MATH 361

(Instructor: Tom Benhamou)

Instructions

The midterm duration is 3 hours, and consists of 5 problems, each worth 21 points (The maximal grade is 100). The answers to the problems should be written in the designated areas.

Problems

Problem 1. Let *A* be any set. Let us define recursively $A_0 = A$ and $A_{n+1} = P(A_n)$. Define $A_{\omega} = \bigcup_{n < \omega} A_n$. Prove that for every set *A* and any $n < \omega$, $A_n < A_{\omega}$.

Solution: By inclusion, for every $n < \omega$, $A_n \le A_{\omega}$. Suppose toward a contradiction that there is *n* such that $A_n \approx A_{\omega}$. Then $A_n \le A_{n+1} \le A_{\omega} \approx A_n$ and therefore by CSB Theorem $A_{n+1} \approx A_n$. However, $A_{n+1} = P(A_n)$, this is a contradiction to Cantor's theorem that for every set A, A < P(A).

- MATH 361 (Instructor: Tom Benhamou) Dec 20
- **Problem 2.** (a) Define what a "well ordered set" and "isomorphic well ordered sets" are.
- (b) Prove that if ⟨A, <_A⟩, ⟨B, <_B⟩ are isomorphic well-ordered sets, then then there is a unique isomorphism g : A → B.

Solution: Suppose that g_1, g_2 are isomorphism. And towards a contradiction suppose that there is x such that $g_1(x) \neq g_2(x)$. Then $D = \{a \in A \mid g_1(x) \neq g_2(x)\} \neq \emptyset$ and therefore there exists $x^* = \min_{\langle A}(D)$. WLOG assume that $g_1(x^*) <_B g_2(x^*)$, since g_2 is an isomorphism, there is $y \in A$ such that $g_2(y) = g_1(x^*)$ and since g_2 is order-preserving, $y <_A x^*$. We conclude that $g_1(y) < g_1(x^*) = g_2(y)$, hence $g_1(y) \neq g_2(y)$ which implies that $y \in D$, contradicting the minimality of x^* .

Finals Example- Set Theory fall 2023

MATH 361

(Instructor: Tom Benhamou)

Dec 20

Problem 3. Problem from HW6-HW10 (not from "additional problems")

Solution

Problem 4. (a) Let $f : \mathbb{N} \to \mathbb{N}$ be any function. we denote by $f^k = f \circ f ... \circ f$ the composition of f with itself k-many times and $f^0 = id_{\mathbb{N}}$. Define the relation E_f on \mathbb{N} as follows: $mE_f n$ if and only of $\exists k, f^k(m) = f^k(n)$. Prove that E_f is an equivalence relation.

 (b) Consider the equivalence relation *E* on ^NN defined by *fEg* iff *f* ↾ N_{even} = *g* ↾ N_{even} (no need to prove it). Compute the cardinality of [*id*_N]_E

Solution

By definition we have that $[id_{\mathbb{N}}]_E = \{f \in \mathbb{N}\mathbb{N} \mid \forall n \in \mathbb{N}_{even}, f(n) = n\}$. Hence it is possible to find a bijection of $[id_{\mathbb{N}}]_E$ with $\mathbb{N}_{odd}\mathbb{N}$ defined by $F : \mathbb{N}_{odd}\mathbb{N} \to [id_{\mathbb{N}}]_E$

$$F(f)(n) = \begin{cases} n & n \in \mathbb{N}_{even} \\ f(n) & n \in \mathbb{N}_{odd} \end{cases}$$

Hence $|[id_{\mathbb{N}}]_E| = |^{\mathbb{N}_{odd}}\mathbb{N}| = \aleph_0^{\alpha_0} = 2^{\aleph_0}.$

MATH 361 (Instructor: Tom Benhamou) Dec 2		—	-	
	MATH 361	(Instructor: Tom Ber	nhamou)	Dec 20

- **Problem 5.** (a) Given the integers \mathbb{Z} together with the arithmetic operations +, -, ·, present the definition of \mathbb{Q} , +.
- (b) Prove that rational addition does not depend on the choice of representatives and that it is commutative. Namely, q + p = p + q. You can assume the usual properties of addition and multiplication of integers.

Solution Recall that addition is defined by

$$[\langle z, z' \rangle] + [\langle t, t' \rangle] = [\langle zt + z't', z't' \rangle]$$

The first part was proven in class. To see the commutativity, we use the commutativity of + and \cdot for integers:

$$[\langle z, z' \rangle] + [\langle t, t' \rangle] = [\langle zt + z't', z't' \rangle] = [\langle tz + t'z', t'z' \rangle] = [\langle t, t' \rangle] + [\langle z, z' \rangle]$$