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1. History of forcing

Paul Cohen invented the method of forcing to construct models of ZFC
in a collection of works which awarded hi, with the fields medal and its
influence set theory and the foundations of mathematics till nowdays. Since
Cohen’s original usage of Forcing this method has been sophisticated and
has been used for many other purposes, but the core idea stays the same.
The way we should think of forcing is as follows:

While inner models provide a way of constructing modelsM ⊆ V , forcing
can be thought of as providing models V ⊆ M . This idea can be made
precise using reflection theorems which we will explain later.

The idea is to start with V , which we call ”the ground model” over which
we ”force” (namely extend the model using the method of forcing) and
extend V to a model M by adding some new object which does not appear
in V , together with everything that has to be added in order to satisfy ZFC.
This idea is quite similar to field extension, where given a filed K and some
polynomial p with no root in K, we can add to K a root of α of p and let
K[α] be the minimal field extending K ∪ {α}. In the field extension K[α],
every object is the result of plugging α into some polynomial q(x), and we
can think of q(x) as ”names” or ”expressions” for elements in K[α].

In forcing we will add this object we call ”V -generic filter” G /∈ V and
extend V to the generic extension V [G]. Similarly, we will have ”names” for
each object x ∈ V [G]. The analog of the polynomial p will be what we call
a ”forcing notion” which is simply some poset P,≤P with a minimal element
1P. This will enable us to talk about objects in V [G] while working in V .

The metamathematical justification for the method of forcing is as follows:
Suppose that we have used the method of forcing to produce a model V ⊆M
of ZFC+¬CH. We want to prove that Con(ZFC+¬CH). If ¬Con(ZFC+
¬CH), then there are finitely many axioms in ZFC + ¬CH which proves
some contradiction. We use reflection to find a countable transitive model
M of ZFC which satisfies the finitely many axioms which appear in ZFC
(formally, we should also add finitely many axioms that suffice to carry the
argument of forcing). As we will see, we can always find those M -generic
filters in V (given thatM is countable). Since the model obtained by forcing
satisy ¬CH, we have produced a set model M ⊆ N which satisfy finitely
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many axioms which proves a contradiction, so N |= ψ ∧ ¬ψ and ψN ∧ ¬ψN

holds in V , a contradiction.

2. Forcing notions

Definition 2.1. A forcing notion is a poset ⟨P,≤P ⟩ which has a greatest
element 1P.

Example 2.2. Cohen forcing

Add(ω, 1) = {f : ω → 2 | |f | < ω}, f ≤ g iff g ⊆ f.

Here 1 = ∅.
Example 2.3. Levy collapse Col(ω, ω1) = {f : ω → ω1 | |f | < ω} ordered
as above.

Example 2.4. Mathias forcing

Mω := {(s,A) ∈ [ω]<ω ×A ∈ [ω]ω | min(A) > max(s)}
The order is (s,A) ≥ (t, B) iff t ∩ {0, ...,max(s)} = s, t \ s ⊆ A and B ⊆ A.

Example 2.5. Random Real forcing R = {B ⊆ [0, 1] | µ(B) > 0 ∧
B is a borel set} the order is B ≤ C iff B ⊆ C.

Example 2.6. Shooting a club through a stationary set S ⊆ ω1

P(S) := {c ⊆ S | c is closed bounded}
the order here is an end extension.

Definition 2.7. A subset D ⊆ P is said to be dense, if:

∀p ∈ P ∃q ≤ p q ∈ D

Example 2.8. For every n,

Dn = {f ∈ Add(ω, 1) | n ∈ dom(f)}
is dense, since if f ∈ Add(ω, 1), either n ∈ dom(f) and then f is already in
Dn or n /∈ dom(f) and we can extend f ≥ g = f ∪ {⟨n, 0⟩}.

Given h : ω → ω, the set

Dh = {f | ∃n ∈ dom(f) f(n) ̸= h(n)}
is dense.

Example 2.9. For every δ < ω1, the set

Dδ := {g ∈ Col(ω, ω1) | δ ∈ Im(g)}
is dense.

Example 2.10. Given any A such that µ(A) = 1, the set

DA = {B ∈ R | B ⊆ A}
is dense. Indeed, let B ∈ R then A ∩ B is measurable and µ(A ∩ B) > 0
(since B is positive and A is measure 1). By regularity of the Lebesgue
measure, there is a closed (hence Borel) set C ⊆ A∩B such that µ(C) > 0.
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Definition 2.11. A subset G ⊆ P is a filter if:

(1) ∀p ∈ G and q ≥ p, we have that q ∈ G.
(2) For every p, q ∈ G there is r ∈ G such that p, q ≥ r.
(3) G ̸= ∅

G is called V -generic if for every dense subset of P, G ∩D ̸= ∅.

Example 2.12.

Theorem 2.13. If M is countable then for every P ∈ M , there for every
q ∈ P ∩M , there is an M -generic filter for G ⊆ P with q ∈ G

Theorem 2.14. Suppose that P is splitting (namely ∀p ∈ P there are q, r ≤ p
such that q, r are incompatible). Then if G is an M -generic filter for P,
G /∈M .

3. The generic extension

We are now ready to construct the generic extension M [G].

Definition 3.1. Let P ∈ M be a forcing notion. We define in M by ∈-
induction what a P-name is. ∅ is a P-name. Suppose that I is a set and for
each i ∈ I, τ̇i is a P-name and pi ∈ P the also

{⟨pi, τ̇i⟩ | i ∈ I}
is a P-name

We denote the class of all P-names by V P (in particular there is a formula
with a parameter P which asserts that x is a P-name)

Definition 3.2. Let P ∈ M be a forcing notion and G ⊆ P be M -generic.
The interpretation of a P-name τ̇ = {⟨pi, τ̇i⟩ | i ∈ I} under the generic filter
G is defined recursively by:

(∅)G = ∅
(τ̇)G = {(τ̇i)G | i ∈ I, pi ∈ G}

Definition 3.3. The generic extension of M by G is defined by:

M [G] := {(τ̇)G | τ̇ ∈ V P}

Our goal is to prove the following

Theorem 3.4. Let M be a transitive model so f ZFC and P ∈ M be any
forcing notion and G be an M -generic filter. Then:

(1) M ⊆M [G].
(2) M [G] |= ZFC.
(3) G ∈M .

(4) OnM = OnM [G].
(5) If N is a model of ZFC such that M ⊆ N , G ∈ N then M [G] ⊆ N .

To see that M ⊆M [G], we have the following definition
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Definition 3.5. A canonical name for an element x ∈ M is defined recur-
sively by

X̂ := {⟨x̂, 1P⟩ | x ∈ X}

Proposition 3.6. (X̂)G = X for every X ∈M and therefore M ⊆M [G].

Proof. By induction, and since 1P ∈ G,

(X̂)G = {(x̂)G | x ∈ X} = {x | x ∈ X} = X

□


