヨト イヨト イヨ

Finding non-Galvin filters is relatively easy.

Definition 6

A family of subsets of κ , $\langle A_i | i < \lambda \rangle$ with the property that for every $I, J \in [\lambda]^{<\kappa}$, $I \cap J = \emptyset \Rightarrow (\cap_{i \in I} A_i) \cap (\cap_{j \in J} A_i^c) \neq \emptyset$ is called a κ -independent family of size λ ,

 κ -independent families of size 2^{κ} always exist given that $\kappa^{<\kappa} = \kappa$. Moreover, without this cardinal arithmetic assumptions, λ -many mutually generic Cohen functions over a regular κ form a κ -independent family.

Proposition 1

Let \mathcal{F} be the κ -complete filter generated by a κ -independent family of size λ , then $\neg Gal(\mathcal{F}, \kappa, \lambda)$.

Question

イロト イヨト イヨト イヨ

Finding non-Galvin filters is relatively easy.

Definition 6

A family of subsets of κ , $\langle A_i | i < \lambda \rangle$ with the property that for every $I, J \in [\lambda]^{<\kappa}$, $I \cap J = \emptyset \Rightarrow (\cap_{i \in I} A_i) \cap (\cap_{j \in J} A_j^c) \neq \emptyset$ is called a κ -independent family of size λ ,

 κ -independent families of size 2^{κ} always exist given that $\kappa^{<\kappa} = \kappa$. Moreover, without this cardinal arithmetic assumptions, λ -many mutually generic Cohen functions over a regular κ form a κ -independent family.

Proposition 1

Let \mathcal{F} be the κ -complete filter generated by a κ -independent family of size λ , then $\neg Gal(\mathcal{F}, \kappa, \lambda)$.

Question

Is there a ZFC-construction of a κ -complete filter \mathcal{F} such that $Cub_{\kappa} \subseteq \mathcal{F}$ and $\neg Gal(\mathcal{F}, \kappa, \kappa^+)$?

イロト イヨト イヨト イヨト

Benhamou, T.

・ロト ・四ト ・ヨト ・ヨト

Certainly, the existence of a κ -complete ultrafilter which is not Galvin requires large cardinals. The first construction is due to S. Garti, S. Shelah and B.[3], starting from a supercompact.

イロト イポト イヨト イ

A D M A B M A B M

Theorem 7

Theorem 7 Assume GCH.

Image: A math a math

Theorem 7

Assume GCH.

If κ is a measurable cardinal then there is a forcing extension where there is a κ-complete ultrafilter U such that Cub_κ ∪ {reg_κ} ⊆ U and ¬Gal(U, κ, κ⁺).

Image: A math a math

Theorem 7

Assume GCH.

- If κ is a measurable cardinal then there is a forcing extension where there is a κ-complete ultrafilter U such that Cub_κ ∪ {reg_κ} ⊆ U and ¬Gal(U, κ, κ⁺).
- If o(κ) = 2, then there is a forcing extension where there is a κ-complete ultrafilter U such that Cub_κ ∪ {sing_κ} ⊆ U and ¬Gal(U, κ, κ⁺).

Image: A math the second se

Theorem 7

Assume GCH.

- If κ is a measurable cardinal then there is a forcing extension where there is a κ -complete ultrafilter U such that $Cub_{\kappa} \cup \{reg_{\kappa}\} \subseteq U$ and $\neg Gal(U, \kappa, \kappa^+)$.
- If o(κ) = 2, then there is a forcing extension where there is a κ-complete ultrafilter U such that Cub_κ ∪ {sing_κ} ⊆ U and ¬Gal(U, κ, κ⁺).
- If o(κ) = κ⁺⁺ then there is a forcing extension where there is a κ-complete ultrafilter Cub_κ ∪ {reg_κ} ⊆ U such that ¬Gal(U, κ, κ⁺⁺)

< □ > < 同 > < 回 > < 回 >

Benhamou, T.

メロト メロト メヨトメ

Trying to relax the assumption $\kappa^{<\kappa} = \kappa$ in Gavin's theorem, we have the following consistency result by Abraham and Shelah.

・ロト ・回ト ・ヨト

Trying to relax the assumption $\kappa^{<\kappa} = \kappa$ in Gavin's theorem, we have the following consistency result by Abraham and Shelah.

Theorem 8 (Abraham-Shelah forcing)

Image: A math a math

Trying to relax the assumption $\kappa^{<\kappa} = \kappa$ in Gavin's theorem, we have the following consistency result by Abraham and Shelah.

Theorem 8 (Abraham-Shelah forcing)

Assume GCH, let κ be a regular cardinal, and $\kappa^+ < cf(\lambda) \le \lambda$. Then there is a forcing extension by a κ -directed, cofinality preserving forcing notion such that $2^{\kappa^+} = \lambda$ and there is a sequence $\langle C_i | i < \lambda \rangle$ such that:

- C_i is a club at κ^+ .
- **2** for every *I* ∈ $[λ]^{κ^+}$, $|∩_{i ∈ I} C_i| < κ$.

In particular, $\neg Gal(Cub_{\kappa^+}, \kappa^+, 2^{\kappa^+}).$

A D F A A F F A

Trying to relax the assumption $\kappa^{<\kappa} = \kappa$ in Gavin's theorem, we have the following consistency result by Abraham and Shelah.

Theorem 8 (Abraham-Shelah forcing)

Assume GCH, let κ be a regular cardinal, and $\kappa^+ < cf(\lambda) \le \lambda$. Then there is a forcing extension by a κ -directed, cofinality preserving forcing notion such that $2^{\kappa^+} = \lambda$ and there is a sequence $\langle C_i | i < \lambda \rangle$ such that:

•
$$C_i$$
 is a club at κ^+ .

2 for every *I* ∈
$$[λ]^{κ^+}$$
, $|∩_{i \in I} C_i| < κ$.

In particular, $\neg Gal(Cub_{\kappa^+}, \kappa^+, 2^{\kappa^+}).$

A natural question is what happens on inaccessible cardinals? of course, by Galvin theorem, we should be interested in weakly inaccessible Cardinals.

・ロト ・回ト ・ヨト・

Trying to relax the assumption $\kappa^{<\kappa} = \kappa$ in Gavin's theorem, we have the following consistency result by Abraham and Shelah.

Theorem 8 (Abraham-Shelah forcing)

Assume GCH, let κ be a regular cardinal, and $\kappa^+ < cf(\lambda) \le \lambda$. Then there is a forcing extension by a κ -directed, cofinality preserving forcing notion such that $2^{\kappa^+} = \lambda$ and there is a sequence $\langle C_i | i < \lambda \rangle$ such that:

•
$$C_i$$
 is a club at κ^+ .

Benhamou, T.

2 for every *I* ∈
$$[λ]^{κ^+}$$
, $|∩_{i \in I} C_i| < κ$.

In particular, $\neg Gal(Cub_{\kappa^+}, \kappa^+, 2^{\kappa^+}).$

A natural question is what happens on inaccessible cardinals? of course, by Galvin theorem, we should be interested in weakly inaccessible Cardinals.

Question

イロト イヨト イヨト イヨ

Trying to relax the assumption $\kappa^{<\kappa} = \kappa$ in Gavin's theorem, we have the following consistency result by Abraham and Shelah.

Theorem 8 (Abraham-Shelah forcing)

Assume GCH, let κ be a regular cardinal, and $\kappa^+ < cf(\lambda) \le \lambda$. Then there is a forcing extension by a κ -directed, cofinality preserving forcing notion such that $2^{\kappa^+} = \lambda$ and there is a sequence $\langle C_i | i < \lambda \rangle$ such that:

•
$$C_i$$
 is a club at κ^+ .

2 for every *I* ∈
$$[λ]^{κ^+}$$
, $|∩_{i \in I} C_i| < κ$.

In particular, $\neg Gal(Cub_{\kappa^+}, \kappa^+, 2^{\kappa^+}).$

A natural question is what happens on inaccessible cardinals? of course, by Galvin theorem, we should be interested in weakly inaccessible Cardinals.

Question

Is it consistent to have a weakly inaccessible cardinal κ such that $\neg Gal(Cub_{\kappa}, \kappa, \kappa^+)$?

イロト イヨト イヨト イヨ

Trying to relax the assumption $\kappa^{<\kappa} = \kappa$ in Gavin's theorem, we have the following consistency result by Abraham and Shelah.

Theorem 8 (Abraham-Shelah forcing)

Assume GCH, let κ be a regular cardinal, and $\kappa^+ < cf(\lambda) \le \lambda$. Then there is a forcing extension by a κ -directed, cofinality preserving forcing notion such that $2^{\kappa^+} = \lambda$ and there is a sequence $\langle C_i | i < \lambda \rangle$ such that:

•
$$C_i$$
 is a club at κ^+ .

• for every
$$I \in [\lambda]^{\kappa^+}$$
, $|\cap_{i \in I} C_i| < \kappa$.

In particular, $\neg Gal(Cub_{\kappa^+}, \kappa^+, 2^{\kappa^+}).$

A natural question is what happens on inaccessible cardinals? of course, by Galvin theorem, we should be interested in weakly inaccessible Cardinals.

Question

Is it consistent to have a weakly inaccessible cardinal κ such that $\neg Gal(Cub_{\kappa}, \kappa, \kappa^+)$?

aThere are some limiting results due to Garti (see [6])

イロト イヨト イヨト イ

Our focus is on the second case which does not fall under Abraham-Shelah's Theorem:

イロト イヨト イヨト

Our focus is on the second case which does not fall under Abraham-Shelah's Theorem: is it consistent to have $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$ for a singular κ ? Again, by Galvin's theorem, this would require violating SCH.

Image: A math a math

Our focus is on the second case which does not fall under Abraham-Shelah's Theorem: is it consistent to have $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$ for a singular κ ? Again, by Galvin's theorem, this would require violating SCH.

Theorem 9

A D F A B F A B F

Our focus is on the second case which does not fall under Abraham-Shelah's Theorem: is it consistent to have $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$ for a singular κ ? Again, by Galvin's theorem, this would require violating SCH.

Theorem 9

Assume GCH and $o(\kappa) = \kappa^{++}$. Then there is a forcing extension where $cf(\kappa) = \omega$ and $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Image: A math a math

Our focus is on the second case which does not fall under Abraham-Shelah's Theorem: is it consistent to have $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$ for a singular κ ? Again, by Galvin's theorem, this would require violating SCH.

Theorem 9

Assume GCH and $o(\kappa) = \kappa^{++}$. Then there is a forcing extension where $cf(\kappa) = \omega$ and $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

The idea is to iterate Abraham-Shelah's forcing on inaccessibles up to and including κ using an Easton support.

・ロト ・回ト ・ヨト

Our focus is on the second case which does not fall under Abraham-Shelah's Theorem: is it consistent to have $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$ for a singular κ ? Again, by Galvin's theorem, this would require violating SCH.

Theorem 9

Assume GCH and $o(\kappa) = \kappa^{++}$. Then there is a forcing extension where $cf(\kappa) = \omega$ and $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

The idea is to iterate Abraham-Shelah's forcing on inaccessibles up to and including κ using an Easton support. This produces a model where $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$. Using a Woodin like argument, based on Y. Ben-Shalom (see [8]), one can argue that κ remains measurable after the iteration.

< ロ > < 四 > < 三 >

Our focus is on the second case which does not fall under Abraham-Shelah's Theorem: is it consistent to have $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$ for a singular κ ? Again, by Galvin's theorem, this would require violating SCH.

Theorem 9

Assume GCH and $o(\kappa) = \kappa^{++}$. Then there is a forcing extension where $cf(\kappa) = \omega$ and $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

The idea is to iterate Abraham-Shelah's forcing on inaccessibles up to and including κ using an Easton support. This produces a model where $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$. Using a Woodin like argument, based on Y. Ben-Shalom (see [8]), one can argue that κ remains measurable after the iteration.

< ロ > < 四 > < 三 >

Our focus is on the second case which does not fall under Abraham-Shelah's Theorem: is it consistent to have $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$ for a singular κ ? Again, by Galvin's theorem, this would require violating SCH.

Theorem 9

Assume GCH and $o(\kappa) = \kappa^{++}$. Then there is a forcing extension where $cf(\kappa) = \omega$ and $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

The idea is to iterate Abraham-Shelah's forcing on inaccessibles up to and including κ using an Easton support. This produces a model where $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$. Using a Woodin like argument, based on Y. Ben-Shalom (see [8]), one can argue that κ remains measurable after the iteration. Finally, singularize κ using Prikry/Magidor forcing. The key lemma is to prove that Prikry forcing does not destroy a witness for the failure of the Galvin property:

・ロト ・回ト ・ヨト ・

Our focus is on the second case which does not fall under Abraham-Shelah's Theorem: is it consistent to have $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$ for a singular κ ? Again, by Galvin's theorem, this would require violating SCH.

Theorem 9

Assume GCH and $o(\kappa) = \kappa^{++}$. Then there is a forcing extension where $cf(\kappa) = \omega$ and $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

The idea is to iterate Abraham-Shelah's forcing on inaccessibles up to and including κ using an Easton support. This produces a model where $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$. Using a Woodin like argument, based on Y. Ben-Shalom (see [8]), one can argue that κ remains measurable after the iteration. Finally, singularize κ using Prikry/Magidor forcing. The key lemma is to prove that Prikry forcing does not destroy a witness for the failure of the Galvin property:

Proposition 2

< □ > < □ > < □ > < □ > < □ >

Our focus is on the second case which does not fall under Abraham-Shelah's Theorem: is it consistent to have $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$ for a singular κ ? Again, by Galvin's theorem, this would require violating SCH.

Theorem 9

Assume GCH and $o(\kappa) = \kappa^{++}$. Then there is a forcing extension where $cf(\kappa) = \omega$ and $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

The idea is to iterate Abraham-Shelah's forcing on inaccessibles up to and including κ using an Easton support. This produces a model where $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$. Using a Woodin like argument, based on Y. Ben-Shalom (see [8]), one can argue that κ remains measurable after the iteration. Finally, singularize κ using Prikry/Magidor forcing. The key lemma is to prove that Prikry forcing does not destroy a witness for the failure of the Galvin property:

Proposition 2

A κ^+ -cc forcing preserves a witness for $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

< □ > < □ > < □ > < □ > < □ >

Our focus is on the second case which does not fall under Abraham-Shelah's Theorem:is it consistent to have $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$ for a singular κ ? Again, by Galvin's theorem, this would require violating SCH.

Theorem 9

Assume GCH and $o(\kappa) = \kappa^{++}$. Then there is a forcing extension where $cf(\kappa) = \omega$ and $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

The idea is to iterate Abraham-Shelah's forcing on inaccessibles up to and including κ using an Easton support. This produces a model where $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$. Using a Woodin like argument, based on Y. Ben-Shalom (see [8]), one can argue that κ remains measurable after the iteration. Finally, singularize κ using Prikry/Magidor forcing. The key lemma is to prove that Prikry forcing does not destroy a witness for the failure of the Galvin property:

Proposition 2

A κ^+ -cc forcing preserves a witness for $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Benhamou, T

The sequence of clubs $\langle C_i | i < \kappa^+ \rangle$ produced by the Abraham-Shelah forcing, witnesses a stronger failure of $Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$, indeed for any $I \in [\kappa^{++}]^{\kappa^+}$, $\bigcap_{i \in I} C_i$ is actually of size less than κ . Let us denote this by $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Image: A match a ma

The sequence of clubs $\langle C_i \mid i < \kappa^+ \rangle$ produced by the Abraham-Shelah forcing, witnesses a stronger failure of $Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$, indeed for any $I \in [\kappa^{++}]^{\kappa^+}$, $\bigcap_{i \in I} C_i$ is actually of size less than κ . Let us denote this by $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Interestingly, the previous argument does work for the strong negation:

Image: A math a math

The sequence of clubs $\langle C_i | i < \kappa^+ \rangle$ produced by the Abraham-Shelah forcing, witnesses a stronger failure of $Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$, indeed for any $I \in [\kappa^{++}]^{\kappa^+}$, $\bigcap_{i \in I} C_i$ is actually of size less than κ . Let us denote this by $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Interestingly, the previous argument does work for the strong negation:

Proposition 3

The sequence of clubs $\langle C_i | i < \kappa^+ \rangle$ produced by the Abraham-Shelah forcing, witnesses a stronger failure of $Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$, indeed for any $I \in [\kappa^{++}]^{\kappa^+}$, $\bigcap_{i \in I} C_i$ is actually of size less than κ . Let us denote this by $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Interestingly, the previous argument does work for the strong negation:

Proposition 3

In general κ^+ -cc forcings do not preserve $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

• • • • • • • • • • • •

The sequence of clubs $\langle C_i \mid i < \kappa^+ \rangle$ produced by the Abraham-Shelah forcing, witnesses a stronger failure of $Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$, indeed for any $I \in [\kappa^{++}]^{\kappa^+}$, $\bigcap_{i \in I} C_i$ is actually of size less than κ . Let us denote this by $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Interestingly, the previous argument does work for the strong negation:

Proposition 3

In general κ^+ -cc forcings do not preserve $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Indeed, any forcing which adds a set of size κ which diagonalize $(Cub_{\kappa})^{V}$ (e.g. diagonalizing the club filter, Magidor forcing with $o(\kappa) = \kappa$) kills $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

イロト イヨト イヨト イヨ

The sequence of clubs $\langle C_i \mid i < \kappa^+ \rangle$ produced by the Abraham-Shelah forcing, witnesses a stronger failure of $Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$, indeed for any $I \in [\kappa^{++}]^{\kappa^+}$, $\bigcap_{i \in I} C_i$ is actually of size less than κ . Let us denote this by $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Interestingly, the previous argument does work for the strong negation:

Proposition 3

In general κ^+ -cc forcings do not preserve $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Indeed, any forcing which adds a set of size κ which diagonalize $(Cub_{\kappa})^{V}$ (e.g. diagonalizing the club filter, Magidor forcing with $o(\kappa) = \kappa$) kills $\neg_{st} Gal(Cub_{\kappa^{+}}, \kappa^{+}, \kappa^{++})$.

Question

イロト イヨト イヨト イヨト

The sequence of clubs $\langle C_i \mid i < \kappa^+ \rangle$ produced by the Abraham-Shelah forcing, witnesses a stronger failure of $Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$, indeed for any $I \in [\kappa^{++}]^{\kappa^+}$, $\bigcap_{i \in I} C_i$ is actually of size less than κ . Let us denote this by $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Interestingly, the previous argument does work for the strong negation:

Proposition 3

In general κ^+ -cc forcings do not preserve $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Indeed, any forcing which adds a set of size κ which diagonalize $(Cub_{\kappa})^{V}$ (e.g. diagonalizing the club filter, Magidor forcing with $o(\kappa) = \kappa$) kills $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Question

Is it consistent that $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$ holds at a successor of a singular cardinal?

イロト イヨト イヨト イヨト

メロト メロト メヨトメ

On one hand Prikry forcing does not add a set of cardinality κ which diagonalize $(Cub_{\kappa})^{V}$:

イロト イヨト イヨト

On one hand Prikry forcing does not add a set of cardinality κ which diagonalize $(Cub_{\kappa})^{V}$:

Theorem 10

On one hand Prikry forcing does not add a set of cardinality κ which diagonalize $(Cub_{\kappa})^{V}$:

Theorem 10

Let U be a normal ultrafilter over κ . Let $\langle c_n | n < \omega \rangle$ be V-generic Prikry sequence for U, and suppose that $A \in V[\langle c_n | n < \omega \rangle]$ diagonalize $(Cub_{\kappa})^V$. Then, there exists $\xi < \kappa$ such that $A \setminus \xi \subseteq \{c_n | n < \omega\}$. In particular, $|A \setminus \xi| \leq \aleph_0$.

On one hand Prikry forcing does not add a set of cardinality κ which diagonalize $(Cub_{\kappa})^{V}$:

Theorem 10

Let U be a normal ultrafilter over κ . Let $\langle c_n | n < \omega \rangle$ be V-generic Prikry sequence for U, and suppose that $A \in V[\langle c_n | n < \omega \rangle]$ diagonalize $(Cub_{\kappa})^V$. Then, there exists $\xi < \kappa$ such that $A \setminus \xi \subseteq \{c_n | n < \omega\}$. In particular, $|A \setminus \xi| \leq \aleph_0$.

On the other hand, just forcing a Prikry sequence is not enough:

On one hand Prikry forcing does not add a set of cardinality κ which diagonalize $(Cub_{\kappa})^{V}$:

Theorem 10

Let U be a normal ultrafilter over κ . Let $\langle c_n | n < \omega \rangle$ be V-generic Prikry sequence for U, and suppose that $A \in V[\langle c_n | n < \omega \rangle]$ diagonalize $(Cub_{\kappa})^V$. Then, there exists $\xi < \kappa$ such that $A \setminus \xi \subseteq \{c_n | n < \omega\}$. In particular, $|A \setminus \xi| \leq \aleph_0$.

On the other hand, just forcing a Prikry sequence is not enough:

Theorem 11

• • • • • • • • • • • •

On one hand Prikry forcing does not add a set of cardinality κ which diagonalize $(Cub_{\kappa})^{V}$:

Theorem 10

Let U be a normal ultrafilter over κ . Let $\langle c_n | n < \omega \rangle$ be V-generic Prikry sequence for U, and suppose that $A \in V[\langle c_n | n < \omega \rangle]$ diagonalize $(Cub_{\kappa})^V$. Then, there exists $\xi < \kappa$ such that $A \setminus \xi \subseteq \{c_n | n < \omega\}$. In particular, $|A \setminus \xi| \leq \aleph_0$.

On the other hand, just forcing a Prikry sequence is not enough:

Theorem 11

Let ${\mathcal C}$ be a witness for the strong negation. Then there exists ${\mathcal D},$ such that:

- \mathcal{D} is also a witness for the strong negation;
- So For every normal ultrafilter U over κ , forcing with Prikry(U) yields a generic extension where \mathcal{D} cease to be a witness.

イロト イヨト イヨト イヨト

Thank you for your attention!

メロト メタト メヨト メヨト

- James E. Baumgartner, Andres Hajņal, and A. Mate, *Weak saturation properties of ideals*, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, North-Holland, Amsterdam, 1975, pp. 137–158. Colloq. Math. Soc. János Bolyai, Vol. 10. MR 0369081 (51 #5317)
- Tom Benhamou, Shimon Garti, and Alejandro Poveda, *Negating the galvin property*, Journal of the London Mathematical Society (2022), to appear.
- Tom Benhamou, Shimon Garti, and Saharon Shelah, *Kurepa Trees and The Failure of the Galvin Property*, Proceedings of the American Mathematical Society **151** (2023), 1301–1309.
- Tom Benhamou and Moti Gitik, *Intermediate Models of Magidor-Radin Forcing-Part II*, Annals of Pure and Applied Logic **173** (2022), 103107.

_____, *On Cohen and Prikry Forcing Notions*, preprint (2022), arXiv:2204.02860.

- Shimon Garti, *Weak diamond and galvin's property*, Periodica Mathematica Hungarica **74** (2017), 128–136.
- Moti Gitik, *On Density of Old Sets in Prikry Type Extensions*, Proceedings of the American Mathematical Society **145** (2017), no. 2, 881–887.
- Yoav Ben Shalom, On the Woodin Construction of Failure of GCH at a Measurable Cardinal, 2017.

Image: A math the second se