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Abstract. In the first part of this paper we explore the possibility for
a very large cardinal κ to carry a κ-complete ultrafilter without Galvin’s
property. In this context we prove the consistency of every ground model
κ-complete ultrafilter extends to a non-Galvin one. Oppositely, it is also
consistent that every ground model κ-complete ultrafilter extends to a
P -point ultrafilter, hence to another one satisfying Galvin’s property.
Finally, we apply this property to obtain consistently new instances of
the classical problem in partition calculus λ → (λ, ω + 1)2.

1. Introduction

Let F be a filter over a regular uncountable cardinal κ. We say that
Galvin’s property holds for F (in symbols, Gal(F , κ, κ+)) if every family
⟨Cγ | γ < κ+⟩ ⊆ F 1 admits a subfamily ⟨Cγi | i < κ⟩ with the property that⋂
{Cγi | i < κ} ∈ F . In the 1970’s, Galvin proved that if κ = κ<κ > ℵ0

then Gal(F , κ, κ+) is true whenever F is normal. The statement and the
proof were published in a paper by Baumgartner, Hajnal and Mate [4].

The motivation of this paper came from an open problem which appeared
in [7]. In that work it is shown that, consistently, there is a κ-complete
ultrafilter over a measurable cardinal κ which fails to satisfy the Galvin
property. One should keep in mind the fact that if κ is measurable then
every normal filter F satisfies the Galvin property Gal(F , κ, κ+). Thus,
the main result of [7] shows that κ-completeness differs from normality in
terms of implying Galvin’s property. On the other hand, it is consistent
that κ is measurable and every κ-complete ultrafilter is Galvin. This can
be demonstrated in Solovay’s inner model L[U ], as shown in [8]. Howe-
ver, inner models are limited with their tolerance to large cardinals. It
was asked in [7] whether it is consistent for a supercompact cardinal κ that
every κ-complete ultrafilter U over κ satisfies Gal(U , κ, κ+). In the first
part of this paper we investigate the possibility of very large cardinals car-
rying κ-complete filters (ultrafilters) that fail to satisfy Galvin’s property.
In §2.1 we exhibit a generic extension where κ is supercompact and every
κ-complete ground model ultrafilter U over κ extends to an ultrafilter U ∗
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for which Gal(U ∗, κ, κ+) fails (see Proposition 2.1). Shortly after, we show
that this construction is amenable to preserve even stronger large cardinals,
such as C(n)-extendibles and Vopěnka’s Principle (Proposition 2.3). Con-
tinuing in this vein, we present a result of an opposite nature. Namely, in
Theorem 2.5 we construct a generic extension where κ is supercompact and
every κ-complete ground model ultrafilter U extends to a κ-complete ultra-
filter U ∗ that is Rudin-Keisler equivalent to a normal one. In particular,
all of these ultrafilters U ∗ do satisfy Galvin’s property (Proposition 2.4).
The reader may have noticed that this is perhaps a too harsh way to con-
vert an arbitrary κ-complete ultrafilter into a Galvin one. During the rest
of the section we present alternative strategies to achieve the same config-
uration without such dramatic changes. Our first attempt takes place in
Theorem 2.12 where we employ iterations of Generalized Mathias forcing to
show that every κ-complete filter U extends to a κ-complete filter U ∗ for
which Gal(U ∗, κ, κ+) holds. Section 2.1 is then culminated with our main
result, which builds upon previous work of Gitik and Shelah [20]. More
specifically, in Theorem 2.20 we replace the previous iteration by a more
sophisticated one also involving Generalized Mathias forcing. This itera-
tion was devised by Gitik and Shelah and here it is adapted to our current
purposes. As an outcome we obtain the consistency of a supercompact car-
dinal κ with every ground model κ-complete ultrafilter U extending to a
κ-complete ultrafilter U ∗ which is a P -point. In particular, Gal(U ∗, κ, κ+)
holds (see Proposition 2.19).

The study of Galvin’s property led us to the area of partition calculus.
In §3 of the paper we address a classical question about ordinary partition
relations. An exquisite theorem of Shelah establishes that if λ > cf(λ) = κ >
ℵ0 and 2κ < λ then λ → (λ, ω + 1)2 [31]. We prove that the same partition
relation follows upon replacing the cardinal arithmetic assumption by an
appropriate instance of Galvin’s property. This is true in general, but it is
particularly interesting under AD. Indeed, under this assumption Galvin’s
property holds for a wide class of cardinals (i.e. Boldface GCH cardinals). In
fact, if κ is measurable and κ = cf(λ) < λ is a limit of measurable cardinals
then λ → (λ, ω + 1)2. This gives an answer to [16, Question 11.4] in the
context of AD. For details, see Theorem 3.10 and the subsequent discussion.

Finally, it must be said that our Galvin-like assumption is trivial when
2κ < λ, and forceable when 2κ > λ. Thus, we get more positive instances of
λ → (λ, ω + 1)2. We believe, however, that the relation λ ↛ (λ, ω + 1)2 is
consistent as well. Actually, our result pinpoints which instances of Galvin’s
property should be violated in order to force this negative partition relation.

Our notation is mostly standard. If κ = cf(κ) > ℵ0 then Dκ denotes
the club filter over κ. If κ = cf(κ) < λ then Sλ

κ = {δ ∈ λ | cf(δ) = κ}.
The arrow symbol λ → (α, β)2 is a shorthand for the following statement:
for every f : [λ]2 → 2 either there is a 0-monochoromatic subsets of λ of
order type α or a 1-monochromtic subset of λ of order-type β. We say that
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α
β

)
→

(
γ
δ

)
iff for every c : α × β → {0, 1} there are A ∈ [α]γ , B ∈ [β]δ for

which c ↾ (A×B) is constant. We use Θ to denote

sup{α | There exists a mapping from ωω onto α}.

We employ the Jerusalem forcing notation, thus p ≤ q means that q is
stronger than p. For background in partition calculus we refer the reader to
[16] and [34].

2. Galvin’s property at very large cardinals with and without
choice

2.1. Galvin’s property at large cardinals. In [8] the following result is
proved: It is consistent that κ is a measurable cardinal and every κ-complete
ultrafilter U over κ satisfies Gal(U , κ, κ+). The proof strategy is based on
analyzing Solovay’s inner model L[U ], where a complete classification of the
σ-complete ultrafilters over κ is available. The key observation is that in
this inner model every σ-complete ultrafilter over κ is Rudin-Keisler equiv-
alent to a finite power of the normal measure U . Since these ultrafilters do
satisfy Galvin’s property one concludes that Gal(V , κ, κ+) holds for every
κ-complete ultrafilter V ∈ L[U ]. This phenomenon suggests the follow-
ing question: How about those (very) large cardinals for which there is no
available canonical inner model? The epitome of this is supercompactness.

By work of the first two authors together with S. Shelah [7] it is con-
sistent that a supercompact cardinal κ carries a κ-complete ultrafilter U
which extends the club filter and ¬Gal(U , κ, κ+). Shortly after, the first
author together with M. Gitik [9] improved this result by showing that just
a measurable cardinal suffices to obtain such an ultrafilter U .

The forthcoming proposition is a spin-off of the above-mentioned result
in the context of general κ-complete ultrafilters:

Proposition 2.1. Assume that the GCH holds and that κ is a measurable
cardinal. Then the following is true in the generic extension of [9, Theorem
2.6]: Every κ-complete (not necessarily normal) ultrafilter U of the ground
model extends to a κ-complete ultrafilter U ∗ such that ¬Gal(U ∗, κ, κ+).

In addition, if κ was supercompact then it remains so in the extension.

Proof. The sought model is the generic extension by the Easton support
iteration ⟨Pα,Q∼β | α ≤ κ + 1, β ≤ κ⟩ such that for α ≤ κ, Q∼α is trivial
unless α is inaccessible, in which case it is a Pα-name for Add(α, α+). This
iteration preserves supercompactness (see e.g. [13, Theorem 11.1]).

Let U ∈ V be a κ-complete ultrafilter. Let us verify that we can adjust
the argument in [9] to encompass non-normal ultrafilters. We will follow the
notation from the original proof, considering the elementarity embeddings

j1 := jU : V → MU =: M1, j2 := jU 2 : V → MU 2 =: M2

k : M1 → M2, j2 = k ◦ j1
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where k is simply the ultrapower embedding defined in MU using the ul-
trafilter j1(U ). Let G := Gκ ∗ gκ be V -generic for Pκ ∗ Q∼κ. The argu-
ment that these embeddings can be lifted in V [G] does not require normal-
ity and remains unaltered. Thus, we form j1 ⊆ j∗1 : V [G] → M1[j

∗
1(G)],

k ⊆ k∗ : M1[j
∗
1(G)] → M2[j

∗
2(G)] and j2 ⊆ j∗2 := k∗ ◦ j∗1 such that:

(1) for every α ∈ j1“κ
+, fκ2,k(α)(κ1) = 1.

(2) for every α ∈ κ1 \ j1“κ+, fκ2,k(α)(κ1) = 0.
(3) fκ2,κ1(κ1) = κ.

Since we are just dealing with non-normal ultrafilters we need to alter the
values of the generic f2 at δ∗ := [id]j1(U ), the generator of the second ul-
trapower. Also, we need to eliminate the generator of the first ultrapower
δ := [id]U :

(1) for every α ∈ j1“κ
+, fκ2,k(α)(δ

∗) = 1.

(2) for every α ∈ κ1 \ j1“κ+, fκ2,k(α)(δ
∗) = 0

(3) fκ2,δ∗(δ∗) = δ.

Notice that the amount of coordinates that were altered is small. In partic-
ular, the counting/genericity arguments of [9, Lemma 2.7] relying on ZFC
still go through. Next, derive in V [G] the ultrafilter generated by j∗1 and
[id]U ,

U ∗ := {X ⊆ κ | [id]U ∈ j∗1(X)}
Note that U ⊆ U ∗. Finally, let

W := {X ⊆ κ | [id]j1(U ) ∈ j∗2(X)} ∈ V [G]. □

Let us prove that W witnesses the statement of the theorem:

Claim 2.2. W is a κ-complete ultrafilter over κ such that:

(1) U ⊆ W .
(2) ¬Gal(W , κ, κ+).

Proof of claim. (1): If A ∈ U then j1(A) ∈ j1(U ), hence [id]j1(U ) ∈ j2(A)
and thus A ∈ W .

(2): Let us define the witness. For each α < κ+ let

Aα := {ν < κ | fκ,α(ν) = 1}
then

j∗2(Aα) = {β < κ2 | fκ2,j2(α)(β) = 1}.
Since j2(α) = k(j1(α)), our modifications of the generic give

fκ2,j2(α)([id]j1(U )) = 1,

hence [id]j1(U ) ∈ j∗2(Aα). Finally Aα ∈ W by definition of W . Before proving
the failure of the Galvin property, let us denote by jW : V [G] → MW the
ultrapower embedding by W and kW : MW → M∗

2 defined by kW ([f ]W ) :=
j∗2(f)([id]j1(U )) the factor map satisfying kW ◦ jW = j∗2 .

We show that kW is onto, hence the identity, and thus j∗2 = jW . In
effect, if A ∈ M2[j

∗
2(G)] then there is a name A∼ ∈ M2 with A = (A∼)j∗2 (G).
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Since j2 is the second ultrapower by U , there is f : [κ]2 → V such that
j2(f)([id]U , [id]j1(U )) = A∼. By  Lös theorem, we can assume that f(α, β) is

a Pκ+1-name for every (α, β) ∈ [κ]2. In V [G] let f∗(α) = (f(fκ,α(α), α))G.
Then,

kW ([f∗]W ) = j∗2(f∗)([id]j1(U )) = (j2(f)(fκ2,[id]j1(U )
([id]j1(U )), [id]j1(U )))j∗2 (G)

= j2(f)([id]U , [id]j1(U ))j∗2 (G) = (A∼)j∗2 (G) = A

Let ⟨Aαi | i < κ⟩ be any subfamily of length κ and κ ≤ η < [id]W = [id]j1(U ).
Denote jW (⟨Aαi | i < κ⟩) := ⟨A′

α′
i
| i < jW (κ)⟩.

Pick any κ ≤ η < [id]U < j2(κ), then η /∈ j1“κ
+ and also α′′

η /∈ j1“κ
+,

where α′′
η is the first image of the {αi | i < κ}. Moreover k(α′′

η) = α′
k(η) and

by definition, fκ2,α′
η
([id]j1(U )) = 0 and [id]j1(U ) /∈ A′

η. Hence

[id]j1(U ) /∈
⋂

{A′
α′
i
| i < κ2} = j∗2(

⋂
i<κ

Aαi)

Hence
⋂

i<κAαi /∈ W . □

Continuing with our original discussion one may ask if the conclusion of
Proposition 2.1 is compatible with large cardinals stronger than supercom-
pactness. As argued in [2, 3], the natural model-theoretic strengthening of

supercompactness is C(n)-extendibility. Fix n < ω. A cardinal κ is called
C(n)-extendible if for every λ > κ there is θ ∈ Ord and an elementary embed-
ding j : Vλ → Vθ with crit(j) = κ, j(κ) > λ and Vj(κ) ≺Σn V .2 The classical

notion of extendibility (see [26, §23]) coincides with C(n)-extendibility when-

ever n = 1. However, when n ≥ 2 the first C(n)-extendible is far above, and
has stronger large-cardinal-properties, than the first extendible cardinal. In
addition, C(n)-extendibility do entail a proper hierarchy of cardinals [2].
The culmination of this hierarchy is the category-theoretic axiom known as
Vopěnka’s Principle (VP) [26, p. 335]. In effect, it was shown by Bagaria

that VP is equivalent to the existence of a (proper class of) C(n)-extendible,
for all n ≥ 1. We refer the reader to [2] for further details.

Let us come back to the argument of Proposition 2.1. If κ is an extendible
cardinal performing our iteration Pκ+1 will ruin extendibility of κ.3 Nev-
ertheless, if one forces with Add(α, α+) at every inaccessible cardinal the
situation changes completely. In [3] the authors develop a general theory of
preservation of extendible cardinals under class-forcing iterations. Specifi-
cally, in [3, §8] it is shown that many classical class-forcing iterations (e.g.,
Jensen’s iteration to force the GCH) do preserve extendible cardinals, as well

as C(n)-extendible cardinals and Vopěnka’s Principle (VP).

The following proposition is an easy corollary of [3, Theorem 8.4]:

2Recall that Vη ≺Σn V is a shorthand for the following statement: for every ā ∈ V <ω
η

and every Σn formula φ(x̄) in the language of set theory, Vη |= φ(ā) iff V |= φ(ā).
3Actually, adding a single Cohen subset to κ does it.
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Proposition 2.3. Assume that the GCH holds and that κ is a C(n)-extendible
cardinal for some n ≥ 1. Let P denote the Easton support class iteration
forcing with Add(α, α+) at each inaccessible cardinal.

Then, the following hold in V P:

(1) κ is C(n)-extendible;
(2) for every measurable cardinal λ every λ-complete ultrafilter U ∈ V

extends to a λ-complete ultrafilter U ∗ such that ¬Gal(U ∗, λ, λ+).

In addition, if one assumes VP this is preserved in V P.

Proof. Clause (1) is an immediate consequence of [3, Theorem 8.4]. For
Clause (2) we argue as follows. If λ0 stands for the first V -inaccessible car-
dinal then P admits a gap at λ++

0 .4 Thus P does not create new measurable
cardinals in V P [21, Corollary 2]. Let λ be a V -measurable cardinal and
U a λ-complete ultrafilter in the ground model. By Proposition 2.1, Pλ+1

forces that there is U ∗ ⊇ U such that Gal(U ∗, λ, λ+) fails. Clearly P/Pλ+1

is forced to be λ++-directed closed (actually more), hence it preserves that
U ∗ is a λ-complete ultrafilter over λ witnessing ¬Gal(U ∗, λ, λ+). □

Let us now show how to obtain the consistency of the opposite statement
“Every κ-complete ultrafilter U over a supercompact cardinal κ extends
to a κ-complete ultrafilter U ∗ satisfying Gal(U ∗, κ, κ+)”. To this aim we
will show how to turn a non (necessarily) Galvin ultrafilter U into another
U ∗ that is Rudin-Keisler equivalent to a normal one. By virtue of Galvin’s
theorem [4] this ensures that U ∗ itself does satisfy Gal(U ∗, κ, κ+).

To show this we need a couple of preliminary observations. First, if U
and W are κ-complete ultrafilters over κ and U ≡RK W then Gal(U , κ, κ+)
holds if and only if Gal(W , κ, κ+) holds. Second:

Proposition 2.4. If U is a κ-complete ultrafilter over κ with |[id]U | = κ
then U is Rudin-Keisler equivalent to a normal κ-complete ultrafilter.

In particular, under the above conditions, Gal(U , κ, κ+) holds.

Proof. Let U0 denote the normal measure generated from j := jU and κ.
For each λ < κ+ there is fλ : κ → κ such that j(fλ)(κ) = λ. We prove

this by induction on λ. Suppose that ⟨fα | α < λ < κ+⟩ are defined and let
⟨λi | i < cf(λ)⟩ be cofinal in λ. Define fλ : κ → κ as follows:

fλ(α) := sup
i<α

fλi
(α).

Note that fλ : κ → κ due to the regularity of κ. Next, put

j(⟨fβ | β < λ⟩) := ⟨f ′
β | β < j(λ)⟩, j(⟨λi | i < cf(λ)⟩) := ⟨λ′

i | i < j(cf(λ))⟩.
Observe that f ′

j(α) = j(fα) and λ′
j(α) = j(λα). In particular, f ′

α = j(fα) and

λ′
α = j(λα) for every α < κ. Hence,

j(fλ)(κ) = sup
i<κ

f ′
λ′
i
(κ) = sup

i<κ
j(f)j(λi)(κ) =

4I.e., P ≃ P1 ∗ P2∼ where |P1| < λ++
0 and ⊩P1 “P∼2 is λ++

0 -distributive”.
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= sup
i<κ

j(fλi
)(κ) = sup

i<κ
λi = λ

Thus, there is f : κ → κ such that j(f)(κ) = [id]U , so that U ≤RK U0.
Also, it is well-known that normal filters are ≤RK-minimal (see e.g. [5,
Proposition 2.6]), hence U ≡RK U0. For the in particular clause use our
comments prior to the statement of the proposition. □

Theorem 2.5. Assume that the GCH holds and that κ is a huge cardinal.
Then, there is an inaccessible cardinal µ > κ and a generic extension of

Vµ where the following hold:

(1) κ is supercompact;
(2) Every κ-complete ultrafilter U ∈ V extends to a κ-complete ultrafil-

ter U ∗ that is Rudin-Keisler equivalent to a normal ultrafilter. In
particular, Gal(U ∗, κ, κ+) holds.

Proof. Let j : V → M be an elementary embedding witnessing that κ is
huge; namely, crit(j) = κ and M j(κ) ⊆ M . Fix ⟨Uα | α < 22

κ⟩ an injective
enumeration of the κ-complete ultrafilters over κ. For each α < 22

κ
note

that j“Uα ∈ M and that j“Uα ∈ [j(Uα)]<j(κ) hence, by j(κ)-completeness
of j(Uα) in M , we can find ϵα ∈

⋂
j“Uα. Clearly, ϵα < j(κ) and

Uα ⊆ U ∗
α,0 := {X ⊆ κ | ϵα ∈ j(X)}.

Let λ and µ be, respectively, the first inaccessible cardinals in the inter-
vals (supα<22κ ϵα, j(κ)) and (λ, j(κ)).5 Next, let i : V → N be the µ-
supercompact embedding derived from j; that is, the ultrapower embedding
that arises from the measure {X ⊆ Pκ(µ) | j“µ ∈ j(X)}. Let k : N → M
be the factor embedding between j and i. Usual arguments show that
crit(k) > η, hence U ∗

α,0 = {X ⊆ κ | ϵα ∈ i(X)} for each α < 22
κ
.

Now, force over V with Woodin’s fast function forcing Fκ. By virtue
of Lemma 1.10 in [22] we have that i lifts to a µ-supercompact embedding
i : V [f ] → M [i(f)] such that i(f)(κ) = µ. Notice that using the fast function
f : κ → κ we can easily represent λ as well: let f∗ : κ → κ be defined as
α 7→ sup{β < f(α) | β is inaccessible} and note that i(f∗)(κ) = λ.6

Next, over V [f ], force with the two-step iteration C := Cκ ∗ Col∼ (κ,< λ)
where Cκ is the Easton-supported iteration defined as follows: for α < κ,
the αth-stage of the iteration is trivial unless α is inaccessible, f“α ⊆ α and
α < f∗(α), in which case it forces with Col∼ (α,<f∗(α)).

Claim 2.6. After forcing with C the embedding i : V [f ] → N [f ] lifts to a
µ-supercompact embedding i∗ : V [f ∗ C] → N [i(f ∗ C)] in V [f ∗ C].

Proof of claim. Denote V̄ := V [f ] and N̄ := N [i(f)]. Let C := Cκ ∗ c ⊆ C
generic over V . We can lift the embedding after forcing with Cκ to another
i : V̄ [Cκ] → N̄ [Cκ ∗ c ∗ h] ⊆ V̄ [C]. There are two points here: first, the

5This choice is possible as j(κ) is a limit of inaccessibles.
6Here we are implicitly assuming that N [i(f)] is µ-closed, hence it thinks that µ is

inaccessible and that λ is the first inaccessible below it.
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κth-stage of the iteration from the perspective of N̄ is Col(κ,<λ)V̄ ;7 second,
the tail forcing i(Cκ)/C is trivial in the interval (κ, µ) because i(f)(κ) = µ

and so the next closure point of i(f) past κ is ≥ (µ+)V̄ .
Finally, one can lift i after forcing with Col(κ,<λ)V̄ [Cκ] to another em-

bedding i : V̄ [C] → N̄ [Cκ ∗ c ∗ h ∗ h′]. For this one uses the fact that
i“c ⊆ Col(i(κ), <i(λ))N̄ [Cκ∗c∗h] is a directed set of conditions in N [Cκ ∗c∗h],

|i“c| < i(κ) and Col(i(κ), <i(λ))N̄ [Cκ∗c∗h] is µ-directed-closed in the model

N [Cκ ∗ c ∗ h]. Standard arguments show that the resulting embedding wit-
nesses µ-supercompactness of κ. □

Working in V [f ∗ C], for each α < (22
κ
)V define

U ∗
α := {X ⊆ κ | ϵα ∈ i∗(X)}.

Clearly, U ∗
α is a κ-complete ultrafilter satisfying Uα ⊆ U ∗

α . The point now is
that |[id]U ∗

α
|V [f∗C] ≤ |ϵα|V [f∗C] = κ hence Gal(U ∗

α , κ, κ
+) holds in V [f ∗ C].

Let M := V [f ∗C]µ. This is certainly a model of ZFC because µ remains
inaccessible. Also, M satisfies that κ is supercompact. Finally, note that
M = Vµ[f ∗C]. Since every κ-complete ultrafilter U over κ from the ground
model actually comes from Vµ we obtain Clause (2) of the theorem. □

In the model of Theorem 2.5 our target cardinal κ cannot be extendible.
To make it so, one should perform a class-forcing iteration that is nice enough
to carry the previous arguments. This suggests the following question:

Question 2.7. Is the statement of the previous theorem compatible with κ
being extendible or, more generally, C(n)-extendible?

In the proof of Theorem 2.5 we showed how to correct ultrafilters that do
not satisfy Galvin’s property. The technique used for this purpose consisted
of collapsing the generators of every V -ultrafilter to yet another generator
of cardinality κ; namely, the normal generator. In that manner we accom-
plished our correction of non-Galvin ultrafilters by making them essentially
minimal (to wit, normal) from the Rudin-Keisler-perspective. This is, cer-
tainly, a too harsh way to ensure Galvin’s property in the final model.

In the light of this one may wonder whether a similar Galvin-like configu-
ration is possible without trivializing the relevant ultrafilters. In what is
left we show that this is indeed possible. As a warm up exercise we begin
describing how to turn a general κ-complete ultrafilter into a Galvin one
by using a generalization of Mathias forcing. The classical Mathias forcing
dealing with subsets of ω appeared in [29], while the version that we will
use here follows the template of [18, Definition 3.1]:

Definition 2.8 (Generalized Mathias forcing). Let κ be a regular cardinal
and U a non-principal κ-complete filter over κ.

7Because j(f)“κ ⊆ κ and j(f∗)(κ) = λ > κ.
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The forcing notion MU consists of pairs (a,A) such that a ∈ [κ]<κ, A ∈ U
and sup(a) < min(A). For the order, one writes (a0, A0) ≤ (a1, A1) if and
only if a0 ⊆ a1, A0 ⊇ A1 and a1 \ a0 ⊆ A0.

The next is a brief account of the main properties of MU :

Proposition 2.9 (Properties of MU ).

(1) MU is κ+-centered, provided κ<κ = κ;
(2) MU is κ-directed-closed;
(3) MU is countably parallel closed;8

(4) If G ⊆ MU is a V -generic filter then V [G] = V [aG], where

aG :=
⋃

{a | ∃A ∈ U ((a,A) ∈ G)};

(5) The set aG diagonalizes U : i.e., aG ⊆∗ A for every A ∈ U .

In particular, if U is an ultrafilter then either aG ⊆∗ A or aG ⊆∗ κ \ A for
all A ∈ P(κ)V .

The next proposition describes how to turn a κ-complete filter into one
satisfying Galvin’s property by means of MU :

Proposition 2.10. Let κ be a regular cardinal, U a κ-complete filter over
κ and G ⊆ MU a generic filter. Then the following hold in V [G]:

(1) U ∗ := {A ⊆ κ | aG ⊆∗ A} is a κ-complete filter;
(2) U ⊆ U ∗;
(3) Gal(U ∗, κ, κ+) holds.

Proof. U ∗ is clearly a filter and U ⊆ U ∗ by virtue of Proposition 2.8(4).
The argument for κ-completeness of U ∗ is essentially the same as the one

for Clause (3): Let ⟨Aα | α < κ+⟩ ⊆ U ∗ and find I ∈ [κ+]κ
+

and α∗ < κ
such that aG \ α∗ ⊆ Aα for all α ∈ I. Thus,

⋂
α∈I Aα ∈ U ∗. □

The above argument repeats the one from [6, Proposition 4.5]: the point
is that MU creates a generating sequence of length 1.

Definition 2.11. A family A = ⟨xα | α < λ⟩ ⊆ U is a generating sequence
for U if for every A ∈ U there is α < λ such that xα ⊆∗ A. In addition, A
is called strong generating if it is ⊆∗-decreasing.

As demonstrated in [6, §4] the analysis of (strong) generating sequences
provides an effective way to produce certain Galvin-like configurations. The
main obstacle, however, is to ensure that the departing κ-complete ultrafilter
U extends to yet another κ-complete ultrafilter. This will be eventually
addressed in Theorem 2.20.

Our next goal will be to iterate Mathias forcing over a given filter (and
its extensions along the way) so that it will generate a κ-complete ultrafilter
with a strong generating sequence of arbitrary length. This idea traces back

8I.e., every two decreasing sequences of conditions ⟨pn | n < ω⟩, ⟨qn | n < ω⟩ with
pn ∥ qn admit an upper bound. See [14].



10 TOM BENHAMOU, SHIMON GARTI, AND ALEJANDRO POVEDA

to Kunen who employed it to separate the ultrafilter number u from 2ω (see
[28, Ch. VII Question (A10)]). A similar argument, yet involving a more
complex iteration, was considered in [11]. There the authors separate u(κ)
and 2κ in a context where κ is supercompact.

The näıve approach would consist of iterating Mathias forcing over and
over with κ-complete filters. Unfortunately, this strategy is doomed to fail-
ure and so an additional structure on the forcing is required. Let us il-
lustrate where the problem arises. Suppose that x0 is a Mathias set for
a κ-complete filter U . Working in the generic extension V [x0] let U0 be
a κ-complete filter extending {x0} ∪ U (e.g., by Proposition 2.10 we can

take {X ∈ P(κ)V [x0] | x0 ⊆∗ X}). Next, over V [x0], force a Mathias set
x1 through U0 and working over the resulting extension V [x0, x1] let U1 a
κ-complete filter extending {x1} ∪ U0. One can proceed in this fashion ω-
many times. Formally speaking, this is forced by the following full-support
iteration ⟨Pn,Q∼n | n < ω⟩: for each n ≥ 1, Q∼n is a Pn-name for MU∼n where
U∼n is a Pn-name for a κ-complete ultrafilter extending {x∼n} ∪ U∼n−1.

An essential obstacle arises at stage ω + 1. Here one needs to find a κ-
complete filter which includes all the Mathias sets ⟨xn | n < ω⟩ constructed
so far. However, notice that W := {X ⊆ ω | ∃n < ω (xn ⊆∗ X)} (i.e., the
filter generated by the Mathias sets) is not σ-complete: for if

⋂
n<ω xn ∈ W

then there would be some n∗ < ω such that xn∗ ⊆∗ ⋂
n<ω xn, hence xn∗

would be ⊆∗-included in xn∗+1. This latter is certainly impossible in that
xn∗+1 is a Mathias set for a filter including xn∗ .

For the moment, and as a warm up for Theorem 2.20, we show how to
produce κ-complete filters with arbitrarily long strong generating sequences
using Mathias forcing.

Theorem 2.12. Let U be a κ-complete filter over a Mahlo cardinal κ.
Then, for every λ ∈ Ord there is a κ-directed-closed and κ+-cc poset

P(λ) forcing that U can be extended to a κ-complete filter U ∗ with a strong
generating sequence ⟨xα | α < λ⟩.
Proof. Let U and λ be as above. Define a <κ-supported iteration P(λ),
⟨Pα,Q∼β | β < α ≤ λ⟩, as follows. Suppose that Pα is defined for α < λ. In

V Pα we will define a filter U ∗
α over κ which we will prove to be κ−complete.

Bearing this in mind, we shall let Q∼α be a Pα-name for MU ∗
α

and denote by
xα := aGQα

the generic Mathias set added after forcing with Q∼α.

For α = 0, we let U0 := U . At successor α+1, in V Pα+1 we have xα, then
we let U∼α+1 be the Pα+1−name for the filter generated by x∼α. By proposi-
tion 2.10, we have that 0Pα+1 ⊩ U∼α ⊆ U∼α+1 and U∼α+1 is κ−complete. As
for the limit stages, let us split into cases

Claim 2.13. Suppose that α < λ is such that cf(α) ≥ κ. Then ⟨xβ | β < α⟩
generates a κ-complete filter U ∗

α in V Pα that extends U ∗
β for every β < α.

Proof. Let {Xi | i < µ < κ} ⊆ U ∗
α . For each i < µ there is βi < α such

that xβi
⊆∗ Xi. Since the cofinality of α is at least κ, supi<µ βi =: β∗ < α.
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Hence, xβ∗ ⊆∗ xβi
⊆∗ Xi for every i < µ. It follows that for some ϵi < κ,

xβ∗ \ϵi ⊆ Xi. Take ϵ∗ = supi<µ ϵi < κ, then xβ∗ \ϵ∗ ⊆ ∩i<µXi, by definition,
∩i<µXi ∈ U ∗

α . Also, for every β < α, U ∗
β ⊆ U ∗

β+1 and U ∗
β+1 is by definition

the filter generated xβ which is clearly a subset of U ∗
α . □

Claim 2.14. Suppose that α < λ is limit such that cf(α) < κ, and let

α = κδ1γ1 + ... + κδnγn

be the Cantor normal form of α. Consider the following cofinal subset of α:
Iα := {κδ1γ1 + ... + κδnγ | γ < γm}. Then x := ∩i∈Iαxi ∈ V Pα is unbounded
in κ. In particular, x ⊆∗ xβ for every β < α, and the filter U ∗

α generated

by x, is a κ-complete filter in V Pα which extends U ∗
β for every β < α.

Proof. Let p ∈ Pα and α0 < κ. We shall now proceed with a density
argument to prove that there are α0 < γ∗ < κ and p ≤ pfin such that
pfin ⊩ γ∗ ∈ ∩i∈Iα x∼i. Construct two sequences ⟨Mρ | ρ < κ⟩ and ⟨qρ | ρ < κ⟩
such that:

(1) Mρ ≺ H(θ) for θ regular and sufficiently large.
(2) Mρ is increasing and continuous.
(3) |Mρ| := γρ < κ. γ0 is regular and also γρ+1.

(4) If γρ is regular then M
<γρ
ρ ⊆ Mρ.

(5) α, p,Pα, κ ∈ Mρ.
(6) If β ∈ Mρ∩α+ 1 has cofinality less than κ, then cf(β)∪ Iβ ⊆ Mρ+1.

For the condition qα we require that:

(1) qρ is increasing and continuous.9

(2) qρ is Mρ-generic for Pα, namely, for every dense open D ⊆ Pα,
D ∈ Mρ, qρ ∈ D.

(3) supp(qρ) = Mρ ∩ α.
(4) qρ ∈ Mρ+1

For this construction we need that κ is Mahlo. Such condition exists by
κ−closure of Pα and by standard construction of an increasing sequence of
conditions in M . Let µ∗ < κ be regular such that |Mµ∗ | = µ∗. Denote
M∗ = Mµ∗ and p∗ = qµ∗ = supi<µ∗ qi.

Claim 2.15. For every β ∈ Supp(p∗) the following hold:

(1) There is δβ such that p∗ ↾ β ⊩ a∼
p∗

β ⊆ δβ.

(2) If β = β0 + 1 is successor, then there is ϵβ such that p∗ ↾ β ⊩

x∼β0 \ ϵβ ⊆ A∼
p∗

β .

(3) If β ∈ Supp(p∗) is of cofinality less than κ then there is ϵβ such that

p∗ ↾ β ⊩ ∩i∈Iβ x∼i \ ϵβ ⊆ A∼
p∗

β .

(4) If β ∈ Supp(p∗) is of cofinality at least κ, then there iβ < β and ϵβ
such that p∗ ↾ β ⊩ x∼iβ \ ϵβ ⊆ A∼

p∗

β .

9i.e. for limit ρ, we let qρ(γ) = ⟨ ∪ρ′<ρ a∼
qρ′
γ ,∩ρ′<ρA∼

qρ′
γ ⟩.
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Proof. To see (1), since β ∈ Supp(p∗) = M∗ ∩ α, find ξ0 < µ∗ such that
β ∈ Mξ0 ∩ α. In Mξ0+1 we can define the dense open set

Dξ0 := {q ∈ Pα | ∃δ < κ.q ↾ β ⊩ a∼
qξ0
β ⊆ δ}

Since qξ0+1 is Mξ0−generic, qξ0+1 ∈ Dξ0 . For every ξ0 ≤ i < µ∗ we have
that qi ∈ Mi+1, hence we can define in Mi+1 the dense open set

Di+1 := {q ∈ Pα | ∃δ < κ.q ↾ β ⊩ a∼
qi
β ⊆ δ}

By genericity, qi+1 ∈ Di+1. For every such i, pick δ(i) witnessing qi+1 ∈ Di+1.

Let δβ = supi<µ∗ δ(i) < κ, by continuity, p∗ ↾ β ⊩ a∼
p∗

β ⊆ δβ.

The proof of (3), (4) is similar to (1). Just note that by definition of Uβ,
it is the filter generated by x∼β0 and replace the dense Di+1 by

Ei+1 := {q ∈ Pα | ∃ϵ.q ↾ β ⊩ x∼β0 \ ϵ ⊆ A∼
qi
β }

Finally, to see (4), follow a similar path by defining

Fi+1 := {q ∈ Pα | ∃jβ < β.∃ϵ.q ↾ β ⊩ x∼jβ \ ϵ ⊆ A∼
qi
β }

Pick for every i < µ∗, jβ,i ∈ Mρ∗ ∩ β witnessing q∗ ∈ Fi+1 and since the
cofinality of β is at least κ we can take the sup to find a single iβ. Now
choose the epsilons as before. Since jβ,i ∈ M∗ and unbounded in iβ, there
is i0 < µ∗ such that for every i0 ≤ i < µ∗, the cantor normal form of jβ,i is
a continuation of the on of iβ. Hence the δ′is belong to M∗ □

By (1), for every β ∈ Supp(p∗) we have δβ < κ, pick δ∗ = sup δβ. By

(2), (3) and (4) we choose ϵβ and set ϵ∗ = sup ϵβ < κ. Pick γ∗ ∈ Ap∗

0 above
ϵ∗, δ∗, α0 and define pfin. Define the support of pfin to be Supp(p∗) ∪ {iβ |
β ∈ Supp(p∗), cf(β) ≥ κ}. Define

pfin(γ) :=

{
⟨a∼

p∗
γ ∪ {γ∗}, A∼

p∗
γ \ γ∗⟩, γ ∈ Supp(p∗),

⟨{γ∗}, κ \ γ∗ + 1⟩, otherwise.

Clearly pfin ⊩ γ∗ ∈ ∩i∈Iα x∼i. It remains to argue that pfin is an extension

of p∗: Indeed pfin(0) ≥ p∗0 since γ∗ ∈ A0 and γ∗ > δ0 > sup(ap
∗

0 ). Suppose
that β ∈ Supp(p∗) and that pfin ↾ β ≥ p∗ ↾ β. If β = β0+1 is successor then

pfin ↾ β ⊩ γ∗ ∈ x∼β0\ϵ∗ ⊆ A∼
p∗

β , hence pfin ↾ β ⊩ pfin(β) ≥ p∗(β). If β is limit

of cofinality less than κ, then since β ∈ M∗, we have that Iβ ⊆ M∗∩β, hence

by induction pfin ↾ β ⊩ γ∗ ∈ ∩i∈Iβ x∼β \ϵ∗ \A∼
p∗

β . Finally, if the cofinality of β

is at least κ, then there is iβ < κ such that p∗ ↾ β ⊩ γ∗ ∈ x∗iβ \ ϵ
∗ ⊆ A∼

p∗

β . □

This completes the proof of the theorem. □

Let us briefly describe a natural, yet unfruitful, strategy to make U ∗

become a κ-complete ultrafilter. Given a Laver-indestructible supercompact
cardinal κ and α < λ force over V Pα with MVα , where Vα is an extension of
U ∗

α (in V Pα) to a κ-complete ultrafilter. Note that since Pα is κ-directed-
closed, κ is still supercompact in the corresponding extension and thus the
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choice of Vα is available. In addition, if the length of the iteration is λ = κ+

then the union of the (tower of) κ-complete ultrafilters generated along the
way will be also an ultrafilter, U∞. The problem with this approach is that
we lose control upon κ-completeness of U∞. Indeed, even the union of the
first ω-many ultrafilters generated might not be κ-complete, as we argued
in the discussion preceding Theorem 2.12.

The approach of Theorem 2.20 is to iterate MU more carefully so that
we have complete control on the completeness of the ultrafilter U∞.

Definition 2.16. For f : κ → κ and an ultrafilter U over κ we say that f
is constant mod(U ) if there is γ < κ such that f−1{γ} ∈ U . Similarly, f is
1-1mod(U ) if there is X ∈ U such that |f−1{γ} ∩X| < κ for every γ < κ.

Definition 2.17. A κ-complete ultrafilter U is called a P -point if every
function f : κ → κ that is not constant mod(U ) is 1-1mod(U ).

Remark 2.18. U is a P -point if and only if every sequence ⟨Xα | α < κ⟩
of elements in U has a pseudo intersection in U ; namely, there is X ∈ U
such that X ⊆∗ Xα for every α < κ.

Lemma 2.19. Every κ-complete ultrafilter U with a generating sequence of
size κ+ is a P -point. In particular, Gal(U , κ, κ+).

Proof. Let A = ⟨Aα | α < κ+⟩ be a generating sequence of U . To see it
is P -point suppose that ⟨Xα | α < κ⟩ is any κ−sequence of members of
U . By definition of generating sequence, for each α < κ there is βα < κ+

such that Aβα ⊆∗ Xα. Consider β∗ = supα<κ βα < κ+. Then Aβ∗ is a
pseudo intersection of the sequence ⟨Xα | α < κ⟩. For the in particular
claim use the fact that every P -point ultrafilter U satisfies Gal(U , κ, κ+)
(see [8, Proposition 5.13]). □

In analogy to Theorem 2.5, next we show that every ground model κ-
complete ultrafilter can be extended to a well-behaved one: to wit, to a
P -point. By virtue of the above lemma, this gives an alternative (and less
severe way) to trasnmute an arbitrary κ-complete ultrafilter into a Galvin
one. Unlike Theorem 2.5, the models we produce this time have the extra
feature that 2κ can be made arbitrarily large. Our construction owes much
to previous work of Gitik and Shelah [20]. Recall that κ is almost huge with
target λ if there is j : V → M such that crit(j) = κ, j(κ) = λ and M<λ ⊆ M .

Theorem 2.20. Assume that the GCH holds and suppose that κ is an
almost huge cardinal with measurable target λ. Then for every δ < λ there is
a forcing extension V [Gδ] where 2κ = δ and every ground model κ-complete
ultrafilter extends to a P -point ultrafilter in V [Gδ]. In addition, V [Gδ]λ
models the same configuration and κ is supercompact there.

Proof. Let j : V → M be such that crit(j) = κ, M<λ ⊆ M and j(κ) = λ.
Recall that λ is assumed to be measurable in the ground model, hence we
can let U be a measure on λ. Let us define an Easton support iteration
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⟨Pα,Q∼β | β ≤ κ, α ≤ κ + 1⟩, where Q∼α is trivial unless α is measurable in

V Pα , in which case Q∼α is a Pα-name for the two-step iteration Q∼α,0 ∗ Q∼α,1

defined as follows: Q∼α,0 is the atomic forcing choosing some ordinal F (α) < κ
followed by Q∼α,0, an <α-supported iteration ⟨Rα

β , Sαγ | β ≤ F (α), γ < F (α)⟩
defined as follows: At each step β ≤ F (α), Sαβ is trivial unless ⊩Pα∗Rα

β
“α

is measurable”, in which case Sαβ is forced to be the <α-supported product∏
V∼MV∼, where V∼ ranges over all Pα∗Rα

β -names for an α-complete ultrafilter
over α.

Since Qα,1 is an <α-supported iteration of α+-stationary c.c., <α-closed
and countably-parallel closed forcing (cf. Proposition 2.9) it follows from
[14, Theorem 1.2] that Qα,1 is α+-cc. Also, Pκ is κ-cc because κ is Mahlo
and Pκ is Easton-supported. Let Gκ ⊆ Pκ be a V -generic filter. Then, due
to closure of M under <λ-sequences and κ-ccness of Pκ, V [Gκ] and M [Gκ]
agree up to λ (see, e.g., [13, Proposition 8.4]). Consider j(Pκ) := P′

j(κ).

Claim 2.21. For every ρ < λ, M [Gκ ∗ {ρ}]Q1,κ |= “κ is measurable”.
In fact, κ is <λ-supercompact in M [Gκ ∗ {ρ}]Q1,κ, hence also in

V [Gκ ∗ {ρ}]Q1,κ, and thus κ is fully supercompact in (V [Gκ ∗ {ρ}]Q1,κ)λ.

Proof. In the ground model V , let max(ρ, 22
κ
) ≤ θ < λ. Let U be a

fine normal measure over Pκ(θ) and let jU : V → M be the correspond-
ing elementary embedding. Then θM ⊆ M . Put P′

jU (κ) := jU (Pκ) and

Q′
jU (κ) := jU (Qκ). Let G(Q1,κ) a V [Gκ][{ρ}]-generic, and let us lift jU to

the model V [Gκ ∗ {ρ} ∗ G(Q1,κ)]. Note that in M [Gκ ∗ {ρ} ∗ G(Q1,κ)] we
have 2κ ≥ ρ, since at each step of the iteration Q1,κ we add a new subset to
κ. Hence, by closure under ρ-sequences, the degree of closure of the forcing

P′
jU (κ)/[Gκ ∗ {ρ} ∗G(Q1,κ)]

is at least ρ+, even in V [Gκ ∗ {ρ} ∗G(Q1,,κ)]. Also note that every dense set
in P′

j(κ)/Gκ ∗ {ρ} ∗G(Q1,κ) is represented by a function f : Pκ(ρ) → P(Pκ).

Since there are in total (2κ)ρ = ρ+ of such functions we can construct
a master sequence which induces an M [Gκ ∗ {ρ} ∗ G(Q1,κ)]-generic filter
G<λ. Next, the top-most forcing Q0,κ ∗Q1,κ is κ+-cc and when its length is
restricted to some ρ its size becomes ρ · 22κ . Hence every maximal antichain
in M [G<λ ∗ {j(ρ)}] for j(Q1,κ) is represented by a function F : Pκ(ρ) →
Pκ((Q1,κ)Gκ∗{ρ}) ∈ V [Gκ ∗ {ρ}] and since (Q1,κ)Gκ∗{ρ} is of size ρ · 22

κ
=

θ there are θθ = θ+ many such functions. The remaining argument is
standard. □

For each ρ < λ, (Q1,κ)Gκ∗{ρ} is κ+-cc and of size less than λ. Thus, there
are less than λ-many nice names for subsets of κ. Denote these names by
⟨A∼

ρ
τ | τ < θρ⟩. We can find in V [Gκ] an enumeration ⟨A∼τ | τ < λ⟩ of subsets

of κ such that for every τ1 ≤ τ2, there are δ1, δ2 such that A∼τ1 = A∼
ρ(τ1)
δ1

and A∼τ2 = A∼
ρ(τ2)
δ2

, and ρ(τ1) ≤ ρ(τ2). For each τ < λ for which ρ(τ) < λ

has been defined, let C ′ be the club of closure points of ρ(τ). Since λ is
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measurable there is S ∈ U concentrating on inaccessibles. Hence, there for
U-many δ ∈ S such that ρ“δ ⊆ δ. In particular, the sequence ⟨A∼τ | τ < δ⟩
codes all the (Q1,κ)Gκ∗{δ}-names for subsets of κ.10

Let ϵ < λ be an ordinal above the generators of all κ-complete ultrafilters.
More precisely, for each κ-complete ultrafilter U ∈ V over κ let εU ∈ λ ∩⋂
j“U and define ϵ := supU εU . Note that ϵ < λ as λ is inaccessible in V .
For every δ′ < δ and every (Q1,κ)Gκ∗{δ′}-name (i.e., a (Q1,κ)Gκ∗{δ} ↾ δ′-

name) U∼ for a κ-complete ultrafilter over κ, let us define rU∼ ∈ Mj(U∼) as:

rU∼ = ⟨aU∼ ∪ (AU∼ ∩ ϵ), AU∼ \ (ϵ + 1)⟩,
where

• aU∼ is the standard (Q1,κ)Gκ∗{δ}-name for the Mathias set for MU∼;
• AU∼ is a name for the set

⋂
j“U∼.

Note that rU∼ is a condition in Mj(U∼): First, the trivial condition of Mj(U∼)

forces “ minAU∼ = κ”, hence aU∼ ∪ (AU∼ ∩ ϵ) is a legitimate stem. Second,
this condition also forces j(U∼) to be j(κ)-complete, hence

⋂
j“U∼ ∈ j(U∼).

The key feture of rU∼ is that 0j(MU∼) forces aj(U∼) to contain all generators
εW , W ∈ V , that are forced to belong to AU∼.

Let qδ be a condition in Q′
jU (κ) with support j“δ (hence of cardinality

<j(κ)) be the following condition: For every δ′ < δ and a (Q1,κ)Gκ∗{δ′}-
name for a κ-complete ultrafilter U∼ as above,

qδ ↾ j(δ
′) ⊩ qδ(j(δ

′))(j(U∼)) = rU∼;

for other coordinates (i.e., names for ghost ultrafilters) W∼ we require that

qδ ↾ j(δ
′) ⊩ “qδ(j(δ

′))(W∼ ) is the trivial codition in MW∼”.

A moment’s reflection makes clear that qδ is a master condition for G(Q1,κ):
namely, j(p) ≤ qδ for every p ∈ G(Q1,κ). In addition, the conditions qδ are
defined in a coherent way: namely, if ρ ≤ δ are both in C then qδ ↾ ρ = qρ.

Fix ρ ∈ C \ (ϵ + 1). For every τ, ζ < ρ let D∼τ,ζ ∈ M [Gκ ∗ {ρ}] be a
(Q1,κ)Gκ∗{ρ}-name for the following dense open set

{p ∈ P′
(κ,jU (κ)] | ∃sκ ∈ Q1,κ ∃i ∈ 2 (⟨sκ, p⟩ ⊩i

P′
[κ,jU (κ)]

ζ ∈ j(A∼τ ))}.

Since the trivial condition of Q1,κ forces P′
(κ,jU (κ)] to be ρ+-closed it also

forces that
⋂

τ,ζ D∼τ,ζ is a name for a dense open set. In particular, there is

some (Q1,κ)Gκ∗{ρ}-name pρ for a condition in
⋂

τ,ζ D∼τ,ζ such that pρ ↾ j(κ) ⊩
pρ(j(κ)) ≥ qρ. Notice that pρ has the property that for every τ, ζ < ρ there
is s ∈ Gκ∗{ρ} and sκ ∈ (Q1,κ)Gκ∗{ρ} such that ⟨s, sκ, pρ⟩||P′

[κ,jU (κ))
ζ ∈ j(A∼τ ).

For each (s, sκ) ∈ Gκ ∗Q∼κ, ordinals ζ < ϵ and τ < λ, and i ∈ 2 define

Ai
(s,sκ,ζ,τ)

:= {ρ < λ | ⟨s, sκ, pρ⟩ ⊩i ζ ∈ j(A∼τ )}.

10Specifically, if σ is a (Q1,κ)Gκ∗{δ}-name for a subset of κ then there is τ < δ such

that 0 ⊩(Q1,κ)Gκ∗{δ} σ = A∼τ .
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Denote by A2
(s,sκ,ζ,τ)

the complement of the union of the above two sets. For

each such quadruple (s, sκ, ζ, τ), let i(s,sκ,ζ,τ) ∈ 3 be the unique index i for

which Ai
(s,sκ,ζ,τ)

∈ U , the λ-complete measure on λ. Now let

A := {ρ < λ | (⟨s, sκ⟩ ∈ G ∗Q∼κ ↾ ρ ∧ max(ζ, τ) < ρ) ⇒ ρ ∈ A
i(s,sκ,ζ,τ)

(s,sκ,ζ,τ)
}.

We claim that A ∈ U : In effect, for every ⟨s, sκ⟩ ∈ G ∗ j(Qκ) ↾ λ = G ∗ Qκ

and ζ, τ < λ, A
i(s,sκ,ζ,τ)

(s,sκ,ζ,τ)
∈ U . Hence, λ ∈ jU (Ai

(s,sκ,ζ,τ)
), and thus λ ∈ jU (A).

Put C∗ := A ∩ C. Let ρ, ρ′ ∈ C∗ with ρ < ρ′, ⟨s, sκ⟩ ∈ G ∗ (Qκ∼
↾ ρ) and

ζ, τ < ρ. By definition of A, ρ, ρ′ ∈ A
i(s,sκ,ζ,τ)

(s,sκ,ζ,τ)
, hence

⟨s, sκ, pρ⟩ ⊩i ζ ∈ j(A∼τ ) iff ⟨s, sκ, pρ′⟩ ⊩i ζ ∈ j(A∼τ ),

and also

⟨s, sκ, pρ⟩ ⊩ ζ ∈ j(A∼τ ) iff ⟨s, sκ, pρ′⟩ ⊩ ζ ∈ j(A∼τ ).

Next, for all ρ ∈ C∗ and ζ < ϵ consider

Uρ,ζ := {(A∼τ )Gκ∗{ρ}∗G(Qκ,1) ⊆ κ | ∃⟨s, sκ⟩ ∈ G∗{ρ}∗G(Qκ,1) ⟨s, sκ, pρ⟩ ⊩ ζ ∈ j(A∼τ )}.

Since ⟨A∼τ | τ < ρ⟩ is an enumeration of the (Qκ,1)Gκ∗{ρ}-names, it is not
hard to show that Uρ,ζ is a κ-complete ultrafilter in V [Gκ ∗ {ρ} ∗G(Qκ,1)].

Also, for each ζ < ϵ, ⟨Uρ,ζ | ρ ∈ C∗⟩ defines a tower of ultrafilters:
Suppose ρ < ρ′ ∈ C∗ and let A ∈ Uρ,ζ . Then, there is a pair ⟨s, sκ⟩ such
that ⟨s, sκ, pρ⟩ ⊩ ζ ∈ j(A∼τ ). By our definition of C∗ this is also true when
replacing pρ by pρ′ . Thus, (A∼τ )Gκ∗{ρ}∗G(Qκ,1) ∈ Uρ′,ζ .

Let δ be the limit of some sequence ⟨ρα | α < κ+⟩ ⊆ C∗. From our
previous comments, ⟨Uρα,ζ | α < κ+⟩ defines a tower of measures. Now,
define Vδ,ζ :=

⋃
α<κ+ Uρα,ζ . Since V [Gκ ∗ {ρα} ∗G(Qκ,1) ↾ ρα] is a submodel

of V [Gκ ∗ {δ} ∗G(Qκ,1)] and (Q1,κ)Gκ∗{δ} is κ+-cc it is immediate that Vδ,ζ

is a κ-complete ultrafilter.

Claim 2.22. Vδ,ζ admits a strong generating sequence of size κ+.

Proof. For each α < κ+, Uρα,ζ ∈ V [Gκ ∗ {δ} ∗ G(Qκ,1) ↾ ρα] hence the
iteration Qκ,1 at stage ρα + 1 shoots a Mathias set xα ⊆ κ (over the model
V [Gκ ∗ {δ} ∗ G(Qκ,1) ↾ ρα]) for the measure Uρα,ζ . Namely, xα is almost
included in every A ∈ Uρα,ζ .

We claim that ⟨xα | α < κ+⟩ is the sought strong generating sequence.
First, for each A ∈ Vδ,ζ there is α < κ+ such that A ∈ Uρα,ζ and so xα ⊆∗ A.
Second, ⟨xα | α < κ+⟩ is ⊆∗-decreasing: Fix α < β < κ+. We would like to
show that xα ∈ Uρβ ,ζ . Recall that xα = (aU∼ρα,ζ

)Gκ∗{ρβ}∗G(Qκ,1)↾ρβ , hence we

should check that for some ⟨s, sκ⟩ ∈ Gκ ∗ {ρβ} ∗G(Qκ,1) ↾ ρβ we have that:

⟨s, sκ, pρβ ⟩ ⊩ ζ ∈ j(aU∼ρα,ζ
)

By elementarity of j, it follows that j(aU∼ρα,ζ
) = aj(U∼ρα,ζ) is the canonical

P′
j(κ) ∗ {j(ρβ)} ∗ Q′

j(κ)-name for the Mathias generic of Mj(Uρα,ζ). By the
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definition of pρβ (which extends qρβ , and the definition of rU∼ρα,ζ
),

⟨0, pρβ ⟩ ⊩ aj(U∼ρα,ζ) ∩ (ϵ + 1) ⊇
⋂

j“U∼ ρα,ζ ∩ (ϵ + 1).

Working in M [Gκ ∗ {ρα} ∗G(Qκ,1)], we have that for every A ∈ Uρα,ζ , there
is a name Aτ for A such that pρα ⊩ ζ ∈ j(A∼τ ). Hence pρα ⊩ ζ ∈

⋂
j“U∼ ρα,ζ .

Hence there is ⟨s, sκ⟩ ∈ Gκ ∗ {ρα} ∗G(Qκ,1) ↾ ρα such that

⟨s, sκ, pρα⟩ ⊩ ζ ∈ j(aU∼ρα,ζ
)

Since ρα, ρβ ∈ C∗, this means that ⟨s, sκ, pρβ ⟩ ⊩ ζ ∈ j(aU∼ρα,ζ
) which by

definition implies that xα ∈ Uρβ ,ζ . □

Claim 2.23. Every κ-complete ultrafilter U from the ground model is ex-
tended by Vδ,ζ , for some ζ < ϵ.

Proof of claim. Let ζ < ϵ be such that U = {X ⊆ κ | ζ ∈ j(X)} . Clearly,
U ⊆ Uρα,ζ for all α < κ+, hence U ⊆ Vδ,ζ . □

This completes the proof of the theorem. □

Remark 2.24. Note that every measurable cardinal κ always carries a κ-
complete ultrafilter which is not a P -point. To see this, take any κ-complete
ultrafilter U over κ, and a bijection ϕ : [κ]2 → κ and define W := ϕ∗(U ×
U ). One can check that W is a κ-complete non-P -point ultrafilter. As
witnessed by L[U ], it is consistent that every ultrafilter is a finite power of
a normal one (hence of a P -point), and such ultrafilters are always Galvin
(see [8, Corollary 5.29]). If κ is κ-compact11 then there is a κ-complete
ultrafilter which is not a finite power of a P -point (see, e.g., [25, §3.9]).

Question 2.25. Is it consistent to have a measurable cardinal carrying a
κ-complete ultrafilter U such that Gal(U , κ, κ+) but it is not Rudin-Keisler
equivalent to a finite power of P -points?

Question 2.26. Is it ZFC-provable that a supercompact cardinal always
admits a κ-complete non Galvin ultrafilter?

2.2. Galvin’s property in the choiceless context. Another way to exa-
mine Galvin’s property at very large cardinals is to consider relatively small
cardinals in ZF. A typical example is ℵ1 under AD. Indeed, Solovay proved
that both ℵ1 and ℵ2 are measurable under AD and that Dℵ1 is a normal
ultrafilter (see [24, Theorem 33.12]). In fact, ℵ1 is ℵ2-supercompact under
AD, by a result of Martin (see [26, p. 401]). Moreover, under ADR, ℵ1 is
γ-supercompact for all γ < Θ [26, Theorem 28.22]. However, the classical
proof of Galvin’s theorem employs the Axiom of Choice in a crucial way.

In private communication [12], W. Chan informed us that it is possible
to get Galvin’s property at many cardinals even in the absence of AC. The
argument involves Steel’s notion of boldface GCH cardinal [33, p. 1678]:

11A cardinal κ ≥ ℵ1 is called κ-compact if every κ-complete filter over κ extends to a
κ-complete ultrafilter.
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Definition 2.27. A cardinal κ is called boldface GCH if there is no injection
F : κ+ → P(κ).

In [33, Theorem 8.26] Steel shows that under “V = L(R) + AD” ev-
ery cardinal κ < Θ is boldface GCH. Moreover, Chan indicated that using
Moschovakis coding lemma one can show that AD alone implies that every
κ < ΘL(R) is boldface GCH.

Proposition 2.28. If κ is boldface GCH and κ+ is regular then Gal(F , κ+, κ+)
holds for every κ-complete filter F over κ.

Proof. Note that if κ is boldface GCH and κ+ is regular then every function
F : κ+ → P(κ) admits some B ∈ Im(F ) such that |(F−1)“B| = κ+.

Suppose ⟨Aα | α < κ+⟩ is a sequence of elements of a κ-complete filter F
over κ. By the previous observation there is a κ+-length subsequence which
is constant. Hence the corresponding intersection is this constant value,
which belongs to F . Thereby, Gal(F , κ+, κ+) holds. □

Remark 2.29. Even ditching the regularity assumption on κ+ one can show
that Gal(F , κ, κ+) holds for every κ-complete ultrafilter F over κ. This is
because every F : κ+ → P(κ) admits a B ∈ Im(F ) such that |(F−1)“B| ≥ κ.

Anticipating the results in the next section we consider a natural gener-
alization of Proposition 2.28. The crucial point is that both the family of
sets with large intersection and the corresponding large set contained in all
of them are explicitly constructed. We will apply the claim to many pairs
simultaneously, and since these objects are explicitly definable we do not
need the axiom of choice in order to pick them.

Definition 2.30. We say that GalDef(U , λ, λ) holds if for every sequence
C = ⟨Cα | α < λ⟩, there is a subsequence ⟨Cρj | j < λ⟩ definable from C such
that

⋂
j<λCρj ∈ U .

Proposition 2.31. Suppose that κ is measurable, κ < λ is regular and
there is no injection f : λ → P(κ). Then, GalDef(U , λ, λ) holds for every
κ-complete ultrafilter U over κ.

If one seeks for a parallel of the above in ZFC then one may consider
real-valued measurable cardinals, which can be described as measurables
without the cardinal arithmetic. A cardinal κ is real-valued measurable
if there exists a non-trivial κ-additive measure over κ. The size of such
cardinals, if exist at all, is at most 2ℵ0 . Solovay proved that if there is a
measurable cardinal κ and one forces a κ-product of random reals then one
obtains 2ℵ0 = κ in the generic extension and κ is real-valued measurable. It
is tempting to try an amalgamation between this theorem and the forcing
construction of Abraham-Shelah [1]. The framework will be similar, but
rather than Cohen reals (added in the Abraham-Shelah model) one can try
random reals. The most difficult part is to verify that the Main lemma
[1, Lemma 1.7] still holds true when replacing the Cohen’s by the Random
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reals. This is in principle not evident for the original argument of [1] relied
upon some specific properties of Cohen reals. Once this is accomplished, the
failure of Galvin’s property at ℵ1 follows. However, there is the additional
caveat of ensuring that the Abraham-Shelah poset preserves the real-valued
measurability of κ. All of this suggests the following question:

Question 2.32. Is it consistent that κ is a real-valued measurable cardinal
and Gal(Dℵ1 ,ℵ1, κ) fails?

3. An application to ordinary partition relations

Ramsey’s theorem from [30] says that ω → (ω, ω)2. That is, for every
c : [ω]2 → 2 there exists an infinite monochromatic subset A ⊆ ω. A natural
generalization is obtained by replacing ω with some cardinal κ > ℵ0. The
resulting relation is κ → (κ, κ)2 and implies that κ is weakly compact.

There is yet another possible way to generalize Ramsey’s theorem to un-
countable cardinals and in this way one obtains a positive relation at small
cardinals as well. Recall that λ → (κ, θ)2 means that for every c : [λ]2 → 2,
either there is A ⊆ λ, |A| = κ such that c“[A2] = {0} or B ⊆ λ, |B| = θ
such that c“[B]2 = {1}. Ramsey’s theorem generalizes to the statement
κ → (κ, ω)2 in which we increase the first component only. A theorem of
Erdős, Dushnik and Miller says, indeed, that this relation holds at every
infinite cardinal κ, see [15] and [16]. In terms of graph theory this means
that if G is a complete graph of size κ then either G contains an edge-free
subset of size κ or an infinite clique.

Can one improve the positive relation λ → (λ, ω)2? The lightest possibil-
ity would be λ → (λ, ω+1)2, but this relation does not hold at every infinite
cardinal λ anymore. Suppose that λ > cf(λ) = ω and let λ =

⋃
n<ω ∆n

where m ̸= n ⇒ ∆m ∩ ∆n = ∅ and |∆n| < λ for every n < ω. De-
fine c : [λ]2 → 2 by letting c(α, β) = 0 iff there exists n < ω for which
{α, β} ⊆ ∆n. A 0-monochromatic set A must be contained in some ∆n,
so there is no such a set of size λ. A 1-monochromatic set B satisfies
|B ∩ ∆n| ≤ 1 for every n < ω, so there is no such a set of order-type ω + 1.
Hence there is a class of cardinals which fail to satisfy λ → (λ, ω + 1)2. On
the other hand, if λ = cf(λ) > ℵ0 then λ → (λ, ω + 1)2, see [16, Theorem
11.3]. In fact, one can prove a slightly stronger statement.

Proposition 3.1. Suppose that λ = cf(λ) > ℵ0. For every c : [λ]2 → 2,
either there is a stationary set T ⊆ λ such that c ↾ [T ]2 is 0-monochromatic
or there is B ⊆ λ, otp(B) = ω + 1 such that c ↾ [B]2 is 1-monochromatic.

Proof. Suppose that c : [λ]2 → 2. If there exists B ⊆ λ of order type ω + 1
such that c“[B]2 = {1} then we are done. Suppose that there is no such
B, and let S be the set of limit ordinals of λ. For every δ ∈ S choose
a sequence ᾱδ = ⟨αδ

0, . . . , α
δ
n−1⟩ such that ᾱ⌢

δ ⟨δ⟩ is 1-monochromatic and
if max(ᾱδ) < ξ < δ then ᾱ⌢

δ ⟨ξ, δ⟩ is not 1-monochromatic. The choice is
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possible by our assumption that there is no 1-monochromatic sequence of
length ω + 1.

By shrinking S if needed, we may assume that ℓg(ᾱδ) = n for some fixed
n < ω and every δ ∈ S. We remark that in this shrinking process we retain
the fact that S is stationary. Let ξδ be the top-element of ᾱδ for every δ ∈ S.
The function h(δ) = ξδ is regressive on S, so by Fodor’s lemma there is a
stationary T0 ⊆ S and a fixed ordinal ξ < λ such that δ ∈ T0 ⇒ ξδ = ξ.
By repeating this process n-many times we obtain a stationary set Tn and
a fixed sequence ᾱ such that ᾱ⌢⟨δ⟩ is 1-monochromatic and ᾱ⌢⟨ζ, δ⟩ is not
1-monochromatic whenever δ ∈ Tn and max(ᾱ) < ζ < δ.

In particular, if T = Tn \ (max(ᾱ) + 1) then T is a stationary subset of
λ and if ζ, δ ∈ T, ζ < δ then necessarily c(ζ, δ) = 0. Otherwise, ᾱ⌢⟨ζ⟩ will
contradict the conclusion of the previous paragraph. Thus, c“[T ]2 = {0}
and we are done. □

As mentioned above, the statement of the proposition gives a bit more
than just λ → (λ, ω + 1)2 since it yields a stationary 0-monochromatic
set. Notice that the argument applies to singular cardinals of uncountable
cofinality for which the concepts of club and stationary subsets are sound.
However, if T is a stationary subset of a singular cardinal λ then it is possible
that |T | < λ. Therefore, one may wonder about λ → (λ, ω + 1)2 in such
cardinals. The following is [16, Question 11.4]:

Question 3.2. Does the relation λ → (λ, ω + 1)2 hold for λ > cf(λ) > ω?

Actually, the question is phrased in [16] with respect to λ = ℵω1 , the
first relevant instance. We indicate that in [16] there appears a partial
answer, based on canonization theorems of Shelah, which apply to strong
limit singular cardinals. Namely, if λ > cf(λ) > ω and λ is a strong limit
cardinal then λ → (λ, ω + 1)2. In some sense, this result gives many ZFC
instances since for every κ = cf(κ) > ℵ0 there is a class of singular cardinals
which are strong limit of cofinality κ. On the other hand, for every specific
λ > cf(λ) = κ one can choose θ < λ and force 2θ > λ, thus locally it is not
a theorem of ZFC.

A substantial progress with regard to the above question was made by
Shelah in [31]. Using methods of pcf theory, Shelah proved that if λ >
cf(λ) = κ > ℵ0 and 2κ < λ then λ → (λ, ω + 1)2. The assumption 2κ < λ
is a weakening of the assumption that λ is a strong limit cardinal, but
the overall question remains open if one wishes to eliminate any further
assumption.

In this section we would like to replace 2κ < λ by a version of Galvin’s
property. Our assumption on the Galvin property is also easily forced in
the ZFC context if κ = cf(λ) is measurable. This gives a slight improvement
to Shelah’s result, but it seems that the real importance of the ZFC result
is that it guides us towards the (tentative) direction of forcing the negative
relation λ ↛ (λ, ω+ 1)2. In effect, our approach indicates that one must kill
all the pertinent instances of the Galvin property to obtain λ ↛ (λ, ω + 1)2.
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As observed in the previous section, AD yields many instances of Galvin’s
property; consequently, it also gives several instances of λ → (λ, ω + 1)2.

To this end, we must render the proof of [31] by removing any use of
choice apart from ACω. Let us begin with models of ZF. Our first mission is
to prove that κ → (κ, ω + 1)2 holds for many regular cardinals. The proof
of Theorem 3.1 seems to make use of the axiom of choice in two places.
Firstly, when one chooses the maximal green sequence ᾱδ below δ for every
δ ∈ S. Secondly, when one employs Fodor’s lemma (finitely many times).
The first issue is not a real obstacle, since finite sequences are well ordered
even without choice. The second issue is more substantial, but can be settled
if one works with normal filters. In this respect, we note that the club filter
might not be normal, as proved by A. Karagila [27]. Measurability does not
suffice, either. In effect, in [10] Bilinsky and Gitik constructed a model of
ZF with a measurable cardinal which does not carry any normal ultrafilter.

Proposition 3.3 (ZF). Suppose that F is a normal filter over κ whose
dual ideal contains [κ]<κ. Then, for every c : [κ]2 → 2 one can find either
A ∈ F+, such that c“[A]2 = {0} or B ⊆ κ with otp(B) = ω + 1 such that
c“[B]2 = {1}. In particular, κ → (κ, ω + 1)2.

Proof. Let c : [κ]2 → 2 be a coloring. We refer to the first color as red and
to the second color as green. Repeat the arguments in the proof of Proposi-
tion 3.1 with the following changes. Set S := {α < κ | α is a limit ordinal}.
Clearly, S ∈ F+. For every δ ∈ S let ᾱδ be the first <lex-finite sequence
which is green with δ and maximal with respect to this property. Now use
the normality and apply Fodor’s lemma to F finitely many times to obtain
a fixed maximal green sequence ᾱ with respect to some set A ∈ F+. It
follows that c“[A]2 = {0}. Also, by our assumption on F , |A| = κ. □

Now we come to the main result of this section.

Theorem 3.4 (ZF). Suppose that ℵ0 < κ = cf(λ) < λ and that κ carries
a normal measure U . In addition, suppose that ⟨λi | i < κ⟩ is a cofinal
sequence in λ admitting a family ⟨Ui | i < κ⟩ such that:

• Ui is a normal filter whose dual ideal contains [λi]
<λi;

• GalDef(U , λi, λi) holds.

Then, λ → (λ, ω + 1)2.

Proof. We may assume that for every i < κ, λi > κ. Given a function
f : κ → Ord we define a rank function ℸ(f) as follows. Set ℸ(f) = α iff for
every β < α one has ℸ(f) ̸= β and ℸ(g) = β for some g : κ → Ord which
satisfies g <U f (i.e., {α < κ | g(α) < f(α)} ∈ U ).

Let c : [λ]2 → 2 be a coloring and suppose that there is no 1-monochromatic
subset of order type ω + 1. Define ∆0 := λ0 and ∆1+i := [λi, λi+1) for every
i < κ. By our assumption, there is a full-sized 0-monochromatic subset of
∆i for every i < κ. Moreover, this set is explicitly constructible by the proof
of Proposition 3.3 (Indeed, for every i we take the <lex-minimal sequence
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α⃗∗
i such that the set of δ ∈ ∆i such that ᾱδ = α⃗∗

i is in Ui). Hence we may
assume without loss of generality that c“[∆i]

2 = {0} for every i < κ.
For each α < κ let η(α) be the unique i < κ for which α ∈ ∆i. For every

0 < i < κ let Seqi be the set {⟨α0, . . . , αn−1⟩ | η(α0) < · · · < η(αn−1) < i}.
For i < κ and ζ ∈ ∆i we define a tree Tζ as follows. For every ᾱ =
⟨α0, . . . , αn−1⟩ ∈ Seqi and every ζ ∈ ∆i we let ᾱ ∈ Tζ iff {α0, . . . , αn−1, ζ}
is 1-monochromatic under c.

By our assumption each Tζ is well-founded with respect to the reversed
order. Therefore, one can define a rank function rkζ over Seqi, for every
ζ ∈ ∆i, by the following procedure. If ᾱ ∈ Seqi − Tζ then let rkζ(ᾱ) = −1.
If ᾱ ∈ Tζ then rkζ(ᾱ) = ξ iff for every ε ∈ ξ one has rkζ(ᾱ) ̸= ε and there
exists an ordinal β for which rkζ(ᾱ

⌢⟨β⟩) = ε.
The idea of this rank function is to express the degree of maximality of

finite sequences below ζ. For a maximal 1-monochromatic sequence below ζ,
rkζ assumes the value zero. If there is more room for adding ordinals above
max(ᾱ) and keeping the 1-monochromaticity with ζ, then the rank grows.
Notice that for every i < κ and every ζ ∈ ∆i the range of rkζ is bounded in
λi+1 since it is an initial segment of λi+1.

Let ∆end
i ⊆ ∆i be an end-segment such that for every ᾱ ∈ Seqi and γ < λi,

if there is ζ ∈ ∆end
i such that rkζ(ᾱ) = γ then there are unboundedly many

such ζ’s in ∆end
i below λi+1. The set ∆end

i has a concrete definition: this
end-segment is obtained by omitting bounded subsets of ∆i, which amounts
in our case to the intersection of their complements. Since λi+1 is regular,
we obtain an end-segment of λi+1.

We define a set of triples K as follows. A triple (ᾱ, Z, f) belongs to K
iff Z ∈ U , f : κ → Ord and for some 0 < i < κ, ᾱ ∈ Seqi,min(Z) > i and
for every j ∈ Z there exists ζ ∈ ∆end

j such that rkζ(ᾱ) = f(j). It is easy to
verify that K ̸= ∅.

Let (ᾱ∗, Z∗, f∗) be a triple in K for which ℸ(f∗) is minimal amongst the
elements of K. Without loss of generality, all the elements of Z∗ are limit
ordinals. For every j ∈ Z∗ we isolate a section Σj ⊆ ∆end

j by defining

Σj = {ζ ∈ ∆end
j | rkζ(ᾱ∗) = f∗(j)}. Notice that |Σj | = λj+1. Fix j ∈ Z∗.

We would like to understand what happens between the jth level and upper
levels mentioned in Z∗. For every ℓ ∈ Z∗ such that j < ℓ and every ζ ∈ Σj ,

let Σℓ
j(ζ) = {η ∈ Σℓ | c(ζ, η) = 1}. Let Lζ = {ℓ ∈ Z∗ | j < ℓ, |Σℓ

j(ζ)| =

λℓ+1}, the set of large 1-monochromatic levels above j. Similarly, let Tζ =
Z∗ − Lζ , the set of tiny 1-monochromatic levels above j.

Our goal is to garner many ordinals ζ with big Tζ , since then we will be
able to remove the “1” edges (there will be only a few of them) and create
a 0-monochromatic union of size λ. We claim, therefore, that Lζ /∈ U
(and parallely, Tζ ∈ U ) for every j ∈ Z∗, ζ ∈ Σj . For suppose not. Fix
i ∈ Z∗, β ∈ Σi such that Lβ ∈ U . Define ᾱ′ = ᾱ∗⌢⟨β⟩, Z ′ = Lβ and

for j ∈ Z ′ let f ′(j) = min{rkη(ᾱ′) | η ∈ Σj
i (β)} and f ′(j) = 0 otherwise.

Notice that (ᾱ′, Z ′, f ′) ∈ K. We claim that ℸ(f ′) < ℸ(f∗). Indeed, for
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every j ∈ Z ′ = Lβ one has f ′(j) = rkη(ᾱ′) for some η ∈ Σj
i (β), so f ′(j) =

rkη(ᾱ∗⌢⟨β⟩) < rkη(ᾱ∗) = f∗(j). Thus, ℸ(f ′) < ℸ(f∗), contradicting the
minimality of ℸ(f∗).

We conclude, therefore, that Tζ ∈ U for every j ∈ Z∗, ζ ∈ Σj . Fix now
j ∈ Z∗.

Let Aj = ⟨Tζ | ζ ∈ Σj⟩ ⊆ U , apply GalDef(U , λj+1, λj+1) and find
Mj ⊆ Σj of cardinality λj+1 such that ∩ζ∈Mj

Tζ =: Yj ∈ U . We emphasize
that we do not need the axiom of choice in order to define these objects,
because of definability. We render this process at every j ∈ Z∗. Finally, let
Y = ∆{Yj | j ∈ Z∗} ∈ U .

For every j ∈ Y we wish to define Aj ⊆ Mj such that |Aj | = λj+1. The
sets Aj will be 0-monochromatic, and our goal is to show that their union
is 0-monochromatic as well. We define these sets by induction on j ∈ Y . So

fix j ∈ Y and define Aj = {ξ ∈ Mj | ∀i ∈ Y ∩ j,∀ζ ∈ Ai, ξ /∈ Σj
i (ζ)}. We

claim that |Aj | = λj+1. To see this, observe that if i ∈ Y ∩ j then for every

ζ ∈ Ai the set Σj
i (ζ) is bounded in λj+1, hence λj+1−Σj

i (ζ) contains a final

segment of λj+1. Thus, by regularity of λj+1,
⋂
{(λj+1 − Σj

i (ζ)) | ζ ∈ Ai}
contains a final segment. Notice that Aj is obtained by intersecting this set
with Mj , hence |Aj | = λj+1.

Define A =
⋃

j∈Y Aj , so |A| = λ. By proving that c“[A]2 = {0} we will be
done. Pick α, β ∈ A such that α < β. If there exists j ∈ ω1 such that α, β ∈
Aj then c(α, β) = 0 since Aj ⊆ Aj

0 ⊆ Σj and c“[Σj ]
2 = {0}. If not, then

there are i < j < ω1 such that α ∈ Ai, β ∈ Aj , and i, j ∈ Y . By definition,

β /∈ Σj
i (α) and hence c(α, β) = 0 and the proof is accomplished. □

The above proof also gives the following corollary in ZFC, where the club
filter over regular cardinals is always normal.

Corollary 3.5 (ZFC). Suppose that U is a normal measure over κ, λ is
singular with cf(λ) = κ and that Gal(U , λi, λi) holds for cofinaly many
regular cardinals below λ. Then, λ → (λ, ω + 1)2

The situation described in the previous corollary is a consequence of a
small ultrafilter number: Suppose that κ is measurable, and U is a normal
ultrafilter over κ with a base of U of size κ+. One says, in this case, that
unorκ = κ+. It is possible to force unorκ = κ+ even if 2κ is arbitrarily large,
see e.g. [20] and [19].

It is easy to verify that if U witnesses unorκ = κ+ then Gal(U , µ, µ) holds
whenever µ = cf(µ) > κ+, see e.g. [6].

Corollary 3.6. If κ is measurable and unorκ = κ+ then λ → (λ, ω + 1)2

whenever κ = cf(λ) < λ.

The corollary shows that the positive relation λ → (λ, ω + 1)2 may hold
even if 2κ > λ. This fact was known already to Shelah and Stanley [32]. It is
shown there that if λ is a strong limit singular of uncountable cofinality then
many versions of Cohen forcing preserve the positive relation λ → (λ, ω+1)2;
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in particular, adding many Cohen subsets of κ in a way that 2κ > λ. Our
corollary generalizes these results, since any κ-complete forcing notion will
preserve the statement unorκ = κ+.

In the above statements we used Galvin’s property in order to prove
λ → (λ, ω + 1)2. The connection between ordinary partition relations and
the structure of normal filters seems to be helpful in the opposite direction
as well. That is, from the assumption that λ → (λ, ω + 1)2 one can learn
something about the Galvin property.

Proposition 3.7. Let κ = cf(κ) > ℵ0 and let F be a normal filter over κ.
Suppose that ¬stGal(F , κ, κ+) is witnessed by C = {Cα | α < κ+}. Then
one can find a = {αn | n < ω} ⊆ κ+ such that

⋂
{(κ \ Cαn) | n < ω} ≠ ∅.

Proof. Assume toward contradiction that C = {Cα | α < κ+} witnesses the
strong failure of Gal(F , κ, κ+), yet the complements are not overlapping
in the sense that every infinite collection of them has empty intersection.
Define a coloring c : [κ+]2 → 2 as follows. For α < β < κ+ let c(α, β) = 0
iff β ∈ Cα.

Notice that there is no 1-monochromatic sequence of length ω + 1 under
c. For if ⟨αn | n ≤ ω⟩ is such a sequence then αω ∈

⋂
{(κ \ Cαn) | n < ω},

in contrary to our assumption at the beginning of the proof. Likewise,
there is no 0-monochromatic set A ∈ [κ+]κ+κ. For if A = A0 ∪ A1 with
sup(A0) < min(A1) and otp(A0) = otp(A1) = κ, then A1 ⊆

⋂
{Cα | α ∈

A0}. This is impossible since {Cα | α ∈ A0} ⊆ C. Thus, the coloring c
witnesses κ+ ↛ (κ+, ω + 1)2, which is an absurd since κ+ is regular and
uncountable. □

A similar argument becomes more powerful at successors of large cardi-
nals. By [7] one can force a κ-complete ultrafilter U over a measurable
cardinal κ such that Gal(U , κ, κ+) fails.

Proposition 3.8. Suppose that κ is measurable and U is a κ-complete
ultrafilter over κ for which ¬stGal(U , κ, κ+) is witnessed by the sequence
C = ⟨Cα | α < κ+⟩. Then there is S ∈ [κ]κ such that

⋂
{(κ \Cα) | α ∈ S} is

non-empty.

Proof. We define c : [κ+]2 → 2 as before, by letting c(α, β) = 0 iff β ∈ Cα.
Of course, the definition is needed at α < β < κ+ only, since the coloring
is symmetric. Assume toward contradiction that there is no S ∈ [κ]κ such
that

⋂
{(κ − Cα) | α ∈ S} ̸= ∅. By the same argument as in the previous

claim, c witnesses the negative relation κ+ ↛ (κ+ κ, κ+ 1)2. However, this
relation holds if κ is measurable, as proved in [17], a contradiction. □

The above statements show that there is a limitation on forcing empty
intersection over the complements of sets which witness the strong failure
of the Galvin property. One can try, however, to force empty intersection
only over certain families. The following is tailored to the goal of obtaining
a negative relation at singular cardinals.
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Given λ > cf(λ) = κ > ℵ0 and a cofinal sequence ⟨λi | i < κ⟩ in λ, let
∆0 := [0, λ0) and ∆1+i := [λi, λi+1).

Proposition 3.9. Suppose that:

(ℵ) λ > cf(λ) = κ > ℵ0 and F is a normal filter over κ.
(ℶ) {Cα | α < λ} ⊆ F witnesses ¬stGal(F , κ, λ).
(ג)

⋂
{(κ \ Cαn) | n < ω} = ∅ whenever αn ∈ ∆in for every n < ω, and

m ̸= n ⇒ αm ̸= αn.

Then λ ↛ (λ, ω + 1)2.

Proof. For α < β < λ, if there exists i ∈ κ such that α, β ∈ ∆i then let
c(α, β) = 0. If α ∈ ∆i, β ∈ ∆j and i < j, let c(α, β) = 0 iff β ∈ Cα. One
can verify that c : [λ]2 → 2 witnesses λ ↛ (λ, ω + 1)2, so we are done. □

On a different path, Theorem 3.10 can be applied also to models of AD,
where the distance between regular and measurable is quite short. This
distance is even shorter under the extra assumption that V = L(R), where
every regular cardinal below Θ is measurable, as proved in [33].

Corollary 3.10 (AD + V = L(R)). Suppose that ℵ0 < κ = cf(λ) < λ. If λ
is a limit of regular cardinals then λ → (λ, ω + 1)2.

Proof. For transparency, assume that κ = ω1. Let λ =
⋃

i<ω1
λi, where

⟨λi | i < ω1⟩ is increasing and continuous, ω1 < λ0 is measurable and λi+1

is measurable for every i < ω1. Let U denote the club filter over ω1, which
is a normal ultrafilter under AD. For every i < ω1 let Ui+1 be the filter
generated by the unbounded ω-closed subsets of λi+1. This is a normal
ultrafilter over λi+1 under AD+V = L(R), as shown in [33, Theorem 8.27].
Also, GalDef(U , λi+1, λi+1) holds by virtue of Proposition 2.31. Thereby,
the assumptions of Theorem 3.10 are met. □

It turns out that if λ = ℵω1 we can do it better:

Corollary 3.11 (AD). The relation ℵω1 → (ℵω1 , ω + 1)2 holds.

Proof. For each limit α < ω1 denote by δ1α the supremum of the lengths of
all ∆1

α prewellorderings. It follows that, under AD, the sequence ⟨δ1α+1 |
α ∈ acc(ω1)⟩ satisfies the following property: for each α ∈ acc(ω1) the filter
generated by the ω-closed subsets of δ1α+1 is a normal measure [23, §5.4].

Also supα<ω1
δ1α+1 = ℵω1 . Now we can argue as in the previous corollary

that ℵω1 → (ℵω1 , ω + 1)2. □

We finalize the current section with a ZFC question:

Question 3.12. Does λ ̸→ (λ, ω + 1)2 have any consistency strength?
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