
Commutativity of cofinal types of ultrafilters

Tom Benhamou

Department of Mathematics
Rutgers University

This research was supported by the National Science Foundation under Grant No. DMS-2246703

March 20, 2024

Benhamou, T. Rutgers (Rutgers) Berkeley Logic colloquium, Feb 2024 March 20, 2024 1 / 32



Motivation
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Let (X , τX ), (Y , τY ) be Hausdorff topological spaces. Recall that:

Definition 1
A function f : X → Y is continuous in the sequential sense if whenever
(xn)∞n=0 ⊆ X is a sequence converging to x ∈ X (namely, for every neighborhood
U ∈ N (x) there is N such that for all n ≥ N, xn ∈ U), the sequence (f (xn))∞n=0

converges to f (x).

⇒ Sequential continuity is equivalent to continuity in spaces where the following
holds: x ∈ cl(Z ) iff there is a sequence (zn)∞n=0 ⊆ Z which converges to x .

⇒ For example in first-countable spaces a function f is continuous if and only if
f is continuous in the sequential sense.

⇒ The two are not equivalent: for example f : ω1 + 1→ R defined by f (x) = 0
if x < ω1 and f (ω1) = 1 is not continuous but sequentially continuous.)
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Definition 2 (Moore-Smith 1922)

Let (A,≤A) be a directed set. An A-net is a function ~x = (xa)a∈A. A point x is a
limit of ~x if for every U ∈ N (x) there is a such that , b ≥ a, xb ∈ U (a.k.a
Moore-Smith convergence).

⇒ A function f : X → Y is continuous iff for every net (xa)a∈A with limit x ,
f (x) is a limit of (f (xa))a∈A.

⇒ x ∈ cl(Z ) iff there is a net ~x ⊆ Z converging to x . For example, one might
take (zU)U∈N (x) where zU ∈ U ∩ Z .
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Cofinal maps

Some ”types” of directed sets actually give essentially the same notion of net, for
example, N and Neven or even fin = {X ∈ P(N) | X is finite}. More generally we
would like to find an equivalence relation that reduces to the ”essential” ordered
sets. This is given by the Tukey order which was defined by J. Tukey:

Definition 3 (Tukey ’40 [12])

Let (P,≤P), (Q,≤Q) be two partially ordered (directed) sets. Define
(P,≤P) ≤T (Q,≤Q) iff there is a cofinal mapa f : Q → P. Define
(P,≤P) ≡T (Q,≤Q) iff (P,≤P) ≤T (Q,≤Q) and (Q,≤Q) ≤T (P,≤P).

aif for every cofinal B ⊆ Q, f [B] ⊆ P is cofinal.

If B ≤T A, then any B-net (xb)b∈B can be now replaced by (xf (a))a∈A and if x is
a limit point of (xb)b∈B then x must be a limit of (xf (a))a∈A.
The research of what are the ”essential” A’s is a completely set theoretic (order
theoretic) question.
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Classic results of Todorcevic

Theorem 4 (Todorcevic ’85 [11])

It is consistent that there are exactly 5 Tukey classes of directed posets of
cardinality at most ℵ1.

Theorem 5 (Todorcevic ’85 [11])

for any regular κ > ω, there are 2κ-many distinct Tukey classes of cardinality κℵ0 .
In particular, if c is regular, then there are at least 2c many distinct Tukey classes
of cardinality c.
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Definition 6

Given a net ~x = (xa)a∈A, define for each a ∈ A, x≥a = {xb | b ≥ a}. The filter
associated with ~x , denoted by F~x is the filter generated by the sets x≥a. Namely,
T ∈ F~x iff ∃a ∈ A, x≥a ⊆ T .

The filter F~x determines the convergence properties of the net ~x in the sense that
~x converges to x iff N (x) ⊆ F~x . This gives rise to the idea of converging filters:

Definition 7 (H. Cartan ’37)

We say that a filter F converges to a point x if N (x) ⊆ F .

Since every filter can be extended to an ultrafilter, if F converges to a point x
then there is an ultrafilter which covergese to x as well. Therefore, for most
purposes, it suffices to consider only ultrafilters, or ultranets. For example, TFRE:

f : X → Y is continuous.

For every x ∈ X , and every ultrafilter U such that N (x) ⊆ U, the ultrafilter
f∗(U) = {B ⊆ Y | f −1[B] ∈ U} extends N (f (x)).
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The Tukey order on ultrafilters

All of the above motivates the study of cofinal types of ultrafilters from a
topological point of view, and more precisely, the directed order (U,⊇) where U is
an ultrafilter. On ω, this has been studied extensively by Blass, Dobrinen,
Milovich, Raghavan, Shelah, Solecki, Todorcevic and many others.

Proposition 1

Suppose that U ≤T V where U,V are ultrafilters, then there is a (weakly)
monotone map f : V → U such that Im(f ) is cofinal in U.

⇒ It is clearly the functions to compare the minimal size of a base (and
therefore to understand the ultrafilter number).

⇒ U ≤RK V implies U ≤T V .
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Entering the realm of large cardinals

(joint with Natasha Dobrinen)
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The Tukey-top class

An ultrafilter U in ω is called Tukey-top if for every ultrafilter W on ω, W ≤T U.

Theorem 8 (Isbell ’65 [8])

There exists a Tukey top ultrafilter.

Question (Isbell ’65)

Are there provably a non-Tukey-top ultrafilters on ω?

Theorem 9 (B.-Dobrinen ’23[3])

Let U be a κ-complete ultrafilter over κ, then U is Tukey-top (wrt. κ-complete
ultrafilters) iff ¬Gal(U, κ, 2κ), that is: there is a sequence 〈Xi | i < 2κ〉 ⊆ U such
that for every I ∈ [2κ]κ,

⋂
i∈I Xi /∈ U.

Generalizing Isbell’s construction, we proved the following:

Theorem 10 (B.-Dobrinen ’23)

If κ is κ-compact, there is a κ-complete ultrafilter over κ which is Tukey-top.
(forcing constructions B.-Garti-Shelah [4] B.-Gitik [5])
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Recall that U is a p-point on κ ≥ ω if for every sequence 〈Xα | α < κ〉 ⊆ U there
is X ∈ U which is a pseudo intersection for the sequence i.e. for every α < κ,
X \ Xn is bounded (or finite if κ = ω).

Theorem 11 (B. ’22[1])

If U is an n-fold sum of p-points the U is not Tukey-top. Hence if in L[E] there is
no measurable limit of superstrong cardinals, then there are no κ-complete
Tukey-top ultrafilters over κ.

Theorem 12 (B.-Goldberg ’23 [6])

Assume UA and that every irreducible is Dodd-sound. Then the following are
equivalent for every κ-complete ultrafiler U over κ:

1 U is Tukey-top (i.e. ¬Gal(U, κ, 2κ))

2 U is not an n-fold sum of p-points.

3 ♦∗thin(U).

The result above is also true for σ-complete ultrafilters over regular cardinals.
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Fubini products

Fact 13

Let (P,≤P), (Q,≤Q) be directed orders. Thena (P × Q,≤×) is the least upper
bound of P,Q in the Tukey order. Hence P ≡T P × P.

a(p, q) ≤× (p′, q′) if and only if p ≤P p′ and q ≤Q q′.

Definition 14 (Fubini product)

Suppose that U is an ultrafilter over X and V an ultrafilter over Y . We denote by
U · V the Fubini product of U and V which is the ultrafilter defined over X × Y
as follows, for A ⊆ X × Y ,

A ∈ U · V if and only if {x ∈ X | (A)x ∈ V } ∈ U

where (A)x = {y ∈ Yx | 〈x , y〉 ∈ A}. If U = V , then U2 is defined as U · U and
referred to as the Fubini power.
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X

Y

x1 x2 x3 x4 x5

V V V V V

U

Benhamou, T. Rutgers (Rutgers) Berkeley Logic colloquium, Feb 2024 March 20, 2024 13 / 32



X

Y

x1 x2 x3 x4 x5

V V V V V

U

Benhamou, T. Rutgers (Rutgers) Berkeley Logic colloquium, Feb 2024 March 20, 2024 13 / 32



X

Y

x1 x2 x3 x4 x5

V V V V V

U

Benhamou, T. Rutgers (Rutgers) Berkeley Logic colloquium, Feb 2024 March 20, 2024 13 / 32



X

Y

x1 x2 x3 x4 x5

V V V V V

U

Benhamou, T. Rutgers (Rutgers) Berkeley Logic colloquium, Feb 2024 March 20, 2024 13 / 32



X

Y

x1 x2 x3 x4 x5

V V V V V

U

Benhamou, T. Rutgers (Rutgers) Berkeley Logic colloquium, Feb 2024 March 20, 2024 13 / 32



(U,⊇), (V ,⊇) ≤T (U · V ,⊇). Therefore (U × V ,≤×) ≤T (U · V ,⊇).

Theorem 15 (Dobrinen-Todorcevic-Milovich ’12 [7, 9])

For any two ultrafilters U,V on ω, U · V ≡T U ×
∏

n<ω V . The order on
Cartesian products is always coordinatewise. In particular V · V ≡T

∏
n<ω V and

U · V ≡T U · (V · V )

These results also hold for to κ-complete ultrafilters over κ.

Theorem 16 (B.-Dobrinen ’23)

Let U,V be any κ-complete ultrafilters over κ > ω, then U · V ≡T U × V . In
particular U · V ≡T V · U and U · U ≡T U.

The proof essentially uses the well-ordering of κκ/U which is a virtue of the
σ-completeness.
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Back to earth (ω)
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Commutativity of Cofinal types on ω

Definition 17
As ultrafilter U over ω is rapid if for every function f : N→ N there is X ∈ U
such that for every n < ω, X (n) ≥ f (n).

Theorem 18 (Dobrinen-Todorcevic ’11)

Suppose that V ,U are ultrafilters on ω, V is a rapid p-point. Then
U · V ≡T U × V . In particular, if U,V are rapid p-points then U · V ≡T V · U.

In particular if U is a rapid p-point then U · U ≡T U. Dobrinen and Todorcevic
constructed an example of a p-point U such that U <T U2.

Theorem 19 (Milovich ’12)

If U,V are ultrafilters on ω and U is a p, then V · U ≡T V × U × ωω and
therefore if U,V are both p-points then U · V ≡T V · U.
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Theorem 20 (B. ’24 [2])

For any two ultrafilters U,V on ω, U · V ≡T V · U.
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The proof
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For a filter F we denote by F ∗ = {Ac | A ∈ F} the dual ideal of F . Also, denote
by fin = {A ⊆ ω | A finite}. Note that (F ,⊇) ' (F ∗,⊆).

Definition 21
Suppose that U is an ultrafilter and I ⊆ U∗ is an ideal. We say that U has the
I -p.i.p if for any sequence 〈Xn | n < ω〉 ⊆ U, there is X ∈ U such that for every
n < ω, X \ Xn ∈ I .

For example, U is a p-point if and only if U has the fin-p.i.p.

Proposition 2

Suppose that U has the I -p.i.p, then U · U ≡T

∏
n<ω U ≤T U ×

∏
n<ω I .

Since fin ≡T ω, we get that for p-points U, U · U ≤T U × ωω (this fact about
p-points was already known to Dobrinen and Todorcevic).
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Theorem 22

If U and V are ultrafilters, then U (and V of course) have the (U ∩ V )∗-p.i.p.

Corollary 23

U · V ≤T U × V ×
∏

n<ω U ∩ V .
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Theorem 24

U · V ≡T U × V ×
∏

n<ω U ∩ V .

To prove the theorem it remains to prove that U · V ≥T U × V ×
∏

n<ω U ∩ V ,
and by the least upper bound property, it remains to prove that
U · V ≥T

∏
n<ω U ∩ V .

Lemma 25 (Proof omitted)

For every F ⊆ V , V · V ≥T F .

By the lemma, we conclude that V · V ≥T U ∩ V and

U · V ≡T U · (V · V ) ≡ U ×
∏
n<ω

(V · V ) ≥T

∏
n<ω

U ∩ V

Corollary 26

For every ultrafilters U,V , U · V ≡T V · U.
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Diamond-like Principles on ω
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Definition 27 (Jensen)

We say that

1 ♦(κ) holds if there is a sequence 〈Aα | α < κ〉, Aα ⊆ α such that for every
set X ⊆ κ, {α < κ | X ∩ α = Aα} is stationary.

2 ♦−(κ) is there is a sequence 〈Aα | α < κ〉 such that for every α < κ,
Aα ∈ [P(α)]≤|α| such that for every X ⊆ κ, {α < κ | X ∩ α ∈ Aα} is
stationary.

3 ♦∗(κ) holds if there is a sequence 〈Aα | α < κ〉, such that Aα ∈ [P(α)]≤|α|

such that for every X ⊆ κ, {α < κ | X ∩ α ∈ Aα} contains a club.

Of course, non of these makes sense on ω.

Idea
Replace the club filter with a general filter F
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Definition 28
Let F be a filter over a cardinal κ ≥ ω, and let π : κ→ κ we say that:

1 ♦∗π(F ), holds if there is a sequence 〈Aα | α < κ〉, Aα ∈ [P(α)]≤π(α). such
that for every set X , {α < κ | X ∩ α ∈ Aα} ∈ F .

2 ♦−π (F ), holds if there is a sequence 〈Aα | α < κ〉, Aα ∈ [P(α)]≤π(α). such
that for every set X , {α < κ | X ∩ α ∈ Aα} ∈ F +.

1 If F is an ultrafilter then the above definition coincide

2 If π(α) = 1 then we ♦−π (cubκ) is just the usual diamond.

3 Trivial if we allow π(α) ≈ 2α

4 If U is a Dodd-sound ultrafilter then ♦−π (U), where π(α) = 2τ(α), [τ ]U = κ.
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Theorem 29 (B.-Wu)

If
∑∞

n=0
π(n)

2n <∞, and F extends the Frechet filter then ♦−π (F ) fails.

Proof.

Denote by P the standard Borel measure on 2ω (identified with P(ω)). Suppose
that 〈An | n < ω〉 witness that ♦−π (F ) holds, and consider the events

En = {X ∈ P(ω) | X ∩ n ∈ An}

Then P(En) = π(n)
2n . By the Borel-Cantelli lemma, if

∑∞
n=0 P(En) < ω then

P(lim sup En) = 0, where lim sup En =
⋂

n<ω

⋃
m≥n En. Therefore there is

X /∈ lim sup En, but then {n < ω | X ∈ En} ∈ F + is finite, so F cannot extend the
Frechet filter.
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Corrected definition:

Definition 30

♦−π (U) assures the existence of a sequence 〈Aα | α < κ〉 such that
Aα ∈ [P(α)]≤π(α) such that there are 2κ-many sets X ⊆ κ such that
{α < κ | X ∩ α ∈ Aα} ∈ U.

Theorem 31 (B.-Goldberg)

Let U be an ultrafilter, and suppose that π is not almost one-to-one modulo U. If
♦−π (U) holds then U is Tukey-top.

The proof generalizes to ultrafilters on ω as well.

Theorem 32 (B.-Wu)

Let π be any infinite-to-one function. It is ZFC provable that there is an ultrafilter
U such that π is not almost one-to-one modulo U and ♦−π (U) hold.

Benhamou, T. Rutgers (Rutgers) Berkeley Logic colloquium, Feb 2024 March 20, 2024 26 / 32



Thank you for your attention!
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Theorem 33 (Dobrinen-Todorcevic)

For p-point ultrafilters the following are equivalent:

1 U ≡T U · U.

2 U ≥T ωω

Dobrinen and Todorcevic forced p-point which is not above ωω and therefore
cannot be Tukey equivalent to its Fubini square.
By results of Solecki and Todorcevic [10], an ultrafilter U cannot be Tukey
equivalent to ωω.

Question (Dobrinen)

Is being Tukey above ωω equivalent to being rapid?

Question (Dobrinen-Todorcevic)

Is there always an ultrafilter which is not Tukey above ωω?
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Theorem 34 (B. ’24)

If U is not Tukey above ωω then U must be a p-point. In particular, in Shelah’s
model where there are no p-points every ultrafilter is Tukey above ωω.

Theorem 35 (B. ’24)

Assume CH. Then there is a p-point ultrafilter U over ω such that U ≥T ωω but
U is not rapid.

Definition 36
U is called almost rapid if for any function f : ω → ω, there is X ∈ U, such that
fX dominates f , where fX is defined recursively, fX (0) = min(X ), fX (n + 1) is the
fX (n)th element of X

Now it is not hard to see that X 7→ fX is a monotone map and if U is almost
rapid, this map is cofinal. Hence if U is almost rapid, then U ≥T ωω. Under CH, I
proved that we can construct a p-point which is almost rapid and not rapid.
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Open problems

Question
Is the class of all ultrafilters Tukey above ωω Tukey above ωω the same as the
class of α-almos-rapid ultrafilters?

Question
Is it true that for any two ultrafilters U,V on any cardinals κ, λ, U · V ≡T V · U?

We can restrict to the case that U,V are on the same cardinal, but the degree of
completeness may vary not.

Question
Is it consistent to have two non-Tukey top ultrafilters U,V such that U · V is
Tukey top? namely, is the class of non-Tukey top ultrafilters closed under Fubini
products?
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