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Abstract. We continue the study of the Galvin property from [6] and
[1]. In particular, we deepen the connection between certain diamond-
like principles and non-Galvin ultrafilters. We also show that any Dodd
sound non p-point ultrafilter is non-Galvin. We use these ideas to for-
mulate an essentially optimal large cardinal hypothesis that ensures the
existence of a non-Galvin ultrafilter, improving on a result from [2]. Fi-
nally, we use a strengthening of the Ultrapower Axiom to prove that in
all the known canonical inner models, a κ-complete ultrafilter has the
Galvin property if and only if it is an iterated sum of p-points.

0. Introduction

In this paper, we study certain aspects of the Galvin property of ultrafil-
ters:

Definition 0.1. Let U be a uniform ultrafilter over κ. We say that U has
the Galvin property if for any sequence ⟨Ai⟩i<2κ , there is I ∈ [2κ]κ such that⋂

i∈I Ai ∈ U .

More generally, if λ ≤ κ and U is a uniform ultrafilter over κ, we denote
by Gal(U, λ, 2κ) the statement that for any ⟨Ai⟩i<2κ there is I ∈ [2κ]λ such
that

⋂
i∈I Ai ∈ U . Galvin proved in 1973 every normal ultrafilter has the

Galvin property. Gitik and Benhamou [7] recently improved this result to
show that any product of p-points1 has the Galvin property. Benhamou [1]
then proved what appears to be a slight improvement of this result:

Theorem 0.2. Suppose that U is Rudin-Keisler equivalent to an n-fold sum
of κ-complete p-points (See Definition 1.5). Then U hat the Galvin property.

The main theorem of this paper shows that under natural combinatorial
hypotheses which hold in all known canonical inner models, the converse of
this theorem is true.
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Main Theorem 0.1. Assume the Ultrapower Axiom and that every irre-
ducible ultrafilter is Dodd sound. If U is a κ-complete ultrafilter on κ with
the Galvin property, then U is Rudin-Keisler equivalent to an iterated sum
of κ-complete p-points on κ.

The hypotheses of this theorem will be discussed and explained further
later in the introduction.

The study of the Galvin property is motivated by its presence in various
areas of set theory and infinite combinatorics [7, 5, 6, 3, 4, 2, 13]. One
particularly exciting incarnation of the Galvin property is the maximal class
in the Tukey order, which we shall now explain in more detail.

Definition 0.3. For two posets (P,≤P ), (Q,≤Q)
2, we say that P ≤T Q if

there is a cofinal map f : Q → P 3. We say that P,Q are Tukey equivalent
and denote P ≡T Q, if P ≤T Q and Q ≤T P .

The Tukey order finds its origins in the Moore-Smith convergence notions
of nets and is of particular interest when considering the poset (U,⊇) where
U is an ultrafilter. The Tukey order restricted to ultrafilters over ω has been
extensively studied by Isbell [16], Solecki and Todorcevic [25], Dobrinen and
Todorcevic [11, 12, 10], Raghavan, Dobrinen, and Blass [23, 9], and many
others. Lately, this investigation has been stretched to ultrafilters over un-
countable cardinals and in particular to measurable cardinals by Benhamou
and Dobrinen [2]. It turns out that the Tukey order on σ-complete ultra-
filters over measurable cardinal behaves differently from the one on ω and
requires a new theory to be developed. One of these differences revolves
around the maximal class. For a given λ, a uniform ultrafilter U on κ is
called Tukey-top with respect to λ if its Tukey class is above every λ-directed
posets of size 2κ. It turns out that an ultrafilter U is Tukey-top with respect
to λ if and only if ¬Gal(U, λ, 2κ). In paritular, a uniform ultrafilter over κ
is Tukey-top with respect to κ if and only if it is non-Galvin.

Isbell [16] constructed (from ZFC) ultrafilters on ω which are non-Galvin.
The first construction of non-Galvin ultrafilters over measurable cardinals is
due to Garti, Shelah, and Benhamou [6], which used Kurepa tree to prevent a
certain ultrafilter from having the Galvin property. This connection between
Kurepa trees and the Galvin property is further explored in this paper,
where we define (Definition 2.3) a diamond-like principle ♢∗

thin(W ), and a
tree variant (Definition 2.12) of it that ensures that an ultrafilter is non-
Galvin (Lemma 2.5).

In [2], Isbell’s construction together with other features from [1] enabled
the construction of a non-Galvin ultrafilter over a κ-compact cardinal. Here
we improve this initial large cardinal, isolate the notion of a non-Galvin
cardinal (Definition 4.1), and prove the following:

2We shall abuse notations by suppressing the order in a poset.
3A map f : Q → P is called cofinal if for every cofinal set B ⊆ Q, f ′′B is cofinal in P .



THE GALVIN PROPERTY UNDER THE ULTRAPOWER AXIOM 3

Main Theorem 0.2. Suppose that κ is a non-Galvin cardinal then κ carries
a κ-complete non-Galvin ultrafilter.

We also prove that κ-compactness implies non-Galvinness (Theorem 4.6),
that some degree of Dodd soundness implies it (Corollary 2.10), and that
in the known canonical inner models, a κ-compact cardinal is a limit of
non-Galvin cardinals (Proposition 5.8).

In [8], Gitik and Benhamou noted that although the existence of a non-
Galvin ultrafilter is equiconsistent with a measurable cardinal, the latter as-
sumption (measurability) does not outright imply that there is a non-Galvin
ultrafilter. More precisely, in Kunen’s model L[U ], since every σ-complete
ultrafilter is Rudin-Keisler isomorphic to a power of the normal ultrafilter
U , Theorem 0.2 can be invoked to deduce the Galvin property for every
σ-complete ultrafilter in L[U ]. Being the simplest example of a canonical
inner model which can accommodate a measurable cardinal, the result in
L[U ] suggests that the Galvin property, like many other combinatorial prop-
erties of ultrafilters, has a rigid form in the canonical inner models. Indeed,
the result from L[U ] was later generalized [1] to the models L[E] up to a
superstrong cardinal4 (See Theorem 0.2). These results in the inner models
suggest the following question [1, Question 5.1]:

Question 0.4. Is there an inner model with a non-Galvin ultrafilter?

In this paper we take a more ambitious approach and work under the
Ultrapower Axiom (UA)5 which is a combinatorial property discovered by
Goldberg [14]. The advantage of UA is that with one simple axiom, which
holds in all known canonical inner models, many of the usual principles are
captured; for example, the linearity of the Mitchell order and instances of
GCH. More relevant for our purposes, the presence of UA poses rigidity on
the structure of the ultrafilter:

Theorem 0.5 (UA). Let W be a σ-complete ultrafilter. Then W can be
written as the n-fold sum of irreducible ultrafilters.6

In [1], this kind of characterization, together with further fine structural
properties of the Mitchell-Steel extender models L[E] was already used to
prove the following:

Theorem 0.6. If L[E] is an iterable Mitchell-Steel model containing no su-
perstrong cardinals, then every κ-complete ultrafilter in L[E] has the Galvin
property.

4Recall that κ is a superstrong cardinal if there is an elementary embedding j : V → M
with crit(j) = κ and Vj(κ) ⊆ M .

5In this paper we will not use UA directly so we do not bother to formulate it.
6Recall the irreducible ultrafilters are those ultrafilters which are minimal in the Rudin-

Froĺık order. Equivalently, W is irreducible if there is no ultrapower embedding j : V → M
and an ultrafilter U ∈ M such that jW = (jU )

M ◦ j.
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The point here is that in L[E] every κ-complete ultrafilter takes the form
of Theorem 0.2 and therefore satisfies the Galvin property.

The existence of canonical inner models with superstrong cardinals is
open, though provable from widely believed conjectures: the fine struc-
ture for inner models with superstrong cardinals have been developed as-
suming iterability hypotheses [26]. Therefore the current knowledge about
canonical inner models does not quite reach the level where a κ-complete
non-Galvin ultrafilter exists, although our results below show that the con-
ditional canonical inner models built based on iterability hypotheses can
contain non-Galvin ultrafilters.

Here we shall prove the following stronger (in several senses) result:

Main Theorem 0.3 (UA). Assume that every irreducible ultrafilter is Dodd
sound. Then a uniform σ-complete ultrafilter over a regular cardinal has the
Galvin property if and only if it is a D-limit of n-fold sums of κ-complete
p-points over κ.

By results of Schlutzenberg [24], in the Mitchell-Steel extender models
L[E], every irreducible ultrafilter is Dodd sound, so the assumption in the
theorem holds in L[E]. Hence Theorem 0.3 implies that in the canonical
inner models of the form of L[E], even above a superstrong cardinal, the
n-fold sum of p-points, in fact, characterizes the ultrafilters with the Galvin
property. This characterization implies for example that σ-complete ultrafil-
ters over successor cardinals always possess the Galvin property (Corollary
5.2.

As a corollary, we obtain the characterization of the Tukey-top ultrafilters:

Corollary 0.7 (UA). Assume that every irreducible ultrafilter is Dodd sound,
then a σ-complete ultrafilter over a regular cardinal is Tukey-top if and only
if it is not a D-sum of n-fold sums of κ-complete p-points over κ.

This corollary may come as a bit of a surprise if one is familiar with the
Tukey order on ω: one can prove there are non-top ultrafilters on ω that are
not n-fold sums of p-points.

One might suspect that under these very restrictive assumptions, we again
run into the situation where every κ-complete ultrafilter has the Galvin
property, but by theorem 0.2, a non-Galvin cardinal suffices to guarantee
the existence of a non-Galvin ultrafilter. Our next result suggests that in the
canonical inner models, non-Galvin cardinals are exactly the large cardinal
assumption needed to ensure the existence of non-Galvin ultrafilters:

Main Theorem 0.4 (UA). Assume that every irreducible ultrafilter is Dodd
sound. If there is a κ-complete non-Galvin ultrafilter on an uncountable
cardinal κ, then there is a non-Galvin cardinal.

One feature which seems to require more effort is to obtain a non-Galvin
ultrafilter which extends the club filter (i.e. q-point). The ultrafilters that
were constructed in [2] from a κ-compact cardinal extended the club filter
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and it is not clear at this point whether a non-Galvin cardinal implies the
existence of such ultrafilters. Nonetheless, in the canonical inner models,
the implication holds. In fact, the existence of a non-Galvin ultrafilter is
equivalent to the existence of a non-Galvin q-point:

Main Theorem 0.5 (UA). Assume every irreducible ultrafilter is Dodd
sound. Suppose κ is an uncountable cardinal that carries a κ-complete non-
Galvin ultrafilter. Then the Ketonen least non-Galvin κ-complete ultrafilter
on κ extends the closed unbounded filter.

The organization of this paper is as follows:

• In section §1, we collect some basic definitions and facts from the
theory of ultrafilters.

• In section §2, we establish the connection between non-Galvin ultra-
filters and various diamond-like principles.

• In section §3, we use partial soundness to conclude that some ultra-
filter is non-Galvin and define the corresponding diamond ♢−

thin.
• In section §4, we introduce the non-Galvin cardinals and prove Main
Theorem 0.2.

• In Section §5, we work in the canonical inner models and prove Main
Theorems 0.1,0.3,0.4,0.5.

• In section §6, we state some open questions and suggest further
directions.

0.1. Notation. Our notation is mostly standard. Let κ be a cardinal and
X be any set. Then [X]κ = {Y ∈ P (X) | |Y | = κ} and [X]<κ = {Y ∈
P (X) | |Y | < κ}. When X is a set of ordinals, we identify elements of
[X]<κ with their increasing enumerations. We write <κX for the set of all
functions f : γ → X where γ < κ. and αX the set of all function f : α → X.
Let κ be regular. For two subsets of κ, we write X ⊆∗ Y to denote that
X \ Y is bounded in κ. Similarly, for f, g : κ → κ we denote f ≤∗ g if there
is α < κ such that for every α ≤ β < κ, f(β) ≤ g(β). We say that C ⊆ κ is
a closed unbounded subset of κ (club) if it is a closed subset with respect to
the order topology on κ and unbounded in the ordinals below κ. The club
filter over κ is the filter:

Clubκ := {X ⊆ κ | X includes a closed unbounded subset of κ}.
Suppose f : A → B is a function, then f“(X) = {f(x) | x ∈ X} and
f−1[Y ] = {a ∈ A | f(a) ∈ Y }.

1. Preliminaries

We only consider σ-complete ultrafilters over a regular cardinal in this
paper. These ultrafilters can have a low degree of completeness and need not
be uniform. For a σ-complete ultrafilter U , we denote by MU the transitive
collapse of the ultrapower of the universe of sets by U and by jU : V → MU

the usual ultrapower embedding. Given an elementary embedding j : V →
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M and an object A ∈ M we let ρ = min{α | A ∈ (Vj(α))
M} and define

D(j, A) := {X ⊆ Vρ | A ∈ j(X)}. If A is an ordinal we will always replace
Vρ in the above definition by ρ. If M is any model of ZFC and f is a function
or relation defined in the language of set theory, the relativization of f to
this model is denoted by (f)M ; for example, if κ ∈ M , we might consider
(κ+)M , V M

κ , etc.
The primary large cardinals we will be interested in are measurable car-

dinals. We say that a cardinal κ is measurable if it carries a non-principal
κ-complete ultrafilter. In the introduction, we also mentioned the compact
cardinals, which can be characterized using the filter extension property: we
say κ has the λ-filter extension property if every κ-complete filter on λ can
be extended to a κ-complete ultrafilter. A κ-compact cardinal is a cardinal
κ which has that κ-filter extension property. For more background on large
cardinals, we refer the reader to [20].

Definition 1.1 (Special properties of ultrafilters). Let U be an ultrafilter
over a regular cardinal κ. We say that:

(1) A function f on κ is constant (mod U) if there is a set A ∈ U
such that f ↾ A is constant. A function f is unbounded (mod U)
if ∀α < κ, f−1[α] /∈ U . A function f is almost one-to-one (mod U)
if there is a set A ∈ U such that f ↾ A is almost one-to-one in the
sense that for any x, {α ∈ A : f(α) = x} is bounded below κ.

(2) U is a p-point if every function f : κ → κ which is unbounded
(mod U) is almost one-to-one (mod U).7

(3) U is µ-indecomposible if for any function f : κ → µ, there is µ′ < µ
such that f−1[µ′] ∈ U .

(4) U is weakly normal if whenever f : A → κ is such that A ∈ U and f
is regressive, there is A′ ⊆ A, A′ ∈ U such that f ′′[A′] is bounded.8

(5) U is α-sound if the function jα : P (κ) → MU defined by jα(X) =
jU (X) ∩ α belongs to MU .

(6) U is Dodd sound if it is [id]U -sound.
(7) U is κ-irreducible if for every uniform ultrafilter W on an ordinal

λW < κ, which is Rudin-Froĺık below U must be principal.

Remark 1.2. Note that if U is an ultrafilter over a regular cardinal κ, and
λ < κ is such that λ ∈ U , then automatically, U is a p-point as for any
function f : κ → κ, f ↾ λ is bounded and hence there are no unbounded
functions mod U .

Remark 1.3. If U is irreducible and uniform on λ, then U is λ-irreducible.

7Note that for κ-complete ultrafilters over κ this is equivalent to the definition of p-
points using the existence of pseudo intersections [19]. In General, for non κ-complete
then, these definitions are not equivalent.

8The notion of decomposability and weak normality makes sense also for filters when
requiring the sets to be positive instead of measure 1.
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Proposition 1.4. Let f : κ → κ be any function and U an ultrafilter over
κ.

(1) f is unbounded mod U if and only if supα<κ jU (α) ≤ [f ]U .
(2) f is almost one-to-one mod U if and only if there is a (monotone)

function g : κ → κ such that jU (g)([f ]U ) = [g ◦ f ]U ≥ [id]U .

Proof. (1) is trivial. For (2), Suppose that f is almost one-to-one on A ∈ U ,
and let for each α < κ g(α) = sup f−1[α + 1] ∩ A. The for each ξ ∈ A
g(f(ξ)) = sup f−1[f(ξ) + 1] ∩ A ≥ ξ, hence [g ◦ f ]U ≥ [id]U . For the other
direction, let g be a monotone function such that [g ◦ f ]U ≥ [id]U . Then
there is a set A ∈ U such that for each α ∈ A, g ◦ f(α) ≥ α. Hence if
β ∈ f−1[α], then g(α) ≥ g(f(β)) ≥ β, hence f−1[α] ⊆ g(α) + 1. □

Definition 1.5. Let U be an ultrafilter over X and for every α ∈ X, Uα be
an ultrafilter over Xα. Define the limit

U - lim ⟨Uα⟩α∈X =
{
Y ⊆ X | {α ∈ X | Y ∩Xα ∈ Uα} ∈ U

}
and the sum∑

U

⟨Uα⟩α∈X =
{
Y ⊆ ∪α∈X{α} ×Xα | {α ∈ X | (Y )α ∈ Uα} ∈ U

}
where (Y )α = {β ∈ Xα | (α, β) ∈ X} is the αth fiber of X.

Fact 1.6. U - lim ⟨Uα⟩α∈X = j−1
U [[α 7→ Uα]U ]

For an MU -ultrafilter W
∗ = [α 7→ Wα]U over X∗ = [α 7→ X)α]U , we will

sometimes write U - limW ∗ for U - lim ⟨Wx⟩ξ∈X and
∑

U W ∗ for
∑

U ⟨Wξ⟩ξ∈X .

Definition 1.7. We define recursively when U is an n-fold sum of p-points.
W is a 1-fold sum of p-points if W is a p-point. We say that W is an n+1-
fold sum of p-points if there is there are n-fold sums of p-points Uα and a
p-point ultrafilter U such that U is Rudin-Keisler equivalent to

∑
U ⟨Uα⟩α<κ.

We shall now prove a slight improvement of the form of ultrafilters which
have the Galvin property in Theorem 0.2, this will be turn out to be an
exact characterization of the ultrafilters with the Galvin property under UA
plus every irreducible is Dodd sound in Main Theorem 0.3. We need the
definition of the modified diagonal intersection:

Definition 1.8. Suppose that W is a κ-complete ultrafilter over κ and let
πW : κ → κ be the function which representing κ mod W . For a sequence
⟨Ai⟩i<κ of subsets of κ, we define the modefied diagonal intersection by

∆W
i<κAi = {α < κ | ∀i < πW (α), α ∈ Ai}

Fact 1.9. Suppose that W is a κ-complete ultrafilter over κ, and ⟨Ai⟩i<κ ⊆
W , then:

(1) ∆W
i<κAi ∈ W .

(2) for every i0 < κ, (∆W
i<κAi) \ (π−1[i0 + 1]) ⊆ Ai0 .
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Theorem 1.10. Let D be any ultrafilter over λ and ⟨Wξ⟩ξ<λ be a sequence

of n-fold sums of κ-complete p-point ultrafilters over κ. Then
∑

D ⟨Wξ⟩ξ<λ

has the Galvin property.

Proof. Denote by Z :=
∑

D ⟨Wξ⟩ξ<λ and let us assume for the simplicity of

the notations that n = 2. Hence Z =
∑

D ⟨
∑

Uξ
⟨Uξ,η⟩η<κ⟩ξ<λ, where each

Uξ and Uξ,η is a κ-complete p-point over κ. For A ∈ Z, define

A
(2)
i,j = {k < κ | ⟨i, j, k⟩ ∈ A}

A
(1)
i = {j < κ | A(2)

i,j ∈ Ui,j}

A(0) = {i < λ | A(1)
i ∈ Ui}

Note that

A ∈
∑
D

⟨
∑
Ui

⟨Ui,j⟩j<κ⟩i<λ ⇔ {i < λ | (A)i ∈
∑
Ui

⟨Ui,j⟩j<κ} ∈ D

⇔ {i < λ | {j < κ | A(2)
i,j ∈ Ui,j} ∈ Ui} ∈ D ⇔ A(0) ∈ D.

Next, define

ρW (α) = supπ−1
W [α+1]+1, ρ(1)(α) = sup

i<α
ρUi(α), and ρ(2)(α) = sup

i,j<α
ρUi,j (α).

Note that ρ(1), ρ(2) : κ → κ since κ is regular and all the ultrafilters involved
in the definition of those functions are p-points. Now we are ready to prove
the Theorem. Let ⟨Ai⟩i<2κ be a sequence of sets in Z. Without loss of

generality, we can assume that there is a set A
(0)
∗ ∈ D such that for every

i < 2κ, A
(0)
∗ = (Ai)

(0). Let N be an elementary substructure of H(θ) for
some high enough θ such that:

(1) |N | = κ.
(2) <κN ⊆ N .
(3) κ ⊆ N and κ+ ∩N ∈ κ+.
(4) ⟨Ai⟩i<κ ∈ N .

Let α∗ = κ+ ∩N .

Claim 1.11. For every ⟨α1, α2⟩ ∈ [κ]3 and δ < α∗, there is δ < β < α∗

such that

(1) ∀i ∈ (A∗)
(0), (Aβ)

(1)
i ∩ α1 = (Aα∗)

(1)
i ∩ α1.

(2) ∀i ∈ (A∗)
(0)∀j < α1, (Aβ)

(2)
i,j ∩ α2 = (Aα∗)

(2)
i,j ∩ α2.

Proof. Consider the statement

ϕ(α1, α2, δ) ≡ ∃β > δ (1) ∧ (2) ∧ (3)

H(θ) |= ϕ(α1, α2, δ) as witnessed by α∗ and since α1, α2, δ ∈ N , the elemen-
tarity of N implies that there is such β ∈ N and in particular β < α∗. □
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Define a sequence ⟨µi | i < κ⟩ inductively, suppose that ⟨µj | j < i⟩ was
defined. Let δ = supj<i µj + 1 ∈ N and apply the claim to δ and

α1 = ρ
(1)
i , and α2 = ρ

(2)
i

to produce µi > δ (and thus µi ̸= µj for all j < i). We claim that⋂
i<κ

Aµi ∈
∑
D

(⟨
∑
Ui

⟨Ui,j⟩j<κ⟩i<λ.

To see this, we define for every ξ ∈ (A∗)
(0),

(A∗)
(1)
ξ = (Aα∗)

(1)
ξ ∩∆

Uξ

i<κ(Aµi)
(1)
ξ \ ρUξ

(ξ)

and for every ξ ∈ (A∗)
(0), η ∈ (A∗)

(1)
ξ , define

(A∗)
(2)
ξ,η = (Aα∗)

(2)
ξ,η ∩∆

Uξ,η

i<κ (Aµi)
(2)
ξ,η \ ρUξ,η

(η)

Let
A∗ =

⋃
ξ∈A(0)

∗

⋃
η∈(A∗)

(1)
ξ

{ξ} × {η} × (A∗)
(2)
ξ,η

Claim 1.12. For every ⟨α, β, γ⟩ ∈ A∗, and for every i < κ, α ∈ (Aµi)
(0),

β ∈ (Aµi)
(1)
α and γ ∈ (Aµi)

(2)
α,β.

Proof of claim. Let ⟨α, β, γ⟩ ∈ A∗. By definition of A∗, α ∈ (A∗)
(0), β ∈

(A∗)
(1)
α and γ ∈ (A∗)

(2)
α,β. In particular,

(∗) α < πUα(β) and β < πUα,β
(γ).

Let i < κ, first we note that α ∈ (Aµi)
(0) since we assume (Aµi)

(0) =

(A∗)
(0). Now to see that β ∈ (Aµi)

(1)
α , split into cases. If i < πUα(β),

then β ∈ (Aµi)
(1)
α by the definition of the modified diagonal intersection.

If i ≥ πUα(β), then πUα(β) ≤ i. It follows that β < ρUα(i), and by (∗),
ρUα(i) ≤ supα<i ρUα(i) = ρ

(1)
i . By the choice of µi, (1) of Claim 1.11

β ∈ (Aα∗)(1)α ∩ ρ
(1)
i = (Aµi)

(1)
α ∩ ρ

(1)
i .

Finally for γ, if i < πUα,β
(γ), then γ ∈ (Aµi)

(2)
α,β. If i ≥ πUα,β

(γ), then as in

the previous paragraph, β < πUα,β
(γ) ≤ i and thus

γ < ρUα,β
(i) ≤ ρ(2)(i).

We conclude that γ ∈ (Aα∗)
(2)
α,β∩ρ

(2)(i). By the choice of µi and (2) of Claim

1.11, γ ∈ (Aµi)
(2)
α,β ∩ ρ(2)(i). □

By the claim, that for every ⟨α, β, γ⟩ ∈ A∗ and every i < κ, ⟨α, β, γ⟩ ∈ Aµi ,

namely A∗ ⊆
⋂

i<κAµi . Finally, we note that A∗ ∈ Z. Indeed, (A∗)
(0) ∈ D

by the choice of (A∗)
(0). Also, for every i < κ, and α ∈ (A∗)

(0), α ∈ (Aµi)
(0)

and so (Aµi)
(1)
α ∈ Uα. We conclude (A∗)

(1)
α ∈ Uα. Also, for β ∈ (A∗)

(1)
α ,
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β ∈ (Aµi)
(1)
α and therefore (Aµi)

(2)
α,β ∈ Uα,β. It follows that (A∗)

(2)
α,β ∈ Uα,β.

Hence A∗ ∈ Z and in particular
⋂

i<κAµi ∈ Z.
□

Recall that the sequence of ⟨Uα⟩α∈X is called discrete if there is a sequence
of pairwise disjoint sets ⟨Aα⟩α∈X such that Aα ∈ Uα. We say that ⟨Uα⟩α∈X
is discrete mod U , if there is Y ∈ U , Y ⊆ X such ⟨Uα⟩α∈Y is discrete.

Fact 1.13.
∑

U ⟨Uα⟩α∈X ≡RK U - lim ⟨Uα⟩α<κ iff ⟨Uα⟩α<κ is discrete mod U .

Proposition 1.14. If U is a p-point ultrafilter, then any sequence ⟨Uα⟩α<κ
of distinct κ-complete ultrafilters is discrete mod U .

Proof. See [19, Cor. 5.15]. □

Definition 1.15. (Orderings of ultrafilters) Let W,U be ultrafilters over
ordinals κ, λ (resp.) define:

(1) the Rudin-Keisler order, denoted by U ≤RK W if there is a function
π : κ → λ such that U = {B ⊆ λ | π−1[B] ∈ W}.

(2) the Rudin-Fróık order is define by U ≤RF W is there is a set I ∈ U
and a discrete sequence ⟨Wi⟩i∈I of ultrafilters over κ such that W =
U - lim ⟨Wi⟩i∈I .

(3) the Ketonen order denoted by U <k W if j′′WU is contained in a
countably complete ultrafilter U∗ of MW such that [id]W ∈ U∗.

For more background on ultrafilters, their orderings, and the ultrapower
axiom we refer the reader to [14] or [19].

We also record here the definition and basic properties of the canonical
functions.

Definition 1.16. For every η < κ+, we fix a cofinal sequence ⟨ηi⟩i<cf(η).

Define recursively the canonical functions fα : κ → κ for α < κ+ as follows:
f0 = 0 is the constant function with value 0. Given fα, define fα+1(x) =
fα(x) + 1. For limit η < κ+ we split into cases:

(1) if cf(η) < κ, define fη(x) = supi<cf(η) fηi(x).

(2) if cf(η) = κ, define fη(x) = supi<x fηi(x).

It is not hard to see that the canonical functions are ≤∗-increasing, but
the main reason we are interested in those functions is the following:

Proposition 1.17. Let k : N → M be an elementary embedding (not nec-
essarily definable in N) with critical point κ. The for every α < (κ+)N ,
k(fα)(κ) = α.

Proof. By induction on α. Clearly, for α = 0, k(f0)(κ) = 0 and if k(fα)(κ) =
α then by elementarity k(fα+1)(κ) = α+1. For limit η, if cf(η) < κ, then the
functions used in the definition of fη are ⟨fηi⟩i<cf(η) are pointwise mapped

by k i.e. k(⟨fηi | i < cf(η)⟩) = ⟨k(fηi) | i < cf(η)⟩. It follows by elementarity
and the definition of fη that k(fη)(κ) = supi<cf(η) k(fηi)(κ). Hence by the
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induction hypothesis, k(fη)(κ) = supi<cf(η) ηi = η. If cf(η) = κ then the

sequence ⟨fηi | i < κ⟩ is stretched by k to k(⟨fηi | i < κ⟩) = ⟨f ′
ηi | i < k(κ)⟩

but for every i < κ, as k(i) = i, we have f ′
ηi = k(fηi). Again by the definition

of fη, elementarity, and the induction hypothesis, we conclude that:

k(fη)(κ) = sup
i<κ

f ′
ηi(κ) = sup

i<κ
k(fηi)(κ) = sup

i<κ
ηi = η.

□

2. Diamond-like principle and the Galvin property

In [6], a relation between Kurepa trees and the Galvin property has been
established to construct a κ-complete non-Galvin ultrafilter. In this section,
we exploit the deep connection between Kurepa trees and diamond principles
which was first observed by Jensen [18], to find new combinatorial properties
of ultrafilters which ensures the Galvin property.

Definition 2.1. Let S be a stationary set. ♢∗(S) is the assertion that there
is a sequence ⟨Aα⟩α∈S such that Aα ⊆ P (α) and:

(1) |Aα| ≤ α.
(2) for every X ⊆ κ there is a club C such that for each α ∈ C ∩ S,

C ∩ α,X ∩ α ∈ Aα.

Proposition 2.2. If ♢∗(S) holds then any ultrafilter U over a regular car-
dinal κ satisfying Clubκ ∪ {S} ⊆ U and cfMU ([id]U ) ≤ crit(jU ) must be
non-Galvin.

Proof. Suppose otherwise, for each X, let CX be the club witnessing ♢∗(S).
Then CX ∈ U . Also, for each α ∈ S, let ⟨Iαi ⟩i<cf(α) be a partition of Aα such

that |Iαi | < α. Now for each X ⊆ κ, consider the function fX : CX ∩ S → κ
defined by fX(α) = i < cf(α) for the unique i such that X ∩ α ∈ Iαi .
Note that i < cf(α) ≤ π(α), where [π]U = crit(jU ) =: θ. It follows that
there is AX ⊆ CX ∩ S, AX ∈ U and γX < κ such that for every α ∈ AX ,
fX(α) = γX . There are 2κ-many subsets with the same γX = γ∗. Now
apply Galvin’s property to those 2κ-many sets in order find κ-many distinct
subsets of κ, ⟨Xξ⟩ξ<κ for which A∗ :=

⋂
ξ<κAXξ

∈ U and γX = γ∗. Now

for each α ∈ A∗ ∩ S, |Iαγ∗ | < α. Since κ is regular, we may apply Födor’s

lemma to find a stationary set S′ ⊆ C∗ such that |Iαγ∗ | = θ∗ for each α ∈ S′.

Consider ⟨Xi⟩i<θ∗+ and for each i ̸= j < θ∗+ let βi,j < κ be high enough
so that Xi ∩ βi,j ̸= Xj ∩ βi,j . Take any α ∈ S′ \ supi ̸=j<θ∗+ βi,j . To reach
a contradiction, note that on one hand, since α ∈ S′, |Iαγ∗ | = θ∗. On the

other hand, for every i ̸= j < θ∗+, Xi ∩ α ∈ Iαγ∗ and the sets Xi ∩ α are all
distinct. □

Let us introduce a similar guessing principle ♢∗
thin(U) to the one above,

which can be formulated in terms of the ultrapower and does not involve the
club filter. Then we will prove that ♢∗

thin(U) implies that U is non-Galvin.
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Definition 2.3. An ultrafilter W on a regular cardinal κ satisfies ♢∗
thin(W )

if there is a sequence of sets ⟨Aα⟩α<κ such that:

(1) for all A ⊆ κ, for W -almost all α, A ∩ α ∈ Aα.
(2) α 7→ |Aα| is not almost one-to-one mod W .

The sequence ⟨Aα⟩α<κ is called a ♢∗
thin(U)-sequence.

In the ultrapower, this is expressed as follows:

Lemma 2.4. ♢∗
thin(U) is equivalent to the existence of a set A ∈ MU such

that:

(1) {jU (S) ∩ [id]U | S ⊆ κ} ⊆ A.
(2) there is no function f : κ → κ such that jU (f)(|A|M ) ≥ [id]U .

9

Proof. The witnessing ♢∗
thin(U)-sequence is just the sequence ⟨Aα⟩α<κ rep-

resenting A in MU . Clearly, condition (1) is equivalent to the fact that for
every S ⊆ κ, {α < κ | S ∩ α ∈ Aα} ∈ U . By Proposition 1.4, condition
(2) is equivalent to the function α 7→ |Aα| not being almost one-to-one mod
U . □

Lemma 2.5. If ♢∗
thin(W ), then W is non-Galvin.

Proof. Assume towards contradiction that W has the Galvin property. Enu-
merate Aα = {Aα,i | i < |Aα|}. For every set X, there is BX ∈ W such
that for every for every α ∈ BX , X ∩ α ∈ Aα. By our assumption, there
are κ-many distinct sets {Xi | i < κ} such that B :=

⋂
i<κBXi ∈ W .

Note that the key property of B is that for every i < κ and for all α ∈ B,
Xi∩α ∈ Aα. Since the function α 7→ |Aα| is not almost one-to-one mod W ,
there is θ < κ and an unbounded subset B′ ⊆ B such that for every α ∈ B′,
|Aα| = θ. Consider {Xi | i < θ+}. For every i ̸= j < θ+, find αi,j < κ such
that Xi ∩ αi,j ̸= Xj ∩ αi,j and take α∗ = supi,j<θ+ αi,j . By regularity of κ,
α∗ < κ. Since B′ is unbounded there exists some β∗ ∈ B′ with β∗ > α∗. It
follows that for every i < θ+, Xi ∩ β∗ ∈ Aβ∗ , and also for every i ̸= j, since
αi,j < β∗, Xi ∩ β∗ ̸= Xj ∩ β∗. It follows that i 7→ Xi ∩ β∗ is a one-to-one
function from θ+ into Aβ∗ . This contradicts the fact that β∗ ∈ B′ and thus
|Aβ∗ | = θ. □

Corollary 2.6. Suppose that κ is regular and U is an ultrafilter extending
the club filter on κ. Assume that there is a sequence of sets ⟨Aα⟩α<κ such
that:

(1) for every α < κ, |Aα| < α.
(2) for every X ⊆ κ, {α < κ | X ∩ α ∈ Aα} ∈ U .

Then ♢∗
thin(U) holds and in particular U is non-Galvin.

Proof. It remains to show that α 7→ |Aα| is not one-to-one on a set in U .
If A ∈ U , then A is stationary since Clubκ ⊆ U . By Födor applied to the
function α 7→ |Aα| restricted to A, there is an unbounded subset S′ ⊆ A

9This is equivalent to |A|M laying the top sky.
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and θ < κ such that for every α ∈ S′, |Aα| = θ. In paritular, α 7→ |Aα| is
not almost one-to-one on A. □

The most important class of ultrafilters which satisfy ♢∗
thin are the non

p-point Dodd sound ultrafilters:

Lemma 2.7. Let κ be regular and U a non p-point Dodd sound ultrafilter,
then ♢∗

thin(U).

Proof. Assume that U is a non p-point Dodd sound ultrafilter. By [14, Thm.
4.3.26.], condition (2) in the definition of ♢∗

thin(U) implies that a sequence
⟨Aα⟩α<κ satisfying (2) exists. In particular, [α 7→ Aα]U = {jU (S) ∩ [id]U |
S ⊆ κ} ∈ MU . Also, the function j[id]U : P (κ) → {jU (S) ∩ [id]U | S ⊆ κ}
defined by j[id]U (S) = j(S) ∩ [id]U belongs to MU as it is the inverse of the
transitive collapse of {j(S) ∩ [id]U | S ∈ P (κ)}. Thus MU |= |[α 7→ Aα]U | =
2κ. But since U is not a p-point, α 7→ |Aα| cannot be an almost one-to-
one function mod U , just otherwise, also the class of minimal unbounded
function κ ≤ [π]U would be almost one-to-one contradicting U not being a
p-point. In paritular, |[α 7→ Aα]U | < [id]U . □

Note that an ultrafilter U satisfying ♢∗
thin(U) need not be Dodd sound

since by Lemma 2.4 we only cover the set {jU (S)∩ [id]U | S ⊆ κ}. However,
at least for κ-complete Dodd sound ultrafilters, the second requirement of
♢∗

thin(U) regarding the function α 7→ |Aα| is equivalent to U not being a
p-point.

Proposition 2.8. Let κ be measurable and U be a κ-complete Dodd sound
ultrafilter over κ. And let [α 7→ Aα]U = {jU (S) ∩ [id]U | S ⊆ κ}. Then U is
a non p-point ultrafilter if and only if the function α 7→ |Aα| is not almost
one-to-one mod U .

Proof. One direction follows from the previous lemma. Let us prove the
other, note that α 7→ |Aα| cannot be bounded on a set in U , just otherwise,
suppose that θ < κ is such that B∗ := {α < κ | |Aα| ≤ θ} ∈ U . Take any θ+-
many sets {Xi | i < θ+} such that there is γ < κ such that for all i ̸= j < θ+,
Xi∩γ ̸= Xj ∩γ. For each i < θ+, Denote by Bi := {α < κ | Xi∩α ∈ Aα} ∈
U . By κ-completeness and fineness, there is γ∗ ∈ B∗ ∩ (

⋂
i<θ+ Bi) \ γ. It

follows that |Aγ∗ | = θ but also for each i < θ+, Xi∩γ∗ ∈ Aγ∗ are all distinct
sets. Contradiction. We conclude that α 7→ |Aα| is an unbounded function
mod U which is also not almost one-to-one according to (1). Hence U is not
a p-point. □

We cannot drop the κ-completeness assumption here:

Example 2.9. Suppose that W is a fine normal ultrafilter over Pκ(λ) for
κ < λ where λ is a regular cardinal. By [14, Theorems 4.4.37 & 4.4.25], there
is a Dodd sound non uniform ultrafilter U on λ (and therefore p-point) which
is Rudin-Keisler equivalent to W . Note that there is no function which is
unbounded (and therefore no function which is almost one-to-one) mod U .
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In paritular, α 7→ |Aα| is not almost one-to-one mod U . Also, note that
U satisfies ♢∗

thin(U) and therefore is an example of a non-Galvin ultrafilter
over λ which is uniform and not λ-complete.

Corollary 2.10. If U is a non p-point, Dodd sound ultrafilter over a regular
cardinal κ, then U is non-Galvin.

In attempt to pinpoint the exact guessing principle that catches non-
Galvinness, we note that the usage of ♢∗

thin(W ) in the argument of Lemma
2.5 can be replaced with the following weakening:

Definition 2.11. Let κ be regular and consider the tree 2<κ ordered by
inclusion (of partial function). Denote by Lα = 2α. A channel of 2<κ is

a sequence I⃗ = ⟨Iα⟩α<κ such that Iα ⊆ Lα. We say that the channel I⃗
is W -thin (where W is any filter on κ) if α 7→ |Iα| is not one-to-one mod

W . A W -branch through through a channel I⃗ is any set X ⊆ κ such that
{α < κ | χα

X∩α ∈ Iα} ∈ W where χα
X∩α : α → 2 is the characteristic function

of X ∩ α as a subset of α.

Definition 2.12. A W -Kurepa channel10 is a W -thin channel of 2<κ with
at least κ+-many W -branches.

If ♢∗
thin(W ) then there is a W -Kurepa channel. The channel witnessing

this is obtained by setting Iα = {χa | a ∈ Aα}.

Proposition 2.13. If there is a W -Kurepa channel then W is non-Galvin

Proof. The argument of Lemma 2.5 gives this stronger result. □

Next, we would like to provide two closure properties of the class of ul-
trafilters satisfying ♢∗

thin.

Lemma 2.14. Suppose U is an ultrafilter on κ and Z is the U -limit of a
discrete sequence of ultrafilters Wξ on κ such that ♢∗

thin(Wξ). Then ♢∗
thin(Z).

Proof. Fix a partition of κ into sets Sξ ∈ Wξ. For each ξ < κ, let ⟨Aξ
α⟩α<κ

witness that ♢∗
thin(Wξ). Then let Aα = Aξ

α where ξ < κ is unique such
that α ∈ Sξ. Fixing A ⊆ κ, we would like to show that B := {α < κ |
A∩α ∈ Aα} ∈ U - lim ⟨Wξ⟩ξ<κ. For any ξ < κ, then Bξ := {α ∈ Sξ | A∩α ∈
Aξ

α} ∈ Wξ. Since for each α ∈ Sξ, Aα = Aξ
α, we conclude that Bξ ⊆ B

and therefore B ∈ Wξ. It follows that B ∈ U - lim ⟨Wξ⟩ξ<κ. It remains to

show that c(α) = |Aα| is not almost one-to-one on any set B ∈ W . Suppose
otherwise, and let B ∈ W witness that c is almost one-to-one. Pick any
ξ < κ such that B ∈ Wξ to reach a contradiction note that B ∩ Sξ ∈ Wξ,
and the function c is almost one-to-one on this set. However, for every

α ∈ B ∩ Sξ, Aξ
α = Aα = c(α) and so α 7→ |Aξ

α| is almost one-to-one on
B ∩ Sξ, contradicting ♢∗

thin(Wξ). □

10Note that we are not assuming that W is downward closed.
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Lemma 2.15. Suppose U is an n-fold sum of p-points on κ and ⟨Wξ⟩ξ<κ

is a sequence of (not necessarily discrete) κ-complete ultrafilters on κ such
that ♢∗

thin(Wξ). Then letting Z = U - lim ⟨Wξ⟩ξ<κ, we have ♢∗
thin(Z).

Proof. We first consider the case that U is a p-point. Then replace U with
UW = D(jU ,W ) where W is the point in MU represented by ξ 7→ Wξ. Note
that UW is Rudin-Keisler below an ultrafilter on κ which implies that UW

concentrates on a set of (κ-complete) ultrafilters of size κ. By enumerating
those ultrafilters W ′

ξ for ξ < κ, we can shift UW to an ultrafilter U ′ on κ

such that [id]UW
is identified with [ξ 7→ W ′

ξ]U ′ . Also, note that U ′− limW ′
ξ =

U − limWξ since the factor map k : MU ′ → MU sends k([ξ 7→ W ′
ξ]U ′) = W

and thus

X ∈ U ′ − lim ⟨W ′
ξ⟩ξ<κ ⇔ jU ′(X) ∈ [ξ 7→ W ′

ξ]U ′ ⇔

⇔ jU (X) = k(jU ′(X)) ∈ W ⇔ X ∈ U − lim ⟨Wξ⟩ξ<κ.

Since U ′ ≤RK U , and U is a p-point, U ′ is also a p-point (see [19, Cor
2.8]). The sequence ⟨W ′

ξ⟩ξ<κ represents the identity in U ′, it is one-to-one

mod U ′, since all the W ′
ξ’s are κ-complete, by 1.14 the sequence is discrete

on a set in U ′.11 This allows us to apply the previous lemma, obtaining thin
diamond for U ′- lim ⟨W ′

ξ⟩ξ<κ = U - lim ⟨Wξ⟩ξ<κ.
Now suppose the lemma is true for n-fold sums of p-points, and we will

prove it when U is an n + 1-fold sum. We can fix a p-point D such that
U is the D-limit of a sequence of n-fold sum p-points Uξ on κ. As in the
previous paragraph, since D is a p-point, we may assume that the Uξ’s
are discrete. Let U∗ = [ξ 7→ Uξ]D, then by elementarity, MD |= U∗ is
an n-fold sum of p-points. Applying the induction hypothesis in MD to
U∗ and the ultrafilters jD(⟨Wξ⟩ξ<κ) = ⟨Z∗

ξ ⟩ξ<jD(κ), we conclude that Z∗ =

U∗- lim ⟨Z∗
ξ ⟩ξ<jD(κ) satisfies ♢∗

thin(Z
∗). Let [α 7→ Zα]D = Z∗ and assume

without loss of generality that for every α < κ, ♢∗
thin(Zα) holds. We claim

that

(∗) Z = D- lim ⟨Zα⟩α<κ = U - lim ⟨Wξ⟩ξ<κ

from which it follows that ♢∗
thin(Z), by the argument of the previous para-

graph. To see (∗), since we assumed that the Uα’s are discrete, by the theory
of sums and limits of ultrapower

j∑
D ⟨Uα⟩α<κ

= jD- lim ⟨Uα⟩α<κ
= jU∗ ◦ jD and [id]D- lim ⟨Uα⟩α<κ

= [id]U∗ ,

hence

X ∈ D- lim ⟨Zα⟩α<κ ⇔ jD(X) ∈ Z∗ = U∗- lim ⟨Z∗
ξ ⟩ξ<jD(κ) ⇔

11Note that even if the Wξ’s we started with were not distinct, the W ′
ξ’s will be distinct

on a set in U ′. For example, if Wξ = W0 for every ξ, then UW is the principle ultrafilter
concentrating on {W0} and thus U ′ is principle and W0 = W ′

ξ. It is still true that on a
measure one set in U ′, i.e. {0}, the sequence ⟨W ′

ξ⟩ξ<κ is distinct. In this case, the lemma

is trivial as Z = W0.



16 TOM BENHAMOU AND GABRIEL GOLDBERG

⇔ jU∗(jD(X)) ∈ jU∗(jD(⟨Wξ⟩ξ<κ))([id]U∗) ⇔
⇔ jD- lim ⟨Uα⟩α<κ

(X) ∈ jD- lim ⟨Uα⟩α<κ
(⟨Wξ⟩ξ<κ)([id]D- lim ⟨Uα⟩α<κ

) ⇔
⇔ X ∈ (D- lim ⟨Uα⟩α<κ)- lim ⟨Wξ⟩ξ<κ ⇔ X ∈ U - lim ⟨Wξ⟩ξ<κ.

□

3. Partial soundness

A finer analysis of the diamond-like principles of the previous section,
reveals that partial soundness suffices for an ultrafilter to be non-Galvin.
To better understand this improvement, let us prove the following theorem
in terms of general elementary embeddings.

Theorem 3.1. Suppose that j : V → M is an elementary embedding with
crit(j) = κ such that λ = sup{j(f)(κ) | f : κ → κ} and {j(A)∩λ | A ⊆ κ} ∈
M . Then there is ξ such that D := D(j, ξ) and ¬Gal(D,κ, 2κ).

Proof. Denote A = {j(A)∩λ | A ⊆ κ} ∈ M . Enumerate Vκ in V , f : κ → Vκ

such that for every x ∈ Vκ, f
−1[x] is unbounded in κ. Since A ∈ (Vj(κ))

M ,
there is j(κ) > ξ ≥ λ such that j(f)(ξ) = A. By similar arguments we
can ensure for the same ξ we will also have κ = j(g)(ξ) and λ = j(h)(ξ).
Let D = D(j, ξ), jD : V → MD be the ultrapower and kD : MD → M be
the factor map kD([f ]D) = j(f)(ξ). Note that κ = kD([g]D) ∈ Im(kD)
and therefore crit(kD) > κ. It also follows that there is λ′ ≤ [id]D such
that kD(λ

′) = λ,. Note that for any function f : κ → κ, j(f)(κ) < λ
thus jD(f)(κ) < λ′. Let h : κ → κ be such that [h]D = λ′. Recall that
A ∈ Im(K) and if we let B := jD(f)([id]D), then kD(B) = A. Suppose
that B = [α 7→ Bα]D, note that MD |= |B| = 2κ < λ′. Pick any 2κ

distinct subsets of κ, ⟨Aα⟩α<2κ , then j(Aα) ∩ λ ∈ A and by elementarity
jD(Aα) ∩ λ′ ∈ B. It follows that

Xα := {ξ < κ | Aα ∩ h(ξ) ∈ Bξ} ∈ D

We claim that ⟨Xα⟩α<2κ witness that ¬Gal(U, κ, 2κ). Otherwise, there is
I ∈ [2κ]κ such that XI := ∩i∈IXi ∈ D. Consider the map ξ 7→ |Bξ|, note
that |Bξ| ≤ 2π(ξ) where jD(π)([id]D) = κ, and therefore there must be θ < κ
such that

sup{h(ξ) : ξ ∈ XI , 2π(ξ) < θ} = κ.

In Kanamori’s terminology of skies and constellations from [19], this last
fact is true because λ′ is not in the first sky. Without mentioning skies, just
assume otherwise, then for each θ < κ we can define

g(θ) = sup{h(ξ) | ξ ∈ XI , 2π(ξ) ≤ 2θ}
then g : κ → κ is well defined. Since 2jD(π)([id]D) = 2κ we conclude that
jD(g)(κ) ≥ jD(h)([id]D) = λ′, contradiction. Now the continuation is as
before, we find β ∈ XI such that h(β) is high enough so that the restriction of
θ+-many of the sets in I to h(β) are distinct. This produces a contradiction.

□
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Corollary 3.2. Suppose that U is a κ-complete, λ-sound ultrafilter over κ,
where λ = sup{jU (f)(κ) | f : κ → κ} < jU (κ) is the least element of the
second sky12, then U is non-Galvin.

Proof. By the definition of ξ in the proof of Theorem 3.1, we can choose
ξ = [id]U and the theorem ensures that U = D(jU , [id]U ) is non-Galvin. □

Corollary 3.3. Suppose that there is a superstrong embedding j : V → M
with crit(j) = κ and at least two skies i.e. λ := sup{j(f)(κ) | f : κ → κ} <
j(κ), then κ carries a non-Galvin ultrafilter.

We now note that there is nothing special here with the first sky and in
fact, any sky will do. Formally, let us formulate the diamond-like princi-
ple which corresponds to partial soundness. This diamond-like principle is
essential to prove the characterization of σ-complete non-Galvin ultrafilters.

Definition 3.4. Let U be an ultrafilter over a regular cardinal κ. ♢−
thin(U)

is the statement that there is A ∈ MU and λ < jU (κ) such that:

(1) {jU (S) ∩ λ | S ⊆ κ} ⊆ A.
(2) there is no function f : κ → κ such that jU (f)(|A|M ) ≥ λ13.

Clearly ♢∗
thin(U) implies ♢−

thin(U) by taking λ = [id]U . Also,

Corollary 3.5. If U is an ultrafilter over a regular cardinal κ which is λ-
sound where λ is such that for every function f : κ → κ, jU (f)(κ) < λ, then
♢−

thin(U).

Proof. By λ-soundness of U , A := {jU (S) ∩ λ | S ⊆ κ} ∈ MU and MU |=
|A| = 2κ. There cannot be a function g : κ → κ such that jU (g)(2

κ) ≥ λ,
since otherwise, the function g′(α) = g(2α) would be a function from κ to κ
such that jU (g

′)(κ) ≥ λ, contradicting the assumptions of the corollary. □

Theorem 3.6. ♢−
thin(U) implies that U is non-Galvin.

Proof. Fix any ⟨Xα⟩α<2κ sequence of distinct subsets of κ. [α 7→ Aα]U = A
and [f ]U = λ = jU (f)([id]U ). By our assumption,

Bα = {ξ < κ | Xα ∩ f(ξ) ∈ Aα} ∈ U

We claim that ⟨Bα⟩α<2κ witness that ¬Gal(U, κ, 2κ). Otherwise, there is
I ∈ [2κ]κ such that BI := ∩i∈IBi ∈ U . Consider the map ξ 7→ |Aξ|, note
that |Aξ| ≤ π(ξ) where jU (π)([id]U ) = |A|, and therefore there must be
θ < κ such that

sup{f(ξ) : ξ ∈ BI , π(ξ) < θ} = κ.

Just assume otherwise, then for each θ < κ we can define

g(θ) = sup{f(ξ) | ξ ∈ BI , π(ξ) ≤ θ}

12In particular,U is not a p-point.
13i.e. sky(|A|M ) < sky(λ).
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then g : κ → κ is well defined. Since jU (π)([id]D) = |A| we conclude that
jU (g)(|A|) ≥ jU (f)([id]D) = λ, contradicting condition (2). Now the contin-
uation is as before, we find β ∈ BI such that f(β) is high enough so that the
restriction of θ+-many of the sets in I to f(β) are distinct. This produces a
contradiction. □

The advantage of using the class of ultrafilters satisfying ♢−
thin(U) over

the class satisfying ♢∗
thin, is that is it upward closed with respect to the

Rudin-Keisler ordering.

Lemma 3.7. Suppose that ♢−
thin(U) holds and U ≤RK W , then ♢−

thin(W )
holds.

Proof. Let k : MU → MW be an elementary embedding such that jW = k◦jU
and A, λ witnessing ♢−

thin(U). For every S ⊆ κ, we have

jW (S) ∩ k(λ) = k(jU (S) ∩ λ) ∈ k(A).

Hence {jW (S)∩k(λ) | S ⊆ κ} ⊆ k(A) ∈ MW . By elementarity, |k(A)|MW =
k(|A|MU ). Suppose toward contradiction that there is a function g : κ →
κ such that jW (g)(k(|A|MU )) ≥ k(λ), then k(jU (g)(|A|)) ≥ k(λ) and by
elementarity if k, jU (g)(|A|) ≥ λ, contradiction. □

Lemma 3.8. Suppose that Z is an ultrafilter on κ which is the U -limit of
a discrete sequence of ultrafilters Wξ on κ and such that ♢−

thin(Wξ). Then

♢−
thin(Z).

Proof. Fix a partition of κ into sets Sξ ∈ Wξ. For each ξ < κ, let ⟨Aξ
α⟩α<κ

and fξ witness that ♢−
thin(Wξ). Then let Aα = Aξ

α where ξ < κ is unique
such that α ∈ Sξ and f(α) = fξ(α). Let A ⊆ κ, we would like to show
that B := {α < κ | A ∩ f(α) ∈ Aα} ∈ U - lim ⟨Wξ⟩ξ<κ. Take any ξ < κ,

then Bξ := {α ∈ Sξ | A ∩ fξ(α) ∈ Aξ
α} ∈ Wξ. Since for each α ∈ Sξ and

f(α) = fξ(α), Aα = Aξ
α, we conclude that Bξ ⊆ B and therefore B ∈ Wξ.

It follows that B ∈ U - lim ⟨Wξ⟩ξ<κ. It remains to show that c(α) = |Aα| is
in a lower sky than f . Suppose otherwise and let g : κ → κ such that for
some B ∈ W , α ∈ B → g(c(α)) ≥ f(α). Pick any ξ < κ such that B ∈ Wξ

to reach a contradiction note that B ∩ Sξ ∈ Wξ, and for every α ∈ B ∩ Sξ,

g(|Aξ|α) = g(c(α)) ≥ f(α) = fξ(α). However, the sky α 7→ |Aξ
α| is below

the sky of fξ, contradicting the choice of fξ. □

For a non-discrete sequence, we have the following:

Lemma 3.9. Suppose that Z is an ultrafilter over κ which is Rudin-Keisler
equivalent to

∑
U ⟨Wξ⟩ξ<λ, where U is any ultrafilter over λ ≤ κ and W ′

ξs

are ultrafilters over κ such that ♢−
thin(Wξ) holds. Then ♢−

thin(Z) holds.

Proof. Let W ∗ = [ξ 7→ Wξ]U . By our assumption,

MU |= W ∗ is an ultrafilter over jU (κ) and ♢−
thin(W

∗).
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Let jW ∗ : MU → MW ∗ be the ultrapower of MU by W ∗. It follows that
there is A ∈ MW ∗ and λ < jW ∗(jU (κ)) such that {jW ∗(S) ∩ λ | S ∈
P (jU (κ))

MU } ⊆ A and there is no function f : jU (κ) → jU (κ) ∈ MU

such that jW ∗(f)(|A|MW∗ ) ≥ λ. Note that MW ∗ = M∑
U ⟨Wξ⟩ξ<λ

and

j∑
U ⟨Wξ⟩ξ<λ

= jW ∗◦jU . We claim thatA and λ witness that♢−
thin(

∑
U ⟨Wξ⟩ξ<λ).

Indeed, for anyX ⊆ κ, jU (X) ∈ P (jU (κ))
MU and therefore jW ∗(jU (X))∩λ ∈

A. Similarly, for any function f : κ → κ, jU (f) : jU (κ) → jU (κ) ∈ MU and
therefore jW ∗(jU (f))(|A|MW∗ ) < λ. □

4. Non-Galvin cardinals

As pointed out in the introduction, a measurable cardinal does not imply
the existence of a non-Galvin ultrafilter [8]. In [1], the question regarding
which large cardinal properties imply the existence of non-Galvin ultrafilters
was raised and in [2] a κ-compact cardinal was proven to carry such an
ultrafilter. In this section, we will present a new large cardinal property

Definition 4.1. κ is called non-Galvin cardinal if there are elementary
embeddings j : V → M , i : V → N , k : N → M such that:

(1) k ◦ i = j.
(2) crit(j) = κ, crit(k) = i(κ).
(3) κN ⊆ N and κM ⊆ M
(4) there is A ∈ M such that i′′κ+ ⊆ A and M |= |A| < i(κ).

Note that A can be chosen so that κ ⊆ A and min(A \ κ) = i(κ). The
next proposition implies that we may assume that the embedding j in the
definition of non-Galvin cardinals is an ultrapower embedding:

Proposition 4.2. Suppose that j : V → M , i : V → N , k : N → M and
A ∈ M are as in Definition 4.1. There there is a κ-complete ultrafilter
ultrafilter U over Vκ and ρ < jU (κ) which, together with the ultrapower by
the (κ, ρ])-extender E∗ derived from jU and [id]U , witnesses that κ is non-
Galvin . Namely, the following hold:

(1) kE∗ ◦ jE∗ = jU .
(2) crit(jU ) = κ, crit(kE∗) = ρ = jE∗(κ).
(3) κME∗ ⊆ ME∗ and κMU ⊆ MU .
(4) j′′E∗κ+ ⊆ [id]U and MU |= |[id]U | < jE∗(κ).

Proof. First, let us turn i into an extender embedding. Derive E the (κ, i(κ))-
extender from j (or from i, this is the same since crit(k) = i(κ)). Then there
is a factor map kE : ME → N such that kE ◦ jE = i. By the basic theory of
extenders (see for example [17, Lemma 20.29]) jE(κ) = i(κ) and thus critical
point of kE is at least (i(κ)+)ME . It follows that crit(k ◦ kE) = i(κ) = jE(κ)
and for every α < κ+, k(jE(α)) = jE(α). Hence the embedding i can be
replaced by jE and k by k ◦ kE . Abusing notation, we will denote k ◦ kE by
kE (which is indeed the factor map since E is also derived from j).
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Next, let us replace j with an ultrapower embedding. Let U = D(j, A)
be the ultrafilter derived from j using A. Since M |= |A| < jE(κ) < j(κ)
we may assume that A ∈ (Vj(κ))

M , κ ⊆ A, min(A \ κ) = jE(κ) and U is an
ultrafilter on Vκ. Since crit(j) = κ, we have that U is κ-complete. Note that
the factor map kU : MU → M defined by kU ([f ]U ) = j(f)(A) sends [id]U
to A and that jE(κ) = kU (ρ) for some ordinal ρ14. Next we let E∗ be the
(κ, ρ)-extender derived from jU . Note that for each α < ρ, E∗

α = EkU (α) and
therefore there is an elementary embedding

k∗ : ME∗ → ME , k∗([f, a]E∗) = [f, kU (a)]E .

We have that jE = k∗ ◦jE∗ , and kE ◦k∗ = kU ◦kE∗ , since for any [(f, a)]E∗ ∈
ME∗ ,

kE(k
∗([f, a]E∗)) = kE([f, kU (a)]E) = j(f)(kU (a)) =

= kU (jU (f))(kU (a)) = kU (jU (f)(a)) = kU (kE∗([f, a]E∗))

Let us prove that (1)− (4) hold. First, (1), (3) are clear. For (2), clearly
crit(jU ) = κ (since U is κ-complete), crit(kE∗) ≥ ρ and jE∗(κ) ≥ ρ. Suppose
toward contradiction that jE∗(κ) > ρ then also k∗(jE∗(κ)) > k∗(ρ). Hence

crit(kE) = jE(κ) = k∗(jE∗(κ)) > k∗(ρ)

So we conclude that k∗(ρ) = kE(k
∗(ρ)) = kU (kE∗(ρ)) ≥ kU (ρ) = jE(κ),

contradiction to k∗(ρ) < jE(κ). Now we also have kE∗(ρ) = jU (κ) > ρ
(since kU (jU (κ)) = j(κ) > jE(κ) = kU (ρ)). So we conclude that crit(kE∗) =
ρ = jE∗(κ). Finally for (4), M |= |A| < jE(κ) and since kU ([id]U ) = A and
kU (ρ) = jE∗(κ), the elementarity of kU implies that MU |= |[id]U | < ρ =
jE∗(κ). To see the second part of (4) let us prove the following claim

Claim 4.3. For every ξ < jE∗(κ)+, kU (ξ) = k∗(ξ).

Proof of Claim. Let gξ be the canonical function of ξ. Recall that crit(kE∗) =
ρ and crit(kE) = jE(κ). Hence by proposition 1.17,

kU (ξ) = kU (kE∗(gξ)(ρ)) = kE(k
∗(gξ))(kU (ρ)) = kE(gk∗(ξ))(i(κ)) = k∗(ξ),

□

In paritular, since j′′Eκ
+ ⊆ A, for every α < κ+,

kU (jE∗(α)) = k∗(jE∗(α)) = jE(α) ∈ A = kU ([id]U ),

so by elementarity jE∗(α) ∈ [id]U , as wanted. □

Let us turn to the proof of Main Theorem 0.2:

Theorem 4.4. Suppose that κ is a non-Galvin cardinal. Then there exists
a κ-complete ultrafilter U over κ such that ¬Gal(U, κ, κ+). In particular, if
2κ = κ+ then U is non-Galvin.

14Indeed, define ρ the least ordinal in [id]U such that [id]U ∩ ρ+ 1 is not an ordinal.
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Proof. We use the notation of 4.1. As before, we can fix an ordinal ν < j(κ)

such that for some sequence A⃗ = ⟨Aα⟩α<κ such that A = j(A⃗)ν and for some
sequence κ⃗ = ⟨κα⟩α<κ, i(κ) = j(κ⃗)ν . Let U = D(j, ν) be the ultrafilter on κ
derived from j using ν. Since crit(j) = κ, U is a κ-complete ultrafilter over
κ. We will show ¬Gal(U, κ, κ+).

Let ⟨fξ⟩ξ<κ+ denote the sequence of canonical functions on κ (see defini-

tion 1.16). For ξ < κ+, define

Bξ = {α < κ : fξ(κα) ∈ Aα}

Note that Bξ ∈ U since

j(Bξ) = {α < j(κ) : j(fξ)(j(κ⃗)α) ∈ j(A⃗)α}

and

j(fξ)(j(κ⃗)ν) = j(fξ)(i(κ)) = k(i(fξ))(i(κ)) = i(ξ) ∈ A = j(A⃗)ν

The point here is that in N , g⃗ = i(f⃗) is the sequence of canonical functions
on i(κ), and since crit(k) = i(κ), by proposition 1.17, for any η < i(κ+),
k(gη)(i(κ)) = η. The fact that k(i(fξ))(i(κ)) = i(ξ) follows from this obser-
vation when η = i(ξ) (and thus i(fξ) = gi(ξ)).

Suppose σ ⊆ κ+ and
⋂

ξ∈σ Bξ ∈ U . We must show that |σ| < κ. Since

|A|M < i(κ), it suffices to show that i(σ) ⊆ A: then ot(i(σ)) < ot(A) < i(κ),
and hence N ⊨ ot(i(σ)) < i(κ), which by elementarity implies ot(σ) < κ.

The proof that i(σ) ⊆ A is similar to the calculation in the previous

paragraph: Since
⋂

ξ∈σ Bξ ∈ U , for all η ∈ j(σ), j(f⃗)η(i(κ)) ∈ A. Fix ξ ∈
i(σ), and we will prove that ξ ∈ A. We have k(ξ) ∈ j(σ), so j(f⃗)k(ξ)(i(κ)) ∈
A. But j(f⃗)k(ξ) = k(gξ), hence k(gξ)(i(κ)) = ξ. It follows that ξ ∈ A. □

Remark 4.5. As proven in [2], if κ is κ-compact then there are 22
κ
-many

κ-complete non-Galvin ultrafilters that extend the closed unbounded filter
on κ. On the other hand, assuming the Ultrapower Axiom and that every
irreducible ultrafilter is Dodd sound, the least non-Galvin cardinal carries
a unique non-Galvin ultrafilter that extends the closed unbounded filter on
κ. Under these assumptions, if κ carries distinct non-Galvin ultrafilters
extending the closed unbounded filter, then the Ketonen least distinct such
ultrafilters are precisely the least two extensions of the closed unbounded
filter concentrating on singular cardinals (see the proof of Theorem 5.6).
These ultrafilters are irreducible (and in fact are Mitchell points) by [14,
Corollary 8.2.13, Proposition 8.3.39]. Therefore D0 ◁ D1, so κ carries a
non-Galvin ultrafilter in Ult(V,D1), and so κ is not the least non-Galvin
cardinal.

As a first upper bound for the non-Galvin cardinals we have the following:

Theorem 4.6. If κ is κ-compact, then κ is a non-Galvin cardinal.
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Proof. Let U be a normal ultrafilter on κ. Since |PMU (Pκ(κ
+))| = 2κ, there

is a transitive model M with

PMU (Pκ(κ
+)) ⊆ M, |M | = 2κ

By Hayut’s result [15, Cor. 6], thus there is a transitive N , an elementary
embedding j0 : M → N , with crit(j0) = κ along with some s ∈ N , s ⊆
j0(κ)

+ such that j′′0κ
+ ⊆ s with |s|N < j0(κ). Define W the κ-complete

ultrafilter on Pκ(κ
+) derived from j0 and s. Note that W is fine since

j′′0κ
+ ⊆ s and it measures all the subsets of Pκ(κ

+) in MU . Let jW : MU →
M be the ultrapower of MU by W defined in V , and j : V → M be the
embedding j = jW ◦ jU . Let λ = jW(κ) < j(κ) and let E be the extender of
length λ derived from j.

Claim 4.7. E is also the extender of length λ derived from jW

Proof. For any X ⊆ κ we have that

j(X) ∩ λ = jW(jU (X)) ∩ jW(κ) = jW(jU (X) ∩ κ) = jW(X).

Thus for all α < λ, α ∈ j(X) iff α ∈ jW(X). □

Finally let i : V → N be the ultrapower of V by E and A = [id]W ∈ M .
We claim that i, j, A witness that κ is a non-Galvin cardinal. Indeed, i(κ) ≥
λ. To see that i(κ) ≤ λ, we compute the ultrapower i′ of MU by E, and since
MU is closed under κ-sequences, it follows that i(κ) = i′(κ). By the previous
claim, jW also factors through i′ and thus jW(κ) = k′(i′(κ)) ≥ i′(κ) = i(κ),
as wanted.

By the usual argument about the derived extender, the factor map k : N →
M has critical point i(κ) (see for example [17, Lemma 20.29(ii)]). Also,
M |= |A| < jW(κ) = i(κ) and since W is fine, j′′Wκ+ ⊆ A.

Claim 4.8. For every α < κ+, i(α) = jW(α).

Proof. Note that i(U) ∈ N is a normal measure on i(κ), let X ∈ i(U) be any
set, k(X) ∈ j(U) = jW (iU (U)). Note that jW (iU (U)) is generated by iU (U)
and therefore there is Y ∈ iU (U) such that jW (Y ) ⊆ k(X) and since U is
normal there is A ∈ U such that iU (A) ⊆∗ Y and j(A) ⊆∗ k(X) which in
turn implies that i(A) ⊆∗ X. Now we note that i(A) ∈ R, where R is the N -
ultrafilter (external) derived from k and jW (κ). We conclude that i(U) ⊆
R and thus that i(U) = R (as two N -ultrafilters). So k factors through
ji(U) and k′ : Mi(U) → M has critical point > jW (κ) (since k′(jW (κ)) =

k′([id]i(U)) = k(id)(jW (κ)) = jW (κ)). To conclude the claim, let α < κ+

and f : κ → κ be the canonical function such that iU (f)(κ) = α, then

jW(α) = jW(iU (f)(κ) = j(f)(jW (κ)) = k(i(f))(jW (κ))

It follows that i(f) : i(κ) → i(κ) is the canonical function for i(α). Since
ji(U) is the ultrapower by a normal ultrafilter over jW (κ), we conclude that

k(i(f))(jW (f)) = k′(ji(U)(i(f)))(jW (κ)) = k′(i(α)) = i(α)

as desired. □
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□

We note that being a non-Galvin cardinal is a Σ2
1 property so the first

Π2
1-subcompact cardinal (for the definition see [22]) which is also known as

κ+-Π1
1-subcompact, cannot be the first non-Galvin cardinal. More directly,

if κ is superstrong with an inaccessible target (which simply means that
there is an elementary j : V → M with crit(j) = κ and Vj(κ) ⊆ M and j(κ)
is inaccessible in V ), then by the argument of 3.1, κ is a non-Galvin cardinal,
and any subcompact cardinal is a limit of cardinals that are superstrong with
an inaccessible target.

Hayut proved [15] that κ+-Π1
1-subcompactness implies κ-compactness and

he conjectures that these notions are equiconsistent15. So morally speaking,
κ-compact cardinals should be strictly greater than non-Galvin ultrafilters
in the large cardinal hierarchy. In the next section, we will see that at least
under UA this is the case. Finally, we establish the connection between
Dodd soundness and non-Galvin cardinals:

Lemma 4.9. Suppose that U is a κ-complete non p-point λ-sound ultrafilter,
and let E be the (κ, λ)-extender derived from jU and λ = sup{jU (f)(κ) |
f : κ → κ}. Then j′′E2

κ ∈ MU and moreover jU , jE , kE and j′′E2
κ witness

that κ is a non-Galvin cardinal.

Proof. Derive the extender E from λ i.e E = ⟨Ea | a ∈ [λ]<ω⟩ where Ea is

an ultrafilter over [κ]|a| defined by

Ea = {X ⊆ [κ]|a| | a ∈ j(X)}
By λ-soundness of U , E ∈ MU and we let i = jE : M → ME . Note that
j′′EP (κ) can be calculated in MU and therefore j′′EP (κ) ∈ MU . Also, note
that jE(κ) ≥ λ and since E ∈ MU , we must have that for every a ∈ [λ]<ω,
jEa(κ) < λ hence jE(κ) ≤ λ. We conclude that the critical point of the
factor map kE : ME → MU is λ = jE(κ). Finally, observe that j′′E2

κ ∈ MU .
To see this, simply note that jE ↾ On = (jE)

MU ↾ On16 and therefore
j′′E2

κ = (jE)
MU ′′2κ ∈ MU □

5. In the canonical inner models

In this section, we work within the framework of UA and “every irre-
ducible is Dodd sound”. By results of Goldberg [14] and Schluzenberg [24],
these assumptions hold in the extender models L[E]. Our first goal of this
section is to prove Main Theorem 0.3 regarding the characterization of σ-
complete non-Galvin ultrafilters. To do that, we will need some preparatory
results.

15Since by the results of [22], if there is a weakly iterable premouse with a κ-compact
cardinal then in that inner model κ is also κ+-Π1

1-subcompact cardinal.
16This is since MU is closed under κ-sequences and thus the class of functions from

[κ]<ω to the ordinals is the same from the point of view of V and MU . Now both jE ↾ On
and (jE)

MU ↾ On are completely determined by those functions.
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Theorem 5.1 (UA). Suppose κ is either successor or strongly inaccessible
and U is a κ-irreducible non-κ-complete ultrafilter on κ. Then ♢−

thin(U).

Proof. By [14, Theorems 8.2.22 and 8.2.23],MU is closed under<κ-sequences
and every A ∈ [MU ]

κ is covered by some B ∈ MU such that |B|MU = κ.
By the assumptions of the theorem, U is not κ-complete and therefore
crit(jU ) < κ. Let Eκ

ω = {γ < κ | cf(γ) = ω}, define the function g : Eκ
ω → κ

by g(γ) = ρ for the minimal measurable cardinal ρ such that jU (ρ) > γ.
By [14, Lemma 4.2.36], g(γ) is well defined and g(γ) ≤ γ. Since cf(γ) = ω,
g(γ) < γ. By Födor, there is an unbounded S ⊆ Eκ

ω and κ∗ < κ such that for
every γ ∈ S, g(γ) = κ∗. In particular, jU (κ

∗) ≥ κ. If jU (κ
∗) > κ, let γ = κ∗,

otherwise κ is a limit of MU -strongly inaccessible cardinals. Let κ∗ < γ < κ
be the least strongly inaccessible cardinal. In any case, jU (γ) > κ and since
MU is closed under < κ-sequences, γ is a strongly inaccessible cardinal in
V . Therefore jU [Pκ(κ)] is covered by a set B ∈ MU of cardinality less than
jU (γ). Let A = {

⋃
S : S ∈ [B]κ ∩ MU}. Then |A|MU < jU (γ), and for

any S ⊆ κ, jU (S) ∩ κ∗ ∈ A where κ∗ = sup jU [κ] ≥ jU (γ). Note that
κ∗ > jU (f)(α) for any f : κ → κ and α < κ∗ and in particular there is
no function f : κ → κ such that jU (f)(|A|MU ) ≥ κ∗. We conclude that A
witnesses ♢−

thin(U). □

Corollary 5.2 (UA). If U is a σ-complete ultrafilter over κ+ then ♢−
thin(U)

and in particular U is non-Galvin.

Proof. By [14, Lemma 8.2.24], U =
∑

D ⟨Wξ⟩ξ<λD
where D is an ultrafilter

over λD < κ+, ⟨Wξ⟩ξ<λD
is discrete and MD |= W = [ξ 7→ Wξ]D is jD(κ

+)-

irreducible which cannot be jD(κ
+)-complete. By the previous theorem,

MD |= ♢−
thin(W ). Therefore, for D-almost all ξ, ♢−

thin(Wξ) which by Lemma

3.8, implies that ♢−
thin(

∑
D ⟨Wξ⟩ξ<λD

) holds. □

Theorem 5.3 (UA). Assume that every irreducible is Dodd sound. If W is
a κ-complete ultrafilter over κ, then the following are equivalent:

(1) W has the Galvin property.
(2) ¬♢−

thin(W ).
(3) W is an n-fold sum of κ-complete p-points over κ

Proof. Let W be κ-complete ultrafilter. If W is an n-fold sum of κ-complete
p-points then by Theorem 1.10 W has the Galvin property which by Theo-
rem 3.6 implies ¬♢−

thin(W ). Let W be a κ-complete ultrafilter over κ which
is not an n-fold sum of κ-complete p-points. Let U ≤RF W be irreducible,
which exists since W is nontrivial. If U is not a p-point then by the assump-
tions of the theorem, U is a non p-point ultrafilter Dodd sound over κ and
therefore by 2.7, ♢∗

thin(U) holds and thus also ♢−
thin(U). Since U ≤RK W ,

Lemma 3.7 applies, so we can conclude that ♢−
thin(W ). Hence we may re-

strict ourselves to the case where there is a p-point RF-below W (and this
p-point must be κ-complete). By [14, Thm. 5.3.14], there is a ≤RF -maximal
U ≤RF W that is an n-fold sum of κ-complete p-points over κ. Let ⟨Wξ⟩ξ<κ
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be a discrete sequence with W = U - lim ⟨Wξ⟩ξ<κ. By the choice of U , the
embedding jU : V → MU can be factored as a finite iterated ultrapower

V = M0
j0,1−→ M1

j1,2−→ · · ·
jn−1,n−→ Mn = MU

where inMk, jk,k+1 is the ultrapower embedding associated to a κk-complete
p-point Uk over κk and κk = j0,k(κ). Also, denote by Zk the ultrafilter
associated with j0,k, i.e.

Zk =
∑
U0

∑
U1

...
∑
Uk−2

Uk−1

Since Wξ is nonprincipal, there is an irreducible ultrafilter Dξ ≤RF Wξ.
Suppose that Dξ is ρξ-complete uniform ultrafilter over δξ for some ρξ ≤
δξ ≤ κ. Note that

∑
U Dξ ≤RF W . Let m be the least such that κm−1 <

δ∗ := [ξ 7→ δξ]U ≤ κm where κ−1 is defined to be 0. Let D∗ = [ξ 7→ Dξ]U
is an MU -ultrafilter over δ∗. Note that D∗ ∈ Mm since Mn ⊆ Mm and
since crit(jm,n) = κm it is an Mm-ultrafilter. Moreover, Mκm

n ∩ Mm =
Mκm

n ∩ Mn and therefore (jD∗)Mm ↾ Mn = (jD∗)Mn . By elementarity of

jMm
D∗ , jMn

D∗ ◦ jm,n = jMm
D∗ (jm,n) ◦ jMm

D∗ and we have that

(1) jMn
D∗ ◦ jU = jMm

D∗ (jm,n) ◦ jMm
D∗ ◦ j0,m.

Claim 5.4. If Mm |= D∗ is not κm-complete, then ♢−
thin(W ) holds.

Proof of claim. Since Dξ is irreducible, by our assumption, it is a non κ-
complete Dodd sound ultrafilter. Note that in this case m > 0, since if
m = 0, the D∗ must be κ-complete. Let us split unto cases:

Case 1: If δ∗ = κm, then D∗ is a uniform ultrafilter on κm and it must be
κm-irreducible. By Theorem 5.1 Mm |= ♢−

thin(D
∗) holds. By Lemma

2.15, we conclude that ♢−
thin(

∑
Zm

D∗) holds in V and Hence by

Lemma 3.7 ♢−
thin(W ) follows as well.

Case 2: Assume that δ∗ < κm.
Case 2(b): Assume crit(jMm

D∗ ) > κm−1. Note that the two step iteration

ultrapower jMm
D∗ ◦ jUm−1 is given by a κm−1-complete p-point

on κm−1 in Mm (see [1, Lemma 1.11]), which contradicts the
maximality of U .

Case 2(c): Assume crit(jMm
D∗ ) ≤ κm−1 < δ∗ < κm. Since D∗ is an ir-

reducible uniform ultrafilter over λD∗ ≥ κ+m−1, D∗ is κ+m−1-
irreducible and therefore by [14, Theorem 8.2.22], MD∗ is closed
under κm−1-sequences which in turn implies that P (κm−1) ⊆
MD∗ . By Lemma [14, Lemma 4.2.36], jMm

D∗ (κm−1) > κm−1. Let

λ = jMm
D∗ (κm−1). We claim that

∑
Um−1

D∗ is λ-sound and that

for every function f : κm−1 → κm−1, j∑
Um−1

D∗(f)(κm−1) < λ

which by Corollary 3.5 implies that ♢−
thin(

∑
Um−1

D∗). Indeed

for any function f : κm−1 → κm−1, since jMm
D∗ (κm−1) > κm−1,
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jMm
D∗ (jUm−1(f))(κm−1) = jMm

D∗ (jUm−1(f) ↾ κm−1)(κm−1) = jMm
D∗ (f)(κm−1),

and jMm
D∗ (f) : jMm

D∗ (κm−1) → jMm
D∗ (κm−1). Hence j

Mm
D∗ (f)(κm−1) <

jMm
D∗ (κm−1).
To see that

∑
Um−1

D∗ is λ-sound, derive the (κm−1, λ)-extender

E from jMm
D∗ inside Mm. Note that E is also the (κm−1, λ)-

extender derived from jD∗ ◦ jm−1,m since for α < jMm
D∗ (κm−1)

we have that:
α ∈ jMm

D∗ (jm−1,m(X)) ∩ jMm
D∗ (κm−1) iff α ∈ jMm

D∗ (jm−1,m(X) ∩
κm−1) iff α ∈ jMm

D∗ (X).
Now D∗ is a uniform ultrafilter over δ∗ > κm−1, hence we have

that jMm
D∗ (κ) < [id]D∗ and since D∗ is Dodd sound we have

that E ∈ (MD∗)Mm . In particular, {jE(X) | X ⊆ κm−1} ∈
(MD∗)Mm where jE : Mm−1 → ME . Let kE : ME → (MD∗)Mm

be the factor map. It follows that crit(kE) = jMm
D∗ (κm−1). Fi-

nally, note that j∑
Um−1

D∗(X) ∩ jMm
D∗ (κm−1) = jE(X), hence

{j∑
Um−1

D∗(X) ∩ jMm
D∗ (κm−1) | X ⊆ κm−1} ∈ (MD∗)Mm

as desired. We conclude that Mm−1 |= ♢−
thin(

∑
Um−1

D∗). By

Lemma 3.9♢−
thin(

∑
Zm−1

(
∑

Um−1
D∗)) and this ultrafilter is Rudin-

Keisler below W . □

By the claim, we may assume that for Mm |= D∗ is κm-complete over
κm. It follows again that in Mm, D∗ cannot be a p-point, as this would
contradict the maximality of U , recalling that

∑
U Dξ ≤RF W and that this

ultrafilter
∑

U Dξ can be represented as an n+ 1-fold sum of κ-complete p-
points by (1). Since D∗ is irreducible in Mm, Mm |= D∗ is Dodd-sound and
non p-point. By Lemma 2.7 Mm |= ♢∗

thin(D
∗) holds. In paritular, ♢−

thin(D
∗)

holds. In any case, Lemma 2.15 applies to conclude that ♢−
thin(

∑
Zm

D∗)
holds, and since this ultrailter is RK-below W , lemma 3.7 ensures that
♢−

thin(W ) holds. □

Theorem 5.5 (UA). Assume that every irreducible ultrafilter is Dodd sound.
For every σ-complete ultrafilter W over κ the following are equivalent:

(1) W has the Galvin property.
(2) ¬♢−

thin(W ).
(3) W is the D-sum of n-fold sums of κ-complete p-points over κ and

D is a σ-complete ultrafilter on λ < κ.

Proof. The proof that (3) ⇒ (1) ⇒ (2) is in the previous theorem. It
remains to prove that ¬♢−

thin(W ) implies that W is a D-sum of n-fold sums
of κ-complete p-points over κ. Equivalently, let us prove the contrapositive,
suppose that W is a σ-complete ultrafilter over κ which is not an n-fold
sum of p-points. Now let us move to the general case, suppose that W
is just σ-complete. By [14, Lemma 8.2.24], there is a countable ultrafilter
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D ≤RF W on λ < κ such that if W = D- lim ⟨Wξ⟩ξ<λ then MD |= Z = [ξ 7→
Wξ]D is jD(κ)-irreducible. If Z is not jD(κ)-complete then by Theorem 5.1.

MD |= ♢−
thin(Z) and therefore W = D- lim ⟨Wξ⟩ξ<λ will also satisfy ♢−

thin by

Lemma 3.8. If Z is jD(κ)-complete, then Z is a jD(κ)-complete ultrafilter
which is not a D′-sum of n-fold sums of p-points and we fall into the first
case where we assumed that W was κ-complete (inside MD and replacing k
by jD(κ)). We conclude that ♢−

thin(Z) holds and again, it follows from that

♢−
thin(W ) holds. □

Next, we turn to the proof of Main Theorem 0.5.

Theorem 5.6 (UA). Assume that every irreducible ultrafilter is Dodd sound.
Suppose κ is an uncountable cardinal that carries a κ-complete non-Galvin
ultrafilter. Then the Ketonen least non-Galvin κ-complete ultrafilter on κ
extends the closed unbounded filter.

Proof. We claim that in this context, the Ketonen least non-Galvin ultra-
filter U is equal to the Ketonen least ultrafilter W on a regular cardinal δ
extending the closed unbounded filter and concentrating on singular cardi-
nals. First, note that W is irreducible by [14, Corollary 8.2.12]. Since W lies
on a cardinal δ below the least κ that is 2κ-supercompact, it follows that W
is δ-complete: otherwise the Dodd soundness of W would imply that some
cardinal less than δ is 2<δ-supercompact. Note that W is not a p-point
since W extends the closed unbounded filter but is not normal; therefore by
Corollary 2.10, W is non-Galvin, and hence U is below W in the Ketonen
order.

Conversely, since U is the Ketonen least non-Galvin ultrafilter, by The-
orem 0.2, U is irreducible and not a p-point. Moreover, U is a γ-complete
ultrafilter on γ for some measurable cardinal γ. Let λ = sup{jU (f)(γ) :
f : γ → γ}, and let D be the ultrafilter on γ derived from jU using λ. Then
D is below U in the Ketonen order. Since cfMU (λ) ≤ γγ , D concentrates
on singular cardinals. Moreover, for any f ∈ γγ , λ is closed under jU (f) —
that is, jU (f)[λ] ⊆ λ — so D concentrates on the set of closure points of
f . It follows that D extends the closed unbounded filter. Therefore W is
below D in the Ketonen order, so by the transitivity of the Ketonen order,
W is below U in the Ketonen order. It follows that U = W as claimed. This
implies that U extends the club filter, which proves the theorem. □

Let us turn our attention to the non-Galvin cardinals. Main Theorem
0.4, which we now prove, shows that the existence of a non-Galvin cardinal
is exactly the large cardinal assumption needed to conclude the existence of
non-Galvin ultrafilters in an inner model.

Theorem 5.7 (UA). Assume that every irreducible ultrafilter is Dodd sound.
If there is a κ-complete non-Galvin ultrafilter on an uncountable cardinal κ,
then there is a non-Galvin cardinal.
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Proof. Let W be a non-Galvin ultrafilter on κ. By Theorem 0.5, W is
Rudin-Keisler equivalent to an n-fold sum of irreducible ultrafilters. By
Theorem 0.2, it is impossible that all these ultrafilters are p-points (even on
measure one sets) so κ must carry an irreducible ultrafilter U which is not
a p-point. By our assumption, every irreducible is Dodd sound. Since U
is a κ-complete ultrafilter non p-point Dodd sound ultrafilter, Lemma 4.9
applies we conclude that κ is a non-Galvin cardinal. □

Proposition 5.8 (UA). If κ is κ-compact and no cardinal ν < κ is κ-
supercompact, then κ a limit of non-Galvin cardinals.

Proof. Since κ is κ-compact, a theorem of Kunen [21, Lemma 3] implies that
for every ξ < (2κ)+, there is a countably complete ultrafilter U on κ such
that jU (ξ) > ξ. Let Uξ denote the Ketonen least such ultrafilter. By [14,
Lemma 7.4.34] and [14, Proposition 8.3.39], Uξ is a Mitchell point : for any
ultrafilter W <k U , W lies below U in the Mitchell order.

Since κ is strongly inaccessible, there is an ω-club C ⊆ (2κ)+ such that for
all ξ ∈ C, for all countably complete ultrafilters D of rank less than ξ in the
Ketonen order, jD(ξ) = ξ. For ξ ∈ C, Uξ is a uniform irreducible ultrafilter
on κ, and so it follows from [14, Theorem 8.2.23] that Uξ witnesses crit(jUξ

)
is <κ-supercompact. Since κ is measurable, it follows that crit(jUξ

) is κ-
supercompact, and so by the assumptions of the proposition, crit(jUξ

) = κ.
In other words Uξ is κ-complete.

Now let W witness that κ is a non-Galvin cardinal. Fix ξ ∈ C larger
than the Ketonen rank of W . Then W is below Uξ in the Mitchell order,
and so κ is non-Galvin in MUξ

. It follows that κ is a limit of non-Galvin
cardinals. □

In particular, the least cardinal κ that is κ-compact is larger than the
least non-Galvin cardinal assuming UA.17

6. Open problems

Question 6.1. It is consistent that there is a κ-complete uniform ultrafilter
U over κ satisfying the Galvin property which is not an n-fold sum of κ-
complete p-points over κ?

Lately, Gitik gave a positive answer to this question, thus our character-
ization of ultrafilters with the Galvin property cannot be proved in ZFC.
The following question seems more plausible for a positive answer in ZFC:

17It should be provable from UA that any cardinal κ that is κ-compact is a limit of
non-Galvin cardinals. Here there are two cases. If κ is a limit of cardinals γ that are
κ-compact, then each of these cardinals γ is γ-compact, so κ is a limit of non-Galvin
cardinals. If κ is not a limit of κ-compact cardinals, one would like to show, as above,
that there is a non-Galvin ultrafilter W on κ that is below some κ-complete ultrafilter on
κ in the Mitchell order. The issue is that it is unclear how to show that the Mitchell order
on κ-complete ultrafilters have rank (2κ)+ if some ν < κ is κ-supercompact.
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Question 6.2. Is every uniform κ-complete ultrafilter U over κ+ non-
Galvin, i.e., ¬Gal(U, κ+, κ++) holds?

Under UA, the answer is positive by Corollary 5.2.

Question 6.3. Does a non-Galvin cardinal entail the existence of a non-
Galvin ultrafilter which extends the club filter?

By Main Theorem 0.2, a non-Galvin cardinal entails the existence of a
non-Galvin ultrafilter. Assuming UA and that every irreducible is Dodd
sound, Main Theorem 0.5 a non-Galvin cardinal also entails the existence
of κ-complete non-Galvin ultrafilter which extends the club filter.

Question 6.4. Does every fine normal ultrafilter over Pκ(κ
+) satisfy Gal(U, κ, 2κ

+
)?

The answer would be interesting even under UA. This is the first step
toward answering the more general problem:

Question 6.5. Characterize the Tukey-top ultrafilters on κ with respect to
λ < κ assuming UA plus every irreducible is Dodd sound.

Question 6.6. Is there a similar characterization under UA for σ-complete
ultrafilters with the Galvin property over singular cardinals?

We believe that such a characterization exists and that similar methods
to those appearing in this paper should be useful.

In the absence of GCH we have the following questions which are open:

Question 6.7. If we replace i′′κ+ by i′′2κ in the definition of non-Galvin
cardinal, do we get a κ-complete ultrafilter such that ¬Gal(U, κ, 2κ)?

More generally:

Question 6.8. Is it consistent that there is a κ-complete ultrafilter U such
that ¬Gal(U, κ, κ+) but Gal(U, κ, 2κ)?

The result of this paper resolves these two questions under UA plus every
irreducible is Dodd sound.

The following two questions address the assumptions in the main theorems
of this paper.

Question 6.9. Is it consistent that there is a cardinal κ which is κ+-
supercompact and that every irreducible ultrafilter is Dodd sound?

Question 6.10. Does UA imply that every irreducible ultrafilter is Rudin-
Keisler equivalent to a Dodd sound?

Let us conclude this paper with a diamond-like principle which is a reason-
able candidate to be equivalent to non-Galvin ultrafilters. Such a principle
would be valuable as there is no known formulation of the Galvin property
in terms of the ultrapower. This would be also interesting from the point of
view of the Tukey order since this order involves functions which typically
have domains of size 2κ, and thus not available in the ultrapower.
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Definition 6.11. We say that ♢−
par(U) holds if and only if there is A ∈ MU ,

λ and ⟨Xi⟩i<2κ ⊆ P (κ) such that:

(1) {jU (Xi) ∩ λ | i < 2κ} ⊆ A.
(2) there is no function f : κ → κ such that jU (f)(|A|MU ) ≥ λ.

The argument of Lemma 3.6 can be adjusted to conclude that ♢−
par(U)

implies that U is non-Galvin.

Question 6.12. Is ♢−
par(U) equivalent to U being non-Galvin?
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