# Commutativity of cofinal types of ultrafilters

#### Tom Benhamou

Department of Mathematics Rutgers University

This research was supported by the National Science Foundation under Grant No. DMS-2246703



March 20, 2024

・ロト ・日下・ ・ ヨト・

#### Motivation



▲□▶ ▲圖▶ ▲国▶ ▲国▶

Let  $(X, \tau_X), (Y, \tau_Y)$  be Hausdorff topological spaces. Recall that:

### Definition 1

A function  $f: X \to Y$  is continuous in the sequential sense if whenever  $(x_n)_{n=0}^{\infty} \subseteq X$  is a sequence converging to  $x \in X$  (namely, for every neighborhood  $U \in \mathcal{N}(x)$  there is N such that for all  $n \ge N$ ,  $x_n \in U$ ), the sequence  $(f(x_n))_{n=0}^{\infty}$  converges to f(x).

⇒ Sequential continuity is equivalent to continuity in spaces where the following holds:  $x \in cl(Z)$  iff there is a sequence  $(z_n)_{n=0}^{\infty} \subseteq Z$  which converges to x.

< □ > < 同 > < 回 > < 回 >

Let  $(X, \tau_X), (Y, \tau_Y)$  be Hausdorff topological spaces. Recall that:

### Definition 1

A function  $f: X \to Y$  is continuous in the sequential sense if whenever  $(x_n)_{n=0}^{\infty} \subseteq X$  is a sequence converging to  $x \in X$  (namely, for every neighborhood  $U \in \mathcal{N}(x)$  there is N such that for all  $n \ge N$ ,  $x_n \in U$ ), the sequence  $(f(x_n))_{n=0}^{\infty}$  converges to f(x).

- ⇒ Sequential continuity is equivalent to continuity in spaces where the following holds:  $x \in cl(Z)$  iff there is a sequence  $(z_n)_{n=0}^{\infty} \subseteq Z$  which converges to x.
- $\Rightarrow$  For example in first-countable spaces a function f is continuous if and only if f is continuous in the sequential sense.

イロト イ団ト イヨト イヨト

Let  $(X, \tau_X), (Y, \tau_Y)$  be Hausdorff topological spaces. Recall that:

### Definition 1

A function  $f: X \to Y$  is continuous in the sequential sense if whenever  $(x_n)_{n=0}^{\infty} \subseteq X$  is a sequence converging to  $x \in X$  (namely, for every neighborhood  $U \in \mathcal{N}(x)$  there is N such that for all  $n \ge N$ ,  $x_n \in U$ ), the sequence  $(f(x_n))_{n=0}^{\infty}$  converges to f(x).

- ⇒ Sequential continuity is equivalent to continuity in spaces where the following holds:  $x \in cl(Z)$  iff there is a sequence  $(z_n)_{n=0}^{\infty} \subseteq Z$  which converges to x.
- $\Rightarrow$  For example in first-countable spaces a function f is continuous if and only if f is continuous in the sequential sense.
- ⇒ The two are not equivalent: for example  $f : \omega_1 + 1 \to \mathbb{R}$  defined by f(x) = 0if  $x < \omega_1$  and  $f(\omega_1) = 1$  is not continuous but sequentially continuous.)

### Definition 2 (Moore-Smith 1922)

Let  $(A, \leq_A)$  be a directed set. An *A-net* is a function  $\vec{x} = (x_a)_{a \in A}$ . A point x is a limit of  $\vec{x}$  if for every  $U \in \mathcal{N}(x)$  there is a such that ,  $b \geq a$ ,  $x_b \in U$  (a.k.a Moore-Smith convergence).

⇒ A function  $f : X \to Y$  is continuous iff for every net  $(x_a)_{a \in A}$  with limit x, f(x) is a limit of  $(f(x_a))_{a \in A}$ .

A D > A B > A B > A

### Definition 2 (Moore-Smith 1922)

Let  $(A, \leq_A)$  be a directed set. An *A-net* is a function  $\vec{x} = (x_a)_{a \in A}$ . A point x is a limit of  $\vec{x}$  if for every  $U \in \mathcal{N}(x)$  there is a such that ,  $b \geq a$ ,  $x_b \in U$  (a.k.a Moore-Smith convergence).

- ⇒ A function  $f : X \to Y$  is continuous iff for every net  $(x_a)_{a \in A}$  with limit x, f(x) is a limit of  $(f(x_a))_{a \in A}$ .
- ⇒  $x \in cl(Z)$  iff there is a net  $\vec{x} \subseteq Z$  converging to x. For example, one might take  $(z_U)_{U \in \mathcal{N}(x)}$  where  $z_U \in U \cap Z$ .

イロト イ団ト イヨト イヨ

Some "types" of directed sets actually give essentially the same notion of net, for example,  $\mathbb{N}$  and  $\mathbb{N}_{even}$  or even  $fin = \{X \in P(\mathbb{N}) \mid X \text{ is finite}\}$ . More generally we would like to find an equivalence relation that reduces to the "essential" ordered sets. This is given by the Tukey order which was defined by J. Tukey:

## Definition 3 (Tukey '40 [12])

Let  $(P, \leq_P), (Q, \leq_Q)$  be two partially ordered (directed) sets. Define  $(P, \leq_P) \leq_T (Q, \leq_Q)$  iff there is a cofinal map<sup>a</sup>  $f : Q \to P$ . Define  $(P, \leq_P) \equiv_T (Q, \leq_Q)$  iff  $(P, \leq_P) \leq_T (Q, \leq_Q)$  and  $(Q, \leq_Q) \leq_T (P, \leq_P)$ .

<sup>a</sup>if for every cofinal  $B \subseteq Q$ ,  $f[B] \subseteq P$  is cofinal.

If  $B \leq_T A$ , then any B-net  $(x_b)_{b \in B}$  can be now replaced by  $(x_{f(a)})_{a \in A}$  and if x is a limit point of  $(x_b)_{b \in B}$  then x must be a limit of  $(x_{f(a)})_{a \in A}$ . The research of what are the "essential" A's is a completely set theoretic (order theoretic) question.

イロン イ団 とく ヨン イヨン

## Theorem 4 (Todorcevic '85 [11])

It is consistent that there are exactly 5 Tukey classes of directed posets of cardinality at most  $\aleph_1$ .

## Theorem 5 (Todorcevic '85 [11])

for any regular  $\kappa > \omega$ , there are  $2^{\kappa}$ -many distinct Tukey classes of cardinality  $\kappa^{\aleph_0}$ . In particular, if  $\mathfrak{c}$  is regular, then there are at least  $2^{\mathfrak{c}}$  many distinct Tukey classes of cardinality  $\mathfrak{c}$ .

< □ > < 同 > < 回 > < Ξ > < Ξ

### Definition 6

Given a net  $\vec{x} = (x_a)_{a \in A}$ , define for each  $a \in A$ ,  $x_{\geq a} = \{x_b \mid b \geq a\}$ . The filter associated with  $\vec{x}$ , denoted by  $F_{\vec{x}}$  is the filter generated by the sets  $x_{\geq a}$ . Namely,  $T \in F_{\vec{x}}$  iff  $\exists a \in A, x_{\geq a} \subseteq T$ .

The filter  $F_{\vec{x}}$  determines the convergence properties of the net  $\vec{x}$  in the sense that  $\vec{x}$  converges to x iff  $\mathcal{N}(x) \subseteq F_{\vec{x}}$ . This gives rise to the idea of converging filters:

#### Definition 7 (H. Cartan '37)

We say that a filter F converges to a point x if  $\mathcal{N}(x) \subseteq F$ .

Since every filter can be extended to an ultrafilter, if F converges to a point x then there is an ultrafilter which covergese to x as well. Therefore, for most purposes, it suffices to consider only ultrafilters, or *ultranets*. For example, TFRE:

•  $f: X \to Y$  is continuous.

### Definition 6

Given a net  $\vec{x} = (x_a)_{a \in A}$ , define for each  $a \in A$ ,  $x_{\geq a} = \{x_b \mid b \geq a\}$ . The filter associated with  $\vec{x}$ , denoted by  $F_{\vec{x}}$  is the filter generated by the sets  $x_{\geq a}$ . Namely,  $T \in F_{\vec{x}}$  iff  $\exists a \in A, x_{\geq a} \subseteq T$ .

The filter  $F_{\vec{x}}$  determines the convergence properties of the net  $\vec{x}$  in the sense that  $\vec{x}$  converges to x iff  $\mathcal{N}(x) \subseteq F_{\vec{x}}$ . This gives rise to the idea of converging filters:

#### Definition 7 (H. Cartan '37)

We say that a filter F converges to a point x if  $\mathcal{N}(x) \subseteq F$ .

Since every filter can be extended to an ultrafilter, if F converges to a point x then there is an ultrafilter which covergese to x as well. Therefore, for most purposes, it suffices to consider only ultrafilters, or *ultranets*. For example, TFRE:

- $f: X \to Y$  is continuous.
- For every  $x \in X$ , and every ultrafilter U such that  $\mathcal{N}(x) \subseteq U$ , the ultrafilter  $f_*(U) = \{B \subseteq Y \mid f^{-1}[B] \in U\}$  extends  $\mathcal{N}(f(x))$ .

イロト イヨト イヨト イヨト

All of the above motivates the study of cofinal types of ultrafilters from a topological point of view, and more precisely, the directed order  $(U, \supseteq)$  where U is an ultrafilter. On  $\omega$ , this has been studied extensively by Blass, Dobrinen, Milovich, Raghavan, Shelah, Solecki, Todorcevic and many others.

#### Proposition 1

Suppose that  $U \leq_T V$  where U, V are ultrafilters, then there is a (weakly) monotone map  $f : V \to U$  such that Im(f) is cofinal in U.

- $\Rightarrow$  It is clearly the functions to compare the minimal size of a base (and therefore to understand the ultrafilter number).
- $\Rightarrow U \leq_{RK} V \text{ implies } U \leq_T V.$

#### Entering the realm of large cardinals



### (joint with Natasha Dobrinen)

メロト メロト メヨトメ

# The Tukey-top class

An ultrafilter U in  $\omega$  is called Tukey-top if for every ultrafilter W on  $\omega$ ,  $W \leq_T U$ .

Theorem 8 (Isbell '65 [8])

There exists a Tukey top ultrafilter.

Question (Isbell '65)

Are there provably a non-Tukey-top ultrafilters on  $\omega$ ?

## Theorem 9 (B.-Dobrinen '23[3])

Let U be a  $\kappa$ -complete ultrafilter over  $\kappa$ , then U is Tukey-top (wrt.  $\kappa$ -complete ultrafilters) iff  $\neg Gal(U, \kappa, 2^{\kappa})$ , that is: there is a sequence  $\langle X_i | i < 2^{\kappa} \rangle \subseteq U$  such that for every  $I \in [2^{\kappa}]^{\kappa}$ ,  $\bigcap_{i \in I} X_i \notin U$ .

Generalizing Isbell's construction, we proved the following:

#### Theorem 10 (B.-Dobrinen '23)

If  $\kappa$  is  $\kappa$ -compact, there is a  $\kappa$ -complete ultrafilter over  $\kappa$  which is Tukey-top. (forcing constructions B.-Garti-Shelah [4] B.-Gitik [5])

Benhamou, T. Rutgers (Rutgers)

Recall that U is a *p*-point on  $\kappa \ge \omega$  if for every sequence  $\langle X_{\alpha} \mid \alpha < \kappa \rangle \subseteq U$  there is  $X \in U$  which is a pseudo intersection for the sequence i.e. for every  $\alpha < \kappa$ ,  $X \setminus X_n$  is bounded (or finite if  $\kappa = \omega$ ).

## Theorem 11 (B. '22[1])

If U is an n-fold sum of p-points the U is not Tukey-top. Hence if in  $L[\mathbb{E}]$  there is no measurable limit of superstrong cardinals, then there are no  $\kappa$ -complete Tukey-top ultrafilters over  $\kappa$ .

## Theorem 12 (B.-Goldberg '23 [6])

Assume UA and that every irreducible is Dodd-sound. Then the following are equivalent for every  $\kappa$ -complete ultrafiler U over  $\kappa$ :

- U is Tukey-top (i.e.  $\neg Gal(U, \kappa, 2^{\kappa}))$
- *U* is not an *n*-fold sum of *p*-points.
- $\bigcirc \ \diamondsuit^*_{thin}(U).$

The result above is also true for  $\sigma$ -complete ultrafilters over regular cardinals.

イロト イヨト イヨト イヨト

#### Fact 13

Let  $(P, \leq_P), (Q, \leq_Q)$  be directed orders. Then<sup>a</sup>  $(P \times Q, \leq_{\times})$  is the least upper bound of P, Q in the Tukey order. Hence  $P \equiv_T P \times P$ .

 $a(p,q) \leq_{\times} (p',q')$  if and only if  $p \leq_P p'$  and  $q \leq_Q q'$ .

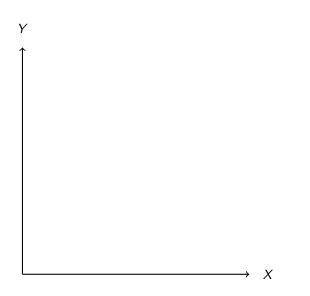
### Definition 14 (Fubini product)

Suppose that U is an ultrafilter over X and V an ultrafilter over Y. We denote by  $U \cdot V$  the Fubini product of U and V which is the ultrafilter defined over  $X \times Y$  as follows, for  $A \subseteq X \times Y$ ,

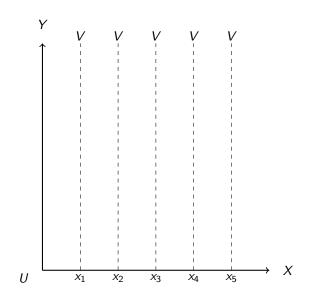
$$A \in U \cdot V$$
 if and only if  $\{x \in X \mid (A)_x \in V\} \in U$ 

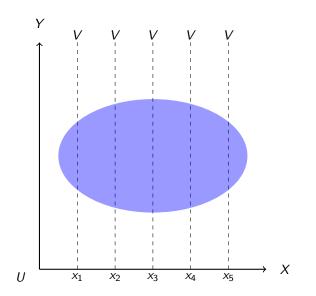
where  $(A)_x = \{y \in Y_x \mid \langle x, y \rangle \in A\}$ . If U = V, then  $U^2$  is defined as  $U \cdot U$  and referred to as the Fubini power.

イロト イヨト イヨト イヨト

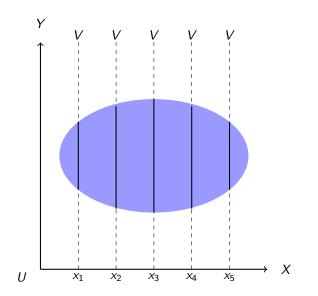


◆□▶ ◆□▶ ◆目▶ ◆目▶ 目: のへぐ

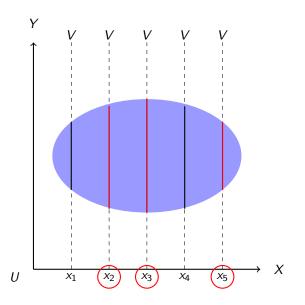




◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ



イロト 不良 とくほとくほう

 $(U,\supseteq), (V,\supseteq) \leq_T (U \cdot V, \supseteq).$  Therefore  $(U \times V, \leq_{\times}) \leq_T (U \cdot V, \supseteq).$ 

### Theorem 15 (Dobrinen-Todorcevic-Milovich '12 [7, 9])

For any two ultrafilters U, V on  $\omega$ ,  $U \cdot V \equiv_T U \times \prod_{n < \omega} V$ . The order on Cartesian products is always coordinatewise. In particular  $V \cdot V \equiv_T \prod_{n < \omega} V$  and  $U \cdot V \equiv_T U \cdot (V \cdot V)$ 

These results also hold for to  $\kappa$ -complete ultrafilters over  $\kappa$ .

### Theorem 16 (B.-Dobrinen '23)

Let U, V be any  $\kappa$ -complete ultrafilters over  $\kappa > \omega$ , then  $U \cdot V \equiv_T U \times V$ . In particular  $U \cdot V \equiv_T V \cdot U$  and  $U \cdot U \equiv_T U$ .

The proof essentially uses the well-ordering of  $\kappa^{\kappa}/U$  which is a virtue of the  $\sigma$ -completeness.

## Back to earth ( $\omega$ )



・ロト ・四ト ・ヨト ・ヨト

#### Definition 17

As ultrafilter U over  $\omega$  is rapid if for every function  $f : \mathbb{N} \to \mathbb{N}$  there is  $X \in U$  such that for every  $n < \omega$ ,  $X(n) \ge f(n)$ .

### Theorem 18 (Dobrinen-Todorcevic '11)

Suppose that V, U are ultrafilters on  $\omega$ , V is a rapid p-point. Then  $U \cdot V \equiv_T U \times V$ . In particular, if U, V are rapid p-points then  $U \cdot V \equiv_T V \cdot U$ .

In particular if U is a rapid p-point then  $U \cdot U \equiv_T U$ . Dobrinen and Todorcevic constructed an example of a p-point U such that  $U <_T U^2$ .

#### Theorem 19 (Milovich '12)

If U, V are ultrafilters on  $\omega$  and U is a p, then  $V \cdot U \equiv_T V \times U \times \omega^{\omega}$  and therefore if U, V are both p-points then  $U \cdot V \equiv_T V \cdot U$ .

イロン イ団 とく ヨン イヨン

## Theorem 20 (B. '24 [2])

For any two ultrafilters U, V on  $\omega, U \cdot V \equiv_T V \cdot U$ .

メロト メタト メヨト メヨト

The proof

イロト 不良 とくほとくほう

For a filter F we denote by  $F^* = \{A^c \mid A \in F\}$  the dual ideal of F. Also, denote by fin =  $\{A \subseteq \omega \mid A \text{ finite}\}$ . Note that  $(F, \supseteq) \simeq (F^*, \subseteq)$ .

#### Definition 21

Suppose that U is an ultrafilter and  $I \subseteq U^*$  is an ideal. We say that U has the *I*-p.i.p if for any sequence  $\langle X_n | n < \omega \rangle \subseteq U$ , there is  $X \in U$  such that for every  $n < \omega, X \setminus X_n \in I$ .

For example, U is a p-point if and only if U has the *fin*-p.i.p.

#### Proposition 2

Suppose that U has the I-p.i.p, then  $U \cdot U \equiv_T \prod_{n < \omega} U \leq_T U \times \prod_{n < \omega} I$ .

Since  $fin \equiv_T \omega$ , we get that for *p*-points *U*,  $U \cdot U \leq_T U \times \omega^{\omega}$  (this fact about *p*-points was already known to Dobrinen and Todorcevic).

イロト イヨト イヨト

### Theorem 22

If U and V are ultrafilters, then U (and V of course) have the  $(U \cap V)^*$ -p.i.p.

Corollary 23

 $U \cdot V \leq_T U \times V \times \prod_{n < \omega} U \cap V.$ 

イロト イヨト イヨト イヨト

#### Theorem 24

 $U \cdot V \equiv_T U \times V \times \prod_{n < \omega} U \cap V.$ 

To prove the theorem it remains to prove that  $U \cdot V \ge_T U \times V \times \prod_{n < \omega} U \cap V$ , and by the least upper bound property, it remains to prove that  $U \cdot V \ge_T \prod_{n < \omega} U \cap V$ .

#### Lemma 25 (Proof omitted)

For every  $F \subseteq V$ ,  $V \cdot V \ge_T F$ .

By the lemma, we conclude that  $V \cdot V \geq_T U \cap V$  and

$$U \cdot V \equiv_{\mathcal{T}} U \cdot (V \cdot V) \equiv U \times \prod_{n < \omega} (V \cdot V) \ge_{\mathcal{T}} \prod_{n < \omega} U \cap V$$

#### Corollary 26

For every ultrafilters  $U, V, U \cdot V \equiv_T V \cdot U$ .

イロン イ団 とく ヨン イヨン

Diamond-like Principles on  $\omega$ 

メロト メタト メヨト メヨト

### Definition 27 (Jensen)

We say that

- $(\kappa)$  holds if there is a sequence  $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ ,  $A_{\alpha} \subseteq \alpha$  such that for every set  $X \subseteq \kappa$ ,  $\{\alpha < \kappa \mid X \cap \alpha = A_{\alpha}\}$  is stationary.
- ②  $\Diamond^{-}(\kappa)$  is there is a sequence  $\langle \mathcal{A}_{\alpha} \mid \alpha < \kappa \rangle$  such that for every  $\alpha < \kappa$ ,  $\mathcal{A}_{\alpha} \in [P(\alpha)]^{\leq |\alpha|}$  such that for every  $X \subseteq \kappa$ , { $\alpha < \kappa \mid X \cap \alpha \in \mathcal{A}_{\alpha}$ } is stationary.

Of course, non of these makes sense on  $\omega$ .

#### Idea

Replace the club filter with a general filter F

イロト イヨト イヨト イヨト

#### Definition 28

Let F be a filter over a cardinal  $\kappa \geq \omega$ , and let  $\pi : \kappa \to \kappa$  we say that:

- $\Diamond_{\pi}^{*}(F)$ , holds if there is a sequence  $\langle \mathcal{A}_{\alpha} \mid \alpha < \kappa \rangle$ ,  $\mathcal{A}_{\alpha} \in [P(\alpha)]^{\leq \pi(\alpha)}$ . such that for every set X,  $\{\alpha < \kappa \mid X \cap \alpha \in \mathcal{A}_{\alpha}\} \in F$ .
- **②**  $\Diamond_{\pi}^{-}(F)$ , holds if there is a sequence  $\langle \mathcal{A}_{\alpha} \mid \alpha < \kappa \rangle$ ,  $\mathcal{A}_{\alpha} \in [P(\alpha)]^{\leq \pi(\alpha)}$ . such that for every set X, {α < κ | X ∩ α ∈  $\mathcal{A}_{\alpha}$ } ∈ F<sup>+</sup>.
- If F is an ultrafilter then the above definition coincide
- 2 If  $\pi(\alpha) = 1$  then we  $\Diamond_{\pi}^{-}(cub_{\kappa})$  is just the usual diamond.
- **③** Trivial if we allow  $\pi(\alpha) \approx 2^{\alpha}$
- If U is a Dodd-sound ultrafilter then  $\Diamond_{\pi}^{-}(U)$ , where  $\pi(\alpha) = 2^{\tau(\alpha)}$ ,  $[\tau]_{U} = \kappa$ .

イロト イ団ト イヨト イヨト

#### Theorem 29 (B.-Wu)

If  $\sum_{n=0}^{\infty} \frac{\pi(n)}{2^n} < \infty$ , and F extends the Frechet filter then  $\Diamond_{\pi}^{-}(F)$  fails.

#### Proof.

Denote by  $\mathbb{P}$  the standard Borel measure on  $2^{\omega}$  (identified with  $P(\omega)$ ). Suppose that  $\langle \mathcal{A}_n \mid n < \omega \rangle$  witness that  $\Diamond_{\pi}^{-}(F)$  holds, and consider the events

$$E_n = \{X \in P(\omega) \mid X \cap n \in \mathcal{A}_n\}$$

Then  $\mathbb{P}(E_n) = \frac{\pi(n)}{2^n}$ . By the Borel-Cantelli lemma, if  $\sum_{n=0}^{\infty} \mathbb{P}(E_n) < \omega$  then  $\mathbb{P}(\limsup E_n) = 0$ , where  $\limsup E_n = \bigcap_{n < \omega} \bigcup_{m \ge n} E_n$ . Therefore there is  $X \notin \limsup E_n$ , but then  $\{n < \omega \mid X \in E_n\} \in F^+$  is finite, so F cannot extend the Frechet filter.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Corrected definition:

### Definition 30

 $\diamondsuit_{\pi}^{-}(U) \text{ assures the existence of a sequence } \langle \mathcal{A}_{\alpha} \mid \alpha < \kappa \rangle \text{ such that } \\ \mathcal{A}_{\alpha} \in [P(\alpha)]^{\leq \pi(\alpha)} \text{ such that there are } 2^{\kappa}\text{-many sets } X \subseteq \kappa \text{ such that } \\ \{\alpha < \kappa \mid X \cap \alpha \in \mathcal{A}_{\alpha}\} \in U.$ 

## Theorem 31 (B.-Goldberg)

Let U be an ultrafilter, and suppose that  $\pi$  is not almost one-to-one modulo U. If  $\Diamond_{\pi}^{-}(U)$  holds then U is Tukey-top.

The proof generalizes to ultrafilters on  $\omega$  as well.

### Theorem 32 (B.-Wu)

Let  $\pi$  be any infinite-to-one function. It is ZFC provable that there is an ultrafilter U such that  $\pi$  is not almost one-to-one modulo U and  $\Diamond_{\pi}^{-}(U)$  hold.

イロト イヨト イヨト イヨト

Thank you for your attention!

メロト メタト メヨト メヨト

# References I

- Tom Benhamou, *Saturation properties in canonical inner models*, submitted (2023), arXiv.
- Tom Benhamou, *Commutativity of cofinal types*, Submitted (2024).
- Tom Benhamou and Natasha Dobrinen, *Cofinal types of ultrafilters over measurable cardinals*, J. Symb. Log. (2023), to appear.
- Tom Benhamou, Shimon Garti, and Saharon Sehlah, *Kurepa trees and the failure of the Galvin property*, Proceedings of the American Mathematical Society **151** (2023), 1301–1309.
- Tom Benhamou and Moti Gitik, *On Cohen and Prikry forcing notions*, The Journal of Symbolic Logic (2023), 1–47.
- Tom Benhamou and Gabriel Goldberg, *The Galvin property under the ultrapower axiom*, submitted (2023), arXiv:2306.15078.
- Natasha Dobrinen and Stevo Todorcevic, Tukey types of ultrafilters, Illinois Journal of Mathematics 55 (2011), no. 3, 907–951.

イロト イ団ト イヨト イヨト

- John R. Isbell, *The category of cofinal types. II*, Transactions of the American Mathematical Society **116** (1965), 394–416.
- David Milovich, Forbidden rectangles in compacta, Topology and Its Applications 159 (2012), no. 14, 3180–3189.
- Slawomir Solecki and Stevo Todorcevic, *Cofinal types of topological directed orders*, Annales de L'Institut Fourier **54** (2004), no. 6, 1877–1911.
- Stevo Todorcevic, *Directed sets and cofinal types*, Transactions of the American Mathematical Society **290** (1985), no. 2, 711–723.
- John W. Tukey, *Convergence and uniformity in topology. (am-2)*, Princeton University Press, 1940.

イロト イ団ト イヨト イヨト

#### Theorem 33 (Dobrinen-Todorcevic)

For p-point ultrafilters the following are equivalent:

$$U \equiv_T U \cdot U.$$

Dobrinen and Todorcevic forced *p*-point which is not above  $\omega^{\omega}$  and therefore cannot be Tukey equivalent to its Fubini square. By results of Solecki and Todorcevic [10], an ultrafilter *U* cannot be Tukey equivalent to  $\omega^{\omega}$ .

## Question (Dobrinen)

Is being Tukey above  $\omega^{\omega}$  equivalent to being rapid?

## Question (Dobrinen-Todorcevic)

Is there always an ultrafilter which is not Tukey above  $\omega^{\omega}$ ?

### Theorem 33 (Dobrinen-Todorcevic)

For p-point ultrafilters the following are equivalent:

$$U \equiv_T U \cdot U.$$

$$U \geq_T \omega^{\omega}$$

Dobrinen and Todorcevic forced *p*-point which is not above  $\omega^{\omega}$  and therefore cannot be Tukey equivalent to its Fubini square. By results of Solecki and Todorcevic [10], an ultrafilter *U* cannot be Tukey equivalent to  $\omega^{\omega}$ .

## Question (Dobrinen)

Is being Tukey above  $\omega^{\omega}$  equivalent to being rapid?

## Question (Dobrinen-Todorcevic)

Is there always an ultrafilter which is not Tukey above  $\omega^{\omega}$ ?

## Theorem 34 (B. '24)

If U is not Tukey above  $\omega^{\omega}$  then U must be a p-point. In particular, in Shelah's model where there are no p-points every ultrafilter is Tukey above  $\omega^{\omega}$ .

#### Theorem 35 (B. '24)

Assume CH. Then there is a p-point ultrafilter U over  $\omega$  such that  $U \ge_T \omega^{\omega}$  but U is not rapid.

### Definition 36

*U* is called almost rapid if for any function  $f : \omega \to \omega$ , there is  $X \in U$ , such that  $f_X$  dominates f, where  $f_X$  is defined recursively,  $f_X(0) = \min(X)$ ,  $f_X(n+1)$  is the  $f_X(n)$ <sup>th</sup> element of X

Now it is not hard to see that  $X \mapsto f_X$  is a monotone map and if U is almost rapid, this map is cofinal. Hence if U is almost rapid, then  $U \ge_T \omega^{\omega}$ . Under CH, I proved that we can construct a *p*-point which is almost rapid and not rapid.

### Question

Is the class of all ultrafilters Tukey above  $\omega^{\omega}$  Tukey above  $\omega^{\omega}$  the same as the class of  $\alpha$ -almos-rapid ultrafilters?

#### Question

Is it true that for any two ultrafilters U, V on any cardinals  $\kappa, \lambda$ ,  $U \cdot V \equiv_T V \cdot U$ ?

We can restrict to the case that U, V are on the same cardinal, but the degree of completeness may vary not.

### Question

Is it consistent to have two non-Tukey top ultrafilters U, V such that  $U \cdot V$  is Tukey top? namely, is the class of non-Tukey top ultrafilters closed under Fubini products?