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0.1. Independece results. The theory we developed so far was developed
in ZFC− (namely Ax0, Ax1, Ax3 − Ax9). In particular, every object we
defined was proven to exist in ZFC− and every theorem we proved wa
proven in ZFC−. By the soundness lemma of first-order logic, this means
that in every model of ZFC−, we can carry all this theory. Some statements,
like CH or SH, were not yet settled and we do not know at this point if
ZFC− proves or disproves them. Our goal is to prove that these statements
are independent with ZFC−. Formally, we claim that there is no proof for
CH from ZFC and there is no proof for ¬CH from ZFC. To establish this,
we would have to present two models: One that satisfies ZFC + CH and
one that satisfies ZFC + ¬CH. Once we find these models, we can be sure
that there is no such proof (again, by the soundness lemma).

Example 0.1. Consider the three axioms of a group Gr in the language
{e, ∗}:

(1) ∀x.∀y.∀z.x ∗ (y ∗ z) = (x ∗ y) ∗ z (Associativity).
(2) ∀x.e ∗ x = x ∗ e = x (Identity element).
(3) ∀x.∃y.x ∗ y = y ∗ x = e (Inverse element).

Then ϕ := ∀x.∀y.x ∗ y = y ∗ x is independent of Gr, since S3 |= ¬ϕ while
⟨{0},+⟩ |= ϕ.

While producing models of Gr is relatively easy, it is more challenging
to produce models of ZFC. In this chapter, we present some of the most
basic construction of ZF and ZFC. Since the language of set theory is just
L = {∈}, a model in the model theoretic sense is a set M ∈ V and an
interpretation E for ∈ as a binary relation of M such that ⟨M,E⟩ |= ZF or
ZFC. There is no way to construct such a (set)model within ZFC, since
this would meen that ZFC proves that there is a model of ZFC which
contradicts the second incompleteness theorem (A reach enough theorem
cannot prove its own consistency). So there would be two ways to approach
this. The first, is to use classes, instead of sets. We will have to formally
justify this usage. The second approach is to find set models which satisfy
”enough-ZFC” to carry an argument. We will return to the latter later when
we will talk about reflection theorems.
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1. Relativization and Class models

Recall that a class M is just a formula ψ with a free variable x, we this of
M as the collection M =Mψ = {x | ψ(x)}. For a formula ϕ in the language
of set theory and a class and a class M = Mψ, we define the relativization

of ϕ to M , and denote the formula by ϕM as follows:

Definition 1.1. (1) (x = y)M is x = y.
(2) (x ∈ y)M is x ∈ y.
(3) (α ∧ β)M is αM ∧ βM .
(4) (¬ϕ)M is ¬(ϕM ).
(5) (∃x.ϕ)M is ∃x.x ∈M ∧ ϕM

So we simply change in a formula all the ∃x with ∃x ∈ M . So (∀x.ϕ)M
means ∀x.x ∈M ⇒ ϕ.

Definition 1.2. (1) M |= ϕ means ϕM .
(2) If S is a set of sentences then ”M |= S” means that for every ϕ ∈ S,

ϕM holds.

The reason we might think of M as a model and the relation M |= ϕ in
the usual meaning is the following lemma:

Lemma 1.3. Suppose that S and T are two set of sentences andM is a class
(namely a formula). Suppose that T proves that M ̸= 0 and that M |= S
(in the sense of the previous definition), then Con(T ) ⇒ Con(S).

Proof. If S is inconsistent that there is a formula (any formula) χ such that
S proves that χ∧¬χ, then we can argue as in the soundness lemma, that T
proves that for any formula α that is provable from S,M |= α. In particular,
M |= χ ∧ ¬χ and therefore T proves that (χ ∧ ¬χ)M which is by definition
χM ∧ ¬(χM ). Thus T proves a contradiction so T is inconsistent. □

So suppose for example that we have constructed a class M from ZFC
and proved that M |= ZFC + CH, then we proved that Con(ZFC) ⇒
Con(ZFC + CH).

Note that we are thinking of the interpretation of ∈ in M also as ∈, but
we might as well think of another relation E and do all the above with this
E. Let us forget about this more complicated situation. Pur first ZF class
model (the definition is carried in ZF−) is:

2. the Well-founded sets and the axiom of foundation

Let us define the Vα hierarchy (in ZF−):

Definition 2.1. Let V0 = ∅, Vα+1 = P (Vα) and for limit δ, Vδ = ∪α<δVα.
Denote the class WF = ∪α∈OnVα

Formaly, WF is the formula

∃α ∈ On.x ∈ Vα
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Example 2.2. If x, y ∈ Vα then {x, y} ∈ Vα+1 and ⟨x, y⟩ ∈ Vα+2.
For every α, |Vα| = ℶα.

Lemma 2.3. (1) For every α, Vα is a transitive set and WF is a tra-
sitive class.

(2) If X ⊆WF then X ∈WF .
(3) if α ≤ β then Vα ⊆ Vβ.
(4) On ∩ Vα = α.

Proof. (1) By induction on α, V0 = ∅ is transitive. At limit stages, we
take the union of trasitive sets which is transitive. At successor step,
suppose that Vα is transitive, and let us prove that Vα+1 = P (Vα)
is transitive: let x ∈ P (Vα), and y ∈ x. Then x ⊆ Vα, and therefore
y ∈ Vα. By the I.H., y ⊆ Vα and therefore y ∈ P (Vα) = Vα+1.

(2) Let X be a set such that X ⊆ WF , then for every x ∈ X, there is
an ordinal αx such that x ∈ Vαx . Let α = supx∈X αx, then X ⊆ Vα
and therefore X ∈ Vα+1.

(3) Easy, by induction on β.
(4) By induction on α, for α = 0 this is clear. At limit stages δ, Vδ∩On =

∪α<δVα ∩ On = ∪α<δα = δ. At successor step α + 1, suppose that
Vα ∩On = α and let us prove that Vα+1 ∩On = α+ 1. Let β ∈ On,
we have that

β ∈ Vα+1 ⇔ β ⊆ Vα ∩On
⇔ β ⊆ α⇔ β ≤ α⇔ β ∈ α+ 1.

For the other direction, if β ∈ α+ 1, then β ≤ α and thus β
□

Definition 2.4. For x ∈ WF , Rank(x) = β for the minimal β such that
x ∈ Vβ+1. (note that the minimal is always successor)

Lemma 2.5. (1) Vα = {x ∈WF | Rank(x) < α}.
(2) Rank(y) = sup(Rank(x) + 1 | x ∈ y).

Proof. For (1), if x ∈ Vα then x ∈ VRank(x)+1 and by minimality, Rank(x) <
Rank(x) + 1 ≤ α. In the other direction, if Rank(x) < α then x ∈
VRank(x)+1 ⊆ Vα. For (2), Note that if y ∈ WF , then by transitivity,
Rank(x) is defined for every x ∈ y. Let α = Rank(y), then y ∈ Vα+1 =
P (Vα) and thus for every x ∈ y, x ∈ Vα so Rank(x)+1 ≤ α. Hence sup ≤ α.
If toward a contradiction β = sup < α, then for every x ∈ y, x ∈ Vβ and
therefore y ⊆ Vβ. It follows that y ∈ Vβ+1 contradiction the minimality of
α = Rank(y). □

Example 2.6. IfX,Y ∈ Vα, then for every x ∈ X, y ∈ Y , Rank(x), Rank(y) <
α, hence Rank(⟨x, y⟩) ≤ α + 1. So X × Y ∈ Vα+2. Also every f ∈ YX is a
subset of X × Y , hence f ∈ Vα+2. Hence YX ⊆ Vα+2, so

YX ∈ Vα+3. Also
if X ∈ Vα, then for every x ∈ X, Rank(x) < α and therefore every y ∈ ∪X,
Rank(y) < α so ∪X ∈ Vα.
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Exercise 1. If X,Y ∈ Vα, then:

• X ∩ Y,X ∪ α,X \ α,X∆Y ∈ Vα (Since the sup is taken over less
elements so Rank(X∩Y ), ... ≤ Rank(X)), and in general, if Z ⊆ X
then Rank(Z) ≤ Rank(X).

• P (X) ∈ Vα+1 (Since Rank(P (X)) = sup(Rank(Y ) + 1 | Y ⊆ X) =
α+ 1.

• X × Y ∈ Vα+2. (Since for every x ∈ X, y ∈ Y , Rank(⟨x, y⟩) ≤ α,
then X × Y ⊆ Vα+1 and therefore X × Y ∈ Vα+2.

• If E is a relation on X, then E ∈ Vα+2 (Since E ⊆ X × Y ).
• If E is an equivalence relation, for a ∈ X, [a]E ∈ Vα.
• Also X/E ∈ Vα+1.

Lemma 2.7. N ∈ Vω+1, Z,Q ∈ Vω+4 and R ∈ Vω+6.

Ax2.(Foundation)∀x.(x ̸= ∅ ⇒ ∃z ∈ x.∀y ∈ x.y /∈ z)

The axiom of foundation says that every set has a minimal element with
respect to ∈.

Theorem 2.8. The following are equivalent:

(1) Foundation.
(2) V =WF .

To prove the theorem we need the following definition:

Definition 2.9. Let A be any set, define the tr(A) = ∪n<ωA(n), where

A(0) = A and A(n+1) = ∪A(n).

Namely tr(A) collects the elements of A and the elements of elements of
A and the elements of elements of elements of A, and so on.

Lemma 2.10. A ⊆ tr(A) is a transitive set (and is the minimal transitive
set containing A).

Proof of theorem. (2) ⇒ (1), let x ̸= ∅ be any element, then x ∈ WF . Let
α = min(Rank(y) | y ∈ x). Then there is z ∈ x such that Rank(z) = α.
To see that z ∩ x = ∅, suppose otherwise, then there is y ∈ z ∩ x, and
Rank(y) < Rank(z) = α, but since y ∈ x, we contradict the minimality of
α.

(1) ⇒ (2), let x be any set, we need to prove that x ∈ WF . Since
x ⊆ tr(x), and since WF is a transitive class, it suffices to prove that
tr(x) ⊆WF . Suppose toward a contradiction that this is not the case, then
X = tr(x) \WF ̸= ∅. Then by the axiom of foundation, there is z ∈ X
such that for every X ∩ z = ∅. In particular if y ∈ z, then y ∈ tr(x) but
y /∈ X and therefore y ∈ WF . Thus z ⊆ XF which implies that z ∈ WF ,
contradiction. □
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2.1. Absoluteness. We say the ϕ(x1, ..., xn) is absolute for M ⊆ N if

∀a1, ..., an ∈M.(M |= ϕ(a1, .., an) ↔ N |= ϕ(a1, ..., an)

Clearly, x ∈ y and x = y are absolute for every model. Clearly, every state-
ment which is provabley equivalent to an absolute formula is also absolute.

Claim 2.10.1. If ϕ, ψ are absolute for M,N then so is ̸= ϕ and ϕ∧ψ. Thus
all quantifier free formulas are absolute

Definition 2.11. A bounded quantifier is a quantifier of the form ∃x ∈ y
of ∀x ∈ y (was defined in chapter 1).

Lemma 2.12. If M,N are transitive models and all the quantifiers in ϕ
are bounded, then ϕ is absolute.

Proof. It remains to show that if ϕ is absolute then ∃x ∈ y.ϕ and ∀x ∈ y.ϕ are
absolute. Note that ∀x ∈ y.ϕ ≡ ¬(∃x ∈ y.¬ϕ), now ¬ϕ is abosulute and thus
it suffices to prove the existential part. Let y ∈M be any element. Clearly if
M |= ∃x ∈ y.ϕ, then since M ⊆ N so does N . Suppose N |= ∃x ∈ y.ϕ, then
there is n ∈ N such that n ∈ y and ϕN . Since y ∈ M and M is transitive,
then n ∈M and thus ϕM holds. Hence M |= ∃x ∈ y.ϕ. □

Corollary 2.13. x ⊆ y and ”x is transitive” is absolute for transitive models

Proof. x ⊆ y ≡ ∀z ∈ x.z ∈ y and x is transitive iff ∀y ∈ x.∀z ∈ y.z ∈ x. □

We have defined many set theoretic operations and definition. In each
model of ZF− they can be interpreted and maybe have different meaning.
For example (x = {y, z})M then x is the unique set whichM |= only y, z ∈ x.
but it is possible that a large model N sees that x = {y, z, w} for some
w /∈ M , and so the set {x, y} in N is different from {x, y} in M . In case of
{x, y}, this is not the situation for transitive models, so we need some way
to identify when a defined notion is absolute:

Definition 2.14. Let F (x, x1, x2, ..., xn) be a defined notion in models
M,N , namely, suppose that ϕ(x, y, x1, ..., xn) is a formula such that for
every a1, ..., an, M,N both satisfy that ∀x∃!y.ϕ(x, y, x1, ..., xn), then F is
says to be absolute if ϕ is.

In particular, for every a, a1, ..., an ∈ M , FM (a, a1, ..., an) is the unique
y ∈M such that ϕM (a, y, a1, ..., an). Now if F is absolute then also ϕN (a, y, a1, .., an)
holds and therefore FN (a, a1, ..., an) = FM (a, a1, ..., an).

Proposition 2.15 (Defined notions). The following are absolute for tran-
sitive models.

(1) {x, y}, {x}.
(2) ⟨x, y⟩.
(3) x = {y, z}.
(4) ∅.
(5) x ∪ y, x \ y, x ∩ y



6 TOM BENHAMOU UNIVERSITY OF ILLINOIS AT CHICAGO

(6) x+ 1 := x ∪ {x}.
(7) ∪x,∩x.

Proof. z = {x, y} iff z is the unique such that x ∈ z ∧ y ∈ z ∧ (∀t ∈ z.t =
x ∨ t = y)... □

Note that if we compose absolute defined notions we obtain absolute define
notions, and if we substitute absolute defined notions in an absolute formula
we obtain an absolute formula. So the following are also absolute for trasitive
models:

Proposition 2.16. ”z is an ordered pair”, A × B, ”R is a relation”, ”R
is an order”, ”R is a linear order”, ”R is a function”, ”R(x)”, ”R is 1 −
1/onto/bijection”.

For example P (X) is not abolute since it is defined by the formula Y =
P (X) iff ∀Z.Z ⊆ XiffX ∈ Y and we do not have way to bound the quatifier
∀Z. Similarily, YX is not absolute. However, since Z ⊆ X” and f : X → Y
are transitive, we have that:

Lemma 2.17. If M is transitive then:

(1) PM (X) = P (X) ∩M .
(2) (XY )M = XY ∩M .

Now let us consider absoluteness with respect to V .

Lemma 2.18. Suppose that M is a transitive model of ZF− − P − Inf ,
then the following are absolute for M :

(1) ”R well orders A”.
(2)

Proof. Suppose that R well orders A We need to check that

M |= ∀X.X ⊆ A ∧X ̸= ∅ ⇒ ∃x ∈ X.∀y ∈ X.y = x ∨ (⟨x, y⟩ ∈ R)

Th inner formula is absolute for transitive model and the only problem is
∀X which is not bounded. But note that ∀X ∈ M follows from ∀X which
we are assuming (namely, ∀ is downward absolute). □

Corollary 2.19. Let M be a transitive model of ZF−, then ”x is an ordi-
nal”, ”x is a limit/successor ordinal”, ”x is a finite ordinal”, ω are absolute
between V and M .

Also ”α is a cardinal” is not absolute since this means that for every
β < α and every function f : β → α. f is not onto. You might think
that we can bound f ∈ αβ, but the defined notion αβ is not absolute for
transitive models. However, if M ⊆ N , then if N |= α is a cardinal then
M |= α is a cardinal. So for example ω1 is not an absolute notion.

Corollary 2.20. Let M be a transitive model of ZF− − Inf . If then M
satisfy the the axiom of infinity iff ω ∈M
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Next we would like to verify that WF is a model of ZF or ZFC. For this
we will formulate sufficient condition for a general class models. The next
lemma simplify the verification that a class M satisfies certain axioms:

Theorem 2.21 (ZF−). (1) M |= Ax0 iff M ̸= 0.
(2) If M is a transitive class, then M |=extensionality.
(3) If ∀x, y ∈M∃z ∈M.{x, y} ⊆ z then M |=pairing.
(4) If ∀x ∈M∃y ∈M. ∪ x ⊆ y, then M |= union.
(5) If M ⊆WF , then M |=foundation.
(6) If M is transitive, and ∀x ∈ M.∃y ∈ M.P (x) ∩ M ⊆ y, then

M |=powerset.
(7) If for every formula ϕ(x, x1, .., xn) ∀a1, .., an ∈M.∀m ∈M.{x ∈ m |

ϕM (x, a1, ..., an)} ∈M , then M |= comprehension.
(8) If for every formula ϕ(x, y, x1, .., xn) ∀a1, .., an ∈ M.∀m ∈ M such

that .M |= ∀a ∈ m∃!z.ϕ(x, y, a1, ..., an), there is Y ∈ M such that
{y | y ∈ m ∧ ϕM (x, y, a1, ..., an)} ⊆ Y , then M |= replacement.

Proof. (1) M |= Ax0 iff (∃x.x = x)M ≡ ∃x ∈M.x = x iff M ̸= ∅.
(2) M |= Ax1 iff (∀x, y.(∀z.z ∈ x ⇔ z ∈ y) ⇒ x = y)M ≡ ∀x, y ∈

M.(∀z ∈ M.z ∈ x ⇔ z ∈ Y ) ⇒ x = y. Suppose M is transitive 1,
Let x, y ∈ M , suppose that ∀z ∈ M.z ∈ x ⇔ z ∈ y. Since M is
transitive, then for every z ∈ x of z ∈ Y , then z ∈ M and therefore
∀z.z ∈ x⇔ z ∈ y. By extensionality in V we get that x = y.

(3) Exercise.
(4) Exercise.
(5) Suppose that M ⊆ WF , then M |=foundation iff (∀x.x ̸= ∅∃y ∈

x.x ∩ y = ∅)M Let x ∈ M and suppose that (x ̸= ∅)M , then ∃y ∈
x ∩ M . We want to prove that (∃y ∈ x.∀z ∈ x.z /∈ y)M . Since
M ⊆WF , there is y ∈ x∩M of minimal rank and as in the Theorem
2.8, we have that for every z ∈ x∩M , z ∈WF and therefore z /∈ y.

(6) Since M is transitive (z ⊆ x)M is just z ⊆ x and therefore the
assumption ensures that M |=powerset axiom.

(7) We want to prove that for every z ∈M there y ∈M such that

(∀x.x ∈ y ↔ x ∈ z ∧ ϕ(x, a1, ..., an))M

then the assumption of (6) ensures that there is such y ∈M .
□

Theorem 2.22. If V is a model of ZF− (ZFC−) then WF is a model of
ZF (ZFC).

Proof. Ax0− ∅ ∈WF .
Ax1− WF is transitive
Ax2− WF ⊆WF
Ax3− Let ϕ(x, x1, .., xn) be a formula and a1, ..., an ∈WF parameters. Let

1If M is not transitive then M might ”miss” some elements z ∈ x such that z /∈ y and
thus fail to satisfy extensionality.



8 TOM BENHAMOU UNIVERSITY OF ILLINOIS AT CHICAGO

m ∈ WF , we need to prove that {x ∈ m | ϕWF (x, a1, ..., an)} ∈ WF . Note
that this set is a subset of WF and therefore is belongs to WF .
Ax4− we already checked.
Ax5− We already checked.
Ax6− Similar to comprehension, suppose that ϕ(x, y, x1, ..., xn) is a formula
such that for every a1, ..., an ∈WF , every m ∈WF :

∀x ∈ m.∃!y ∈WF .ϕ
WF (x, y, a1, ..., an)

Then in V we can write the formula

ψ(x, y,m, a1, ..., an) ≡ y ∈WF ∧ ϕWF (x, y,m, a1, ..., an)

Then in V we have that for every x ∈ m ∃!y.ψ(x, y, a1, ..., an), o by replace-
ment in V there the set Y = {y | ∃x ∈ m.ψ(x, y, a1, ..., am)} exists. By the
definition of ψ, we will have that y ∈ WF and therefore Y ⊆ WF and so
Y ∈WF .
Y ⊆WF which implies that Y ∈WF . Y is as wanted.

Ax7− we have that ω ∈ Vω+1 and since WF is transitive, then WF |=
infinity
Ax8− Let x ∈WF , then P (x) ∩WF = P (x) and P (x) ∈WF . So there is
y ∈WF such that P (x) ∩WF ⊆ y.
Ax9− Let us check that every set can be well ordered. Let A ∈WF , then
in V there is a well ordering R of A. Then R ∈WF (since R ⊆ A×A). We
already seen that ”R well-orders A” is absolute. It follows that WF |= A
can be well ordered.

□

Theorem 2.23 (ZFC). If κ is strongly inaccessible then Vκ |= ZFC

Corollary 2.24. ZFC ̸⊢ ”∃ inaccessible cardinal”

Proof. Otherwise ZFC ⊢ Con(ZFC). □

Actually more is true, we cannot construct a model M such that M |=
there is an inaccessible cardinal.

2.2. Well-founded relations and reflection theorems. Induction can
be performed on non-linear sets as well, and here is the most general frame-
work:

Definition 2.25. A relation R on a set A is called well founded if:

∀X ⊆ A.X ̸= ∅ ⇒ ∃y ∈ X.∀z ∈ X.¬zRy

a totally ordered set which is well-founded is an ordered set.

Definition 2.26. R is called set-like in A if {x ∈ A | xRy} is always a set
for every y ∈ A.

Corollary 2.27. ∈ is well-founded on any set (class) iff V =WF .
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Definition 2.28 (R-induction/recursion). Given a well founded and set like
relation R on A, . Induction: (∀y.(∀xRy.Ψ(x)) ⇒ Ψ(y)) ⇒ ∀y.Ψ(y)
Recursion: Suppose that g(x) is defined for every xRy. Define g(y), given
the knowledge of {g(x) | xRy}.

Definition 2.29 (Mostowski’s collapse). Let A be any class and R a set-like
and well-founded relation. Define π(x) = {π(y) | yRx}.

Theorem 2.30. M = {π(x) | x ∈ A} is a transitive class and π :<
A,R >→< M,∈> is an homomorphism.

Example 2.31. If R = 0 then π(x) = 0 for every x ∈ A. If R well orderes
A then π is the isomorphism to otp(A,R).

Definition 2.32. We R is extensional on A if

∀x, y ∈ A.x = y ↔ (∀z.(zRx⇔ zRy)

Example 2.33. If A is transitive, then ⟨A,∈ ⟩ is existensial.

Theorem 2.34 (The Mostowski collapse). If R is a well-founded set-like
extensional relation on A then there is a transitive class M such that the
Mostowski collapse π is an isomorphism between A and M . Moreover, if
X ⊆ A is transitive then π ↾X = id.

2.3. Reflection theorems. This is the second type of ”models” we will
have for ZFC, once which only satisfy a fragment of ZFC.

A subformula of a formula ϕ is just a substring which is a legitimate
formula.

Definition 2.35. A list of formulas is subformula closed, if every subformula
of a a formula in the list appears in the list.

Lemma 2.36. Suppose thatM ⊆ N be classes and ϕ1, ..., ϕn be a subformula
closed list of formulas. The following are equivalent:

(1) ϕ1, ..., ϕn are absolute for M,N
(2) Whenever ϕi is of the form ∃xϕj(x, x1, .., xm), then:

∀y1, ..., ym ∈M.(∃x ∈ N.ϕN (x, y1, ..., ym) ⇒ ∃x ∈M.ϕN (x, y1, ..., ym)).

Proof. (1) ⇒ (2), we now absoluteness, in particular ϕNj (x, y1, .., yn) iff

ϕMj (x, y1, ..., yn) so this is clear. (2) ⇒ (1) is like tarski’s criterion for ele-
mentary submodel, we have to go by induction on subformulas, for atomic
formulas this is trivial. In the inductive step, ̸= and ∧ are clear. Now (b)
gives you the missig part to complete the induction. □

Theorem 2.37 (The reflection theorem for Vα). Let ϕ1, .., ϕn be any for-
mulas, then

∀α∃β > α.ϕ1, ..., ϕn are absolute for Vβ

Theorem 2.38 (The General reflection theorem). Suppose that Z = ∪α∈OnZα
such that:
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(1) α ≤ β ⇒ Zα ⊆ Zβ.
(2) Zα is a set.
(3) For limit δ, Zδ = ∪α<δZα

Then for any formulas ϕ1, .., ϕn

∀α∃β > α.ϕ1, ..., ϕn are absolute for Z,Zβ

Proof. We just need to find β which is a closure point for the Skolham
functions. We define a sequence of ordinals αn. Initially, α0 = α. Suppose
that αn was defined, for every i, is of the form∃x.ϕj(x, x1, ..., xn), then for
each a1, ..., an ∈ Zαn if there is a ∈ Z such that ϕj(a, a1, ..., an), find some
ηi(a1, .., an) such that a ∈ Zηi(a1,...,an)}. Let αn+1 ≥ αn+1, sup(ηi(a1, ..., an) |
1 ≤ i ≤ n, a1, ...an ∈ Zαn). Finally, let β = supn<ω αn. Then Zβ =
∪n<ωZαn . It is clear that Z satisfy the requirement of the previous lemma.

□

Corollary 2.39. If A ⊆ Z is any set, then there is A ⊆ B ⊆ Z such that
|B| = max(|A|, ω) such that ϕ1, ..., ϕn is absolute for B,Z

Proof. like the proof for elementary submodel theorem of Lowenhaim-Skolhem-
Tarski □

Corollary 2.40. If ϕ1, ..., ϕn are statements in ZF (ZFC) then ZF ⊢ ∀α∃β >
α.Vβ |= ϕ1 ∧ .... ∧ ϕn
Corollary 2.41. Any S extending ZF is not finitely axiomatizable

Proof. Otherwise, there would be some α such that Vα is a model of those
finitely many axioms and this would be a model of ZF constructed from
ZF , contradicting Godel second incompleteness theorem. □

Corollary 2.42. For any theory S extending ZF , and every finitely many
formulas ϕ1, .., ϕn ∈ S there is a countable set A such that for A |= ϕ1, ..., ϕn.

Corollary 2.43. Let Z be a transitive class and let ϕ1, ..., ϕn be a finite set
of formulas and X ⊆ Z be a transitive set. Then there is a transitive model
X ⊆ M such that |M | ≤ max(|X|, ω) such that ϕ1, ..., ϕn are absolute for
M,Z.

Corollary 2.44. for every finitely many axioms of ZFC there is a countable
transitive model M satisfying them.

By reflecting enough axioms of ZFC, we can haveM reach enough so that
RM exists, ωM1 , P (N)N exists, and so on. How is this not a contradiction to
the fact that M is transitive (and therefore ωM1 ⊆ M)? The point is that
these notions are not absolut, and for example ωM1 is just some countable
ordinal which the model M ”thinks” is ω1.

3. Gödel’s constructible universe

This is due to Godel.
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Definition 3.1. Let A be a set. A subset B ⊆ A is said to be definable
from A is there if a formula ϕ(x, x1, ..., xn) and a1, ..., an ∈ A such that
B = {a ∈ A | ϕA(a, a1, ..., an)}.

Let us define an opperation D(A) = {B ∈ P (A) | B is definable in A},

Definition 3.2. The constructable universe is defined as follows:

(1) L0 = ∅.
(2) Lα+1 = D(Lα).
(3) For a limit δ, Lδ = ∪α<δLα.

Let L = ∪α<δLα, then L is called ”the constructible universe”.

We would like to define a formula ϕ(A,B, a1, ..., an) which said ”B is
definable in A from a1, ..., an” and this formula is absolute for transitive
models. We could have taken the approach of Godel numbers, but let us do
it directly:

Definition 3.3. Let:

(1) Diag∈(A,n, i, j) = {s ∈ An | s(i) ∈ s(j).
(2) Diag=(A,n, i, j) = {s ∈ An | s(i) = s(j)}.
(3) Proj(A,R, n) = {s ∈ An | ∃r ∈ R.r ↾ n = s}

Note that These are all absolute defined notions.

Definition 3.4. Define D′(k,A, n) recursively on k (for all n):

(1) D′(0, A, n) = {Diag∈(A,n, i, j), Diag=(A,n, i, j) | i, j < n}.
(2) D′(k + 1, A, n) = D′(k,A, n) ∪ {An \R | R ∈ D′(k,A, n)} ∪ {R ∩ S |

R,S ∈ D′(k,A, n)} ∪ {Proj(A,R, n) | R ∈ D′(k,A, n+ 1)}

Again, note that D′(k,A, n) is absolute.

Definition 3.5. Df(A,n) := ∪k<ωD′(k,A, n). And Df(A,n) is absolute

The idea of Df(A,n) is that if R is an n-arry relation defined from A
without parameters, then R ∈ Df(A,n). By the usual way formulas are
defined, the set Df(A,n) is exactly those R’s. We have that |Df(A,n)| ≤ ω.

Definition 3.6. Let D(A) := {X ∈ P (A) | ∃n < ω.∃R ∈ D(A,n + 1)∃s ∈
An.X = {x ∈ A | s⌢x ∈ R}}.

Again, note that D(A) is absolute.

Corollary 3.7. Let M be a transitive model, then D(X) is an absolute
defined notion for M .

Corollary 3.8. Let M be a transitive model of ZF then ∪α∈M∩OnLα ⊆M
and if On ⊆M then L ⊆M .

Proposition 3.9. (1) D(A) ⊆ P (A).
(2) If A is transitive then A ⊆ D(A).
(3) If X ⊆ A and X is finite then X ∈ D(A).
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(4) If |A| ≥ ω then |A| = |D(A)|.

Proof. (1) is clear. For (2), consider the formula ϕ(x, y) to be x ∈ y. Then
for every a ∈ A, a is definable from a {x ∈ A | (x ∈ a)A} = {x ∈ A |
x ∈ a} = a (since A is transitive). (3), (4) are a bit trickier than one thinks,
let us leave the formal proof for the curious reader and refer to Kunen. The
intuition behind (4) is that we can enumerate all the formulas, and there are
countably many. Now consider A<ω(Formulas), then the left side (which
provides the parameters) and the righthand side the formula gives all the
elements of D(A), but this set has size |A|, so |D(A)| ≤ |A|. □

Proposition 3.10 (Properties of Lα). (1) Lα is transitive, and L is a
transitive class.

(2) α ≤ β then Lα ⊆ Lβ. Lα ∈ Lα+1. Every finite subset of Lα is in
Lα+1.

(3) For every n < ω, Ln = Vn and thus Lω = Vω.
(4) For every α, Vα ⊆ Lα.

Definition 3.11. For x ∈ L, define RankL(x) = α for the minimal α such
that x ∈ Lα+1.

Proposition 3.12. (1) Lα = {x ∈ L | RankL(x) < α}.
(2) On ∩ Lα = α, hence On ⊆ L and RankL(α) = α.

Theorem 3.13. For every α ≥ ω, |Lα| = |α|.

Proof. Clearly, for every α, α ⊆ Lα thus |α| ≤ |Lα|. We prove the other
direction by induction on α, for α = ω this is easy since Ln = Vn are
finite and thus Vω = ∪n<ωVn is countable. For limit α > ω, this follows by
induction hypothesis and for successor α, we have that |Lα+1| = |D(Lα)| =
|Lα| = |α| = |α+ 1|. □

Corollary 3.14. Vω+1 ̸= Lω+1

Proof. Just by cardinality consideration □

3.1. ZFC in L. Here we start with ZF and we establish that L |= ZFC,
thus we obtain:

Theorem 3.15. Con(ZF ) ⇒ Con(ZFC).

Let us start only with ZF

Theorem 3.16. L |= ZF

Proof. Ax0- L ̸= 0.
Ax1- L is transitive.
Ax2- L ⊆WF .
Ax3- Let ϕ(x, x1, ..., xn) be a formula, and Then in V we have that set
B = {x ∈ L | ϕL(x, a1, ..., an)}. This is not enough since by definition of L
we can only use the definition for some Lα. To overcome this problem, we
use reflection. First, we find α ∈ On such that B ⊆ Lα and a1, ..., an ∈ L.
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Then we apply reflection to the formula ϕ(x, a1, ..., an) to find β > α such
that ϕ(x, x1, ..., xn) is absolute between L and Lβ. It follows that {x ∈ L |
ϕL(x, a1, ..., an)} = {x ∈ Lα | ϕLα(x, a1, ..., an)} ∈ D(Lα) = Lα+1.
Ax4- If x, y ∈ Lα, then {x, y} is definable from x, y so {x, y} ∈ Lα+1.
Ax5- Let x ∈ L then ∪x ⊆ L , take α = sup(RankL(y) | y ∈ ∪x). Then
∪x ⊆ Lα.
Ax6− Let ϕ(x, y, a1, .., an) be a formula suitable for reflection in L then for
every x ∈ a ∈ L ∃!y ∈ L. ϕL(x, y, a1, ..., an) and therefore in V we can form

{y ∈ L | ∃x ∈ a.ϕL(x, y, a1, ..., an)}
Then we can find again α large enough such that this set is included in Lα.
Ax7- ω ∈ L.

Ax8- We just have to find α such that P (X) ∩ L ⊆ Lα. □

3.2. The axiom of constructability.

Definition 3.17. The axiom V = L means that ∀x.∃α.x ∈ Lα.

Theorem 3.18. L |= ”V = L”

Proof. This is because the notion of Lα is absolute for transitive models,
and in particular, (Lα)

L = Lα. It follows that L |= ”V = L”. □

What about set models?

Lemma 3.19. Suppose that M is a transitive set, satisfying enough ZF ,
then (On)M = On ∩M = min(α | α /∈M) is a limit ordinal.

Corollary 3.20. There is a formula ψ, consisting of all the finitely many
axioms to develop enough ZF , such that whenever M is a model of ψ, and
M is transitive, then L(On)M = (L)M ⊆M .

Proof. LM = {x ∈ M | (∃α ∈ On.x ∈ Lα)
M} and since Lα is absolute

between transitive models for each α ∈ On ∩M , Lα ⊆ M . We get that
LM = {x ∈M | ∃α ∈ On∩ < .x ∈ Lα =∪α∈(On)MLα = L(On)M . □

Theorem 3.21 (Condensation). LetM be a transitive model such thatM |=
ψ + V = L, then M = L(M ∩On) (or M = L is M is a proper class).

Theorem 3.22. there is a definable well-ordering ◁ of L such that each Lα
is an initial segment.

Proof. By transfinite recursion, we define ◁α on Lα. ◁0 = ∅. Suppose we
have defined ◁β for every β < α, such that ◁β ⊆ ◁β′ (namely Lβ is an initial
segment of Lβ′). If α is limit, define ◁α = ∪β<α◁α, then since Lα = ∪β<αLβ,
this is a well ordering of Lα. If α = β + 1, the we deduce the lexicographic
order ◁β,lex on L<ωβ such that Lnβ ◁β,lex L

n+1
β . Now we fix some enumeration

of all the formulas {ϕn | n < ω} and. For X,Y ∈ Lα, define X ◁α Y iff:

(1) X,Y ∈ Lβ and X ◁α Y .
(2) X ∈ Lβ and Y /∈ Lβ.
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(3) X,Y /∈ Lβ and the formulas defining X,Y is ϕnX , ϕnY (resp.) and
nX < nY .

(4) X,Y /∈ Lβ andX,Y are defined using the same formula ϕn(x1, ..., xk)
using parameters a1, ..., ak ∈ Lβ and b1, ..., bk ∈ Lβ respectively and
⟨a1, ..., ak⟩ ◁β,lex ⟨β1, ..., βk⟩.

□

Corollary 3.23 (ZF). L |= AC

Corollary 3.24. This is a well ofdering of L and it is absolute for transitive
models.

Theorem 3.25. If V = L then for every infinite ordinal α, P (L(α)) ⊆ Lα+.
(Note that since we assume V = L then α+ is the ordinal that L models to
be α+ and all the theory is applied inside L)

Proof. Let X ⊆ α. Consider the set A = Lα ∪ {X} which is a set of
cardinality |α|. Now let χ be the finite fragment of ZF + V = L to ensure
condensation. By reflection theorem followed by mostowski collapse, we can
find a transitive model M , |M | = |α| satisfying χ and A ⊆ M (note that
Lα∪{X} is transitive so the collapse fixes A). By condensationM = LM∩On
and since |M | = α we have that M ∩ On < α+. Hence X ∈ LM∩On =
∪β<α+Lβ = Lα+ □

Corollary 3.26 (ZF). L |= ZFC +GCH

Proof. Note that for every α, L |= P (α) ⊆ Lα+ and therefore L |= |P (α)| ≤
|Lα+ | = α+ □


