
ON THE TUKEY TYPES OF FUBINI PRODUCTS

TOM BENHAMOU AND NATASHA DOBRINEN

Abstract. We extend the class of ultrafilters U over countable sets for which

U ·U ≡T U , extending several results from [13]. In particular, we prove that for
each countable ordinal α ≥ 2, the generic ultrafilter Gα forced by P (ωα)/fin⊗α

satisfy Gα · Gα ≡T Gα. This answers a question posed in [13, Question 43].

Additionally, we establish that Milliken-Taylor ultrafilters possess the property
that U · U ≡T U .

0. Introduction

The Tukey order of partially ordered sets finds its origins in the notion of Moore-
Smith convergence [31], which generalizes the usual meaning of convergence of
sequence to net, allowing to enlarge the class of topological spaces for which conti-
nuity is equivalent to continuity in the sequential sense. Formally, given two posets,
(P,≤P ) and (Q,≤Q) we say that (P,≤P ) ≤T (Q,≤Q) if there is map f : Q → P ,
which is cofinal, namely, f ′′B is cofinal in P whenever B ⊆ Q is cofinal. Schmidt
[28] observed that this is equivalent to having a map f : P → Q, which is un-
bounded, namely, f ′′A is unbounded in Q whenever A ⊆ P is unbounded in P .
We say that P and Q are Tukey equivalent, and write P ≡T Q, if P ≤T Q and
Q ≤T P ; the equivalence class [P ]T is called the Tukey type or cofinal type of P . It
turns out that the Tukey order restricted to posets (U,⊇), where U is an ultrafilter,
has a close relation to ultranets and has been studied extensively on ω by Blass,
Dobrinen, Kuzeljevic, Milovich, Raghavan, Shelah, Todorcevic, Verner, and others
(see for instance [5, 8, 12, 13, 21, 23, 25, 27]). Recently, the authors extended this
investigation to the realm of large cardinals where they considered the Tukey order
on σ-complete ultrafilters over a measurable cardinal κ in [2]. On ultrafilters, the
Tukey order is determined by functions which are (weakly) monotone1 and have
cofinal images. For this reason, the Tukey order is the order one expects to use
when comparing the cofinality of ultrafilters. We refer the reader to [7] and [10] for
surveys of the subject.

In this paper, we investigate the connection between the Tukey type of an ul-
trafilter U and the Tukey type of its Fubini product with itself, U ·U . It is easy to
see that U ≤T U · U for every ultrafilter U . The question is, for which ultrafilters
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does U ≡T U · U hold? Already Dobrinen and Todorcevic [13] and Milovich [24],
provide a significant understanding of the relation between these two Tukey types:
Dobrinen and Todorcevic proved that whenever U is a rapid p-point ultrafilter over
ω, then U · U ≡T U ; Milovich proved that U · U · U ≡T U · U for every nonprin-
cipal ultrafilter U . In contrast, trivial examples of ultrafilters U with the property
that U · U ≡T U are the so-called Tukey-top ultrafilters, those ultrafilters which
are maximal in the Tukey order among all ultrafilters on ω. Such an ultrafilter
was constructed (in ZFC) by Isbell [18] and Juhász [19]; we denote this ultrafilter
by Utop. Henceforth, we shall only focus on nonprincipal ultrafilters U such that
U <T Utop.

Dobrinen and Todorcevic also proved that for p-points, U ·U ≡T U is equivalent
to U being Tukey above (ωω,≤), where ≤ refers to the everywhere domination
order of functions. Furthermore, they provided an example of a p-point U which
is not Tukey above ωω, and in particular satisfying U <T U · U . They also asked
whether, besides the Tukey-top ultrafilters, the class of ultrafilters which are Tukey
equivalent to their Fubini product is a subclass of the class of basically generated
ultrafilters.

Question 0.1. [13, Q.43] Does U · U ≡T U < Utop imply that U is basically
generated?

Note that on measurable cardinals, the situation is quite different, as every κ-
complete ultrafilter U over κ satisfies that U · U ≡T U [2, Thm 5.6].

In this paper, we provide a negative answer to this question by analyzing the
Tukey type of the Fubini powers of generic ultrafilters obtained by σ-closed forcings
of the form P (X)/I. We define the I-pseudo intersection property (Definition 1.11)
as a way of abstracting the notion of p-point, and use it to extend work in [13] and
[24] to provide an abstract condition which guarantees that U ·U ≡T U (Corollary
1.17). We then provide an equivalent formulation for U being Tukey equivalent to
itself (Theorem 1.18), generalizing [13, Thm. 35].

In Section 2, we apply Theorem 1.18 to the forcing P (ω × ω)/I, where I =
fin ⊗ fin := fin⊗2 over ω × ω. This forcing was first investigated by Szymánski
and Zhou [29] and later by many others. We show that any generic ultrafilter G2

for P (ω × ω)/fin⊗2 has the property that G2 · G2 ≡T G2. Blass, Dobrinen and
Raghavan [5] showed that G2 is not basically generated (so in particular is not a
p-point) but also is not Tukey-top. Dobrinen proved in [8] that G2 is in fact the
Tukey immediate successor of its projected Ramsey ultrafilter, so at the same level
as a weakly Ramsey ultrafilter (see [14]) in the Tukey hierarchy.

In Section 3, we investigate ultrafilters Gα obtained by forcing P (ωα)/fin⊗α,
for any 2 ≤ α < ω1. We analyze the Tukey type of fin⊗α and prove that, for all
α < ω1, Gα ≡T Gα ·Gα (Theorem 3.9). Such ultrafilters are not p-points and also
not basically generated, and eachGα Rudin-Keisler projects onto generic ultrafilters
Gβ for β < α. By results of Dobrinen [8, 9, 6], such ultrafilters are non-Tukey top,
and moreover, are quite low in the Tukey hierarchy. For instance, for k < ω, the
sequence ⟨Gn | n ≤ k⟩ form an exact Tukey chain in the sense that if V ≤T Gk,
then there is n ≤ k, Gn ≡T V . Related results holds for ω ≤ α < ω1.

Finally, in Section 4, we prove that if U is a Milliken-Taylor ultrafilter then
also U satisfies our equivalent condition and therefore U · U ≡T U (Theorem 4.8).
Milliken-Taylor ultrafilters as well as those forced by P (ωα)/fin⊗α are not basically
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generated and in particular p-points, providing examples which answer Question
0.1 in the negative.

One question which our results are relevant for but remains open, is whether
U ·V ≡T V ·U for any ultrafilter U, V over ω. Corollaries 1.9 and 1.10 provide some
progress on this question. This again contrasts with ultrafilters on a measurable
cardinal κ: work of the authors in [2] showed that if U, V are κ-complete ultrafilters
over κ, then U · V ≡T V · U . The proof essentially uses the well-foundedness of
ultrapowers by κ-complete ultrafilters and therefore does not apply for ultrafilters
over ω. This is discussed in Section 1.

0.1. Notation. [X]<λ denotes the set of all subsets of X of cardinality less than
λ. Let fin = [ω]<ω, and FIN = fin \ {∅}. For a collection of sets (Pi)i∈I we let∏

i∈I Pi = {f : I →
⋃

i∈I Pi | ∀i, f(i) ∈ Pi}. Given a set X ⊆ ω, such that
|X| = α ≤ ω, we denote by ⟨X(β) | β < α⟩ be the increasing enumeration of X.
Given a function f : A → B, for X ⊆ A we let f ′′X = {f(x) | x ∈ X} and for
Y ⊆ B we let f−1Y = {x ∈ X | f(x) ∈ Y }. Given sets {Ai | i ∈ I} we denote by⊎

i∈I Ai the union of the Ai’s when the sets Ai are pairwise disjoint.

1. The Tukey type of a Fubini product

Given A ⊆ P (X), we set A∗ = {X \ A | A ∈ A}. For a filter F over X, we
denote the dual ideal by F ∗, and given an ideal I we denote the dual filter by I∗.
The following fact is easy to verify:

Fact 1.1. For any filter F , (F,⊇) ≡T (F ∗,⊆).

An ultrafilter over X is a filter U such that for every A ∈ P (X), either A ∈ U
or X \A ∈ U . So for ultrafilters we have that U∗ = P (X) \ U . As the title of this
section indicates, we are interested in the Fubini product of ultrafilters:

Definition 1.2. Suppose that U is a filter over X and for each x ∈ X, Ux is a
filter over Yx. We denote by

∑
U Ux the filter over

⋃
x∈X{x} × Yx, defined by

A ∈
∑
U

Ux if and only if {x ∈ X | (A)x ∈ Ux} ∈ U

where (A)x = {y ∈ Yx | ⟨x, y⟩ ∈ A}. If for every x, Ux = V for some fixed V over a
set Y , then U · V is defined as

∑
U V , which is a filter over X × Y . U2 denotes the

filter U · U over X ×X.

It is well known that if U and each Ux are ultrafilters, then also
∑

U Ux is an
ultrafilter (see for example see [3]).

Fact 1.3. If U, V are filters over countable sets X,Y respectively, then U ≡RK U ′,
V ≡RK V ′ for some filters U ′, V ′ over ω and U · V ≡RK U ′ · V ′.

Given posets (Pi,≤i)i∈I we let
∏

i∈I(Pi,≤i) be the ordered set
∏

i∈I Pi with the
pointwise order derived from the orders ≤i. We call this order on

∏
i∈I Pi, the

everywhere domination order. We will omit the order when it is the natural order.
In particular, any ordinal α is ordered naturally by ∈, ωω =

∏
n<ω ω is ordered by

everywhere domination, and
∏

n<ω ωω is the everywhere domination order where
each ωω is again ordered by everywhere domination.
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Fact 1.4. If A,B are any sets with the same cardinality and (P,⪯) is an ordered
set, then

∏
a∈A(P,⪯) and

∏
b∈B(P,⪯) equipped with the everywhere domination

orders are order isomorphic.

The next theorem of Dobrinen and Todorcevic provides an upper bound for the
Fubini product of ultrafilters via the Cartesian product.

Theorem 1.5 (Dobrinen-Todorcevic, Thm. 32, [13]).
∑

U Ux ≤T U ×
∏

x∈X Ux.
In particular, U · V ≤T U ×

∏
x∈X V and U · U ≤T

∏
x∈X U .

Towards answering a question from [13], Milovich improved the previous theorem
over ω. Let us give a slight variation of his proof, for we will need it later:

Proposition 1.6 (Milovich, Lemma 5.1, [24]). For filters U, V over countable sets
X,Y (resp.), U · V ≡T U ×

∏
x∈X V . In particular U · U ≡T

∏
x∈X U .

Remark 1.7. We cannot prove in general that
∑

U Un ≡T U ×
∏

n<ω Un. For
example, if U is such that U ·U ≡T U (e.g., U is Ramsey) and U0 is Tukey-top while
Un = U for every n > 0, then

∑
U Un = U ·U ≡T U <T U0 but

∏
n<ω Un ≥T U0, so

we have
∑

U Un ̸≡T U ×
∏

n<ω Un. Similar examples can be constructed even when
all the Un’s are distinct, for example, requiring that for every n > 0, Un ≤T U for
some U such that U · U ≡T U . Such examples are constructed in this paper in
Section 3: Take U to be a generic ultrafilter for P (ωω)/fin⊗ω, and Un the Rudin-
Keisler projection of U to a generic on P (ωn)/fin⊗n.

Proof. The proof of Theorem 1.5 does not use the fact that the partial orders
are ultrafilters, and we have that U · V ≤T U ×

∏
x∈X V . (Indeed, the map F :

U ×
∏

x∈X V → U · V defined by F (A, ⟨Yx | x ∈ X⟩) =
⋃

x∈A{x} × Yx is monotone
and cofinal). For the other direction, by Facts 1.3 and 1.4, we may assume that
X = Y = ω. Let us define a cofinal map from a cofinal subset of U ·V to U×

∏
n<ω V .

Consider the collection X ⊆ U · V of all A ⊆ ω × ω such that:

(1) for all n < ω, either (A)n = ∅ or (A)n ∈ V .
(2) π′′A ∈ U and for all n1, n2 ∈ π′′

1A, if n1 < n2 then (A)n2
⊆ (A)n1

.

It is not hard to prove that X is a filter base for U · V . Let F : X → U ×
∏

n<ω V
be defined by F (A) = ⟨π′′A, ⟨(A)(π′′

1 A)(n) | n < ω⟩⟩ where ⟨(π′′
1A)(n) | n < ω⟩ is

the increasing enumeration of π′′
1A. Let us prove that F is monotone and cofinal.

Suppose that A,B ∈ X are such that A ⊆ B. Then

a. π′′A ⊆ π′′B;
b. for every n < ω, (π′′A)(n) ≥ (π′′B)(n);
c. for every m < ω, (A)m ⊆ (B)m.

By requirement (2) of sets in X , for every n < ω,

(A)(π′′A)(n) ⊆ (B)(π′′A)(n) ⊆ (B)(π′′B)(n).

It follows that F (A) ≥ F (B). To see that F is cofinal, let ⟨B, ⟨Bn | n < ω⟩⟩ ∈
U ×

∏
n<ω V . Define A =

⋃
n∈B{n} × (

⋂
m≤n Bm). Then π′′A = B and it is

straightforward that A ∈ X . We claim that for every n, F (A)n ⊆ Bn. Indeed,
B(n) = (π′′A)(n) ≥ n and therefore F (A) = ⟨B, ⟨An | n < ω⟩⟩ where An =⋂

m≤B(n) Bm ⊆ Bn. □

Milovich used this proposition to deduce the following, answering a question in
[13] and improving a result in [13] which showed that (2) below holds if F and G
are both rapid p-points:
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Theorem 1.8 (Milovich, Thms. 5.2, 5.4, [24]). (1) For any filters F,G,
F ·G ·G ≡T F ·G. In particular, F⊗2 ≡T F⊗3.

(2) If F,G are p-filters, then F ·G ≡T G · F .

For the rest of this section, let us derive several corollaries and present new
results.

Corollary 1.9. Suppose that V · V ≡T V . Then U · V ≡T U × V . Moreover, if
also U · U ≡T U , then U · V ≡T V · U .

Proof. Since V · V ≡T V , we have that V ≡T

∏
n<ω V , hence

U · V ≡T U ×
∏
n<ω

V ≡T U × V.

For the second part, it is clear that U × V ≡T V × U and therefore if V · V ≡T V
and U · U ≡T U , then U · V ≡T V · U . □

Corollary 1.10. For any ultrafilters U, V on countable sets, U ·V ·V ≡T U×(V ·V ).
In particular (U · U) · (V · V ) ≡T (V · V ) · (U · U).

As a consequence of Proposition 1.6, U · U ≡T U if and only if U ≡T

∏
n<ω U .

Still, checking whether U is Tukey equivalent to
∏

n<ω U is usually a non-trivial
task. We provide below a simpler condition and explain how it generalizes some
results from [13].

Definition 1.11. Let U be an ultrafilter over a countable set X and I ⊆ U∗ an
ideal on X. We say that U has the I-pseudo intersection property (abbreviated by
I-p.i.p.) if for any sequence ⟨An | n < ω⟩ ⊆ U there is a set A ∈ U such that for
every n < ω, An ⊆I A, namely, An \A ∈ I.

This definition is a generalization of being a p-point as the following example
suggests.

Example 1.12. U having the fin-p.i.p. is equivalent to U being a p-point.

Claim 1.13. For every ultrafilter U over X, U∗-p.i.p. holds.

Proof. For any sequence ⟨An | n < ω⟩ we can always take A = X ∈ U , since then
A \An = X \An ∈ U∗ by definition. □

Proposition 1.14. If U has the I-p.i.p., then

U · U ≤T U ×
∏
n<ω

I

Proof. Let U be any ultrafilter. Then by Proposition 1.6, U · U ≡T

∏
n<ω U . We

claim that if U has the I-p.i.p., then
∏

n<ω U ≤T U ×
∏

n<ω I. Let ⟨An | n <
ω⟩ ∈

∏
n<ω U , and choose A ∈ U such that A \ An ∈ I, which exists by I-p.i.p.

Define F (⟨An | n < ω⟩) = ⟨A, ⟨A \ An | n < ω⟩⟩ ∈ U ×
∏

n<ω I. We claim that
F is unbounded. Indeed, suppose that A ⊆

∏
n<ω U and F ′′A is bounded by

⟨A∗, ⟨X∗
n | n < ω⟩⟩ ∈ U ×

∏
n<ω I. Define A∗

n = A∗ \X∗
n. Note that I ⊆ U∗ and

A∗ ∈ U imply that ⟨A∗
n | n < ω⟩ ∈

∏
n<ω U . Let us show that this is a bound

for A. Let ⟨An | n < ω⟩ ∈ A. Then F (⟨An | n < ω⟩ ∈ A) = ⟨A, ⟨A \ An | n <
ω⟩⟩ ≤ ⟨A∗, ⟨X∗

n | n < ω⟩⟩, namely, A∗ ⊆ A and A \ An ⊆ X∗
n. It follows that

A∗
n = A∗ \X∗

n ⊆ A \ (A \An) = A∩An ⊆ An. Hence ⟨An | n < ω⟩ ≤ ⟨A∗
n | n < ω⟩,

as desired. □
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Corollary 1.15. If U is a p-point then U · U ≤T U ×
∏

n<ω fin.

Fact 1.16. (fin,⊆) ≡T (ω,≤).

Proof. The collection of all sets of the form {0, ..., n} is cofinal in fin and is clearly
order isomorphic to ω. □

Translating Fact 1.16 to
∏

n<ω fin, we see that
∏

n<ω fin ≡T (ωω,≤), where ωω

is the set of all functions f : ω → ω and the order ≤ refers to the everywhere
domination order. We conclude that if U is a p-point then U · U ≤T U × ωω (this
is the important part of [13, Thm. 33]). We can now derive the following sufficient
condition:

Corollary 1.17. Let U be an ultrafilter over a countable set X, I ⊆ U∗ an ideal
on X and

(1) U has the I-p.i.p., and
(2)

∏
n<ω I ≤T U .

Then U · U ≡T U .

Proof. U ≤T U · U ≤T U ×
∏

n<ω I ≤T U × U ≡T U . □

The above sufficient condition is in fact an equivalence:

Theorem 1.18. For every ultrafilter U over a countable set X, the following are
equivalent:

(1) U · U ≡T U .
(2)

∏
n<ω U ≡T U .

(3) There is an ideal I such that I-p.i.p. holds and
∏

n<ω I ≤T U .

Proof. (1) and (2) are equivalent by Proposition 1.6. (2) ⇒ (3) is trivial, taking I =
U∗ and by Claim 1.13. Finally, (3) ⇒ (1) follows from the previous corollary. □

In particular, if U is a p-point, the above proposition provides the equivalence
that U · U ≡T U if and only if U ≥T ωω, recovering [13, Thm. 35].

Recall that an ultrafilter U over ω is rapid if for every increasing function f :
ω → ω there is X ∈ U such that for every n < ω, otp(X ∩ f(n)) ≤ n.

Fact 1.19. U is rapid if and only if the following map is cofinal: F : U → ωω

defined by F (X) = ⟨X(n) | n < ω⟩, where X(n) is the nth element of X.

As a corollary, we obtain once more a result from [13]:

Corollary 1.20. If U is a rapid p-point then U ≡T U · U .

By taking ideals other than fin, we will find ultrafilters that are not p-points but
are Tukey equivalent to their Fubini product.

2. The ideal fin⊗ fin

Let I, J be ideals on X,Y (resp.). We define the Fubini product of the ideals
I ⊗ J over X × Y : For A ⊆ X × Y ,

A ∈ I ⊗ J iff {x ∈ X | (A)x /∈ J} ∈ I.

We note that this is the dual operation of the Fubini product of filters:

Fact 2.1. For every two ideals I, J , (I ⊗ J)∗ = I∗ · J∗.
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Our main interest in this section is the ideal fin⊗ fin on ω × ω, which is defined
by

X ∈ fin⊗ fin iff {n < ω | (X)n is infinite} is finite.

Proposition 2.2. (fin ⊗ fin,⊆) ≡T ωω, where on ωω we consider the everywhere
domination order.

Proof. By Fact 1.1 and the previous fact, (fin ⊗ fin,⊆) ≡T ((fin ⊗ fin)∗,⊇) ≡T

(fin∗ · fin∗,⊇). By Proposition 1.6,

(fin∗ · fin∗,⊇) ≡T

∏
n<ω

fin∗ ≡T

∏
n<ω

fin ≡T

∏
n<ω

ω = ωω.

□

Corollary 2.3. Suppose that U is an ultrafilter over ω×ω such that fin⊗fin ⊆ U∗,
fin⊗ fin-p.i.p. holds for U , and

∏
n<ω(ω

ω,≤) ≤T U . Then U · U ≡T U .

Proof. Apply Corollary 1.17 for I = fin⊗ fin. □

The order
∏

n<ω ωω can be simplified:

Fact 2.4.
∏

n<ω ωω is order isomorphic to ωω and in particular
∏

n<ω ωω ≡T ωω.

Proof. Take any partition of ω into infinitely many infinite sets ⟨An | n < ω⟩. Then
any function f : ω → ω induces functions ⟨f ↾ An | n < ω⟩ ∈

∏
n<ω ωAn . Clearly,

ωAn is isomorphic to ωω by composing each function f : An → ω with the inverse
of the transitive collapse πn : An → ω. □

We now look for conditions that guarantee that U ≥T ωω. One way, is to ensure
that the Rudin-Keisler projection on the first coordinate is rapid:

Definition 2.5. Suppose that U is an ultrafilter such that fin ⊗ fin ⊆ U∗. We
say that U is 2-rapid if the ultrafilter π∗(U) = {X ⊆ ω | π−1X ∈ U} is a rapid
ultrafilter on ω, where π : ω × ω → ω is the projection to the first coordinate.

Corollary 2.6. Suppose that U is an ultrafilter on ω× ω such that fin⊗ fin ⊆ U∗,
and U is fin⊗ fin-p.i.p. and 2-rapid. Then U · U ≡T U .

Given an ideal I on a set X, an I-positive set is any set in I+ := P (X) \ I. The
forcing P (X)/I is forcing equivalent to (I+,⊆I), where the pre-order is given by
X ⊆I Y iff X \ Y ∈ I. If G ⊆ P (X) is I+-generic over V , then G is an ultrafilter
for the algebra PV (X) (namely (V,∈, G) |= “G is an ultrafilter”) and also I ⊆ G∗.
We will only be interested in the case where X is a countable set and P (X)/I is
σ-closed. This is equivalent to the following property of I: we say that I is a σ-ideal
if whenever ⟨An | n < ω⟩ is a ⊆-decreasing sequence of I-positive sets, there is an
A ∈ I+ such that for every n < ω, A \An ∈ I.

Given that P (X)/I is σ-closed, the forcing does not add new reals. Hence, if G
is I+-generic over V then PV (X) = PV [G](X) and thus, G is an ultrafilter over X
in V [G]. Clearly, fin is a σ-ideal, and it is well known that the generic ultrafilter
for P (ω)/fin is selective (and therefore a p-point and rapid):

Fact 2.7 (Folklore). If G is P (ω)/fin-generic over V , then G is a Ramsey ultrafilter
in V [G].
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In particular, G is a rapid p-point. By results in [13], G · G ≡T G < Utop,
and in fact, by results in [26], G is Tukey-minimal among nonprincipal ultrafilters.
However, this does not answer Question 0.1 as G is a p-point and therefore basically
generated. We will answer Question 0.1 below.

Next, let us move to the forcing P (ω × ω)/fin ⊗ fin. This forcing was first
considered in [29] and later in many papers including [17], [5], [8], [11], and [1].
Again, it is not hard to see that fin ⊗ fin is a σ-ideal. The following properties of
the generic ultrafilter are due to Blass, Dobrinen and Raghavan [5] and Dobrinen
[8]:

Theorem 2.8. Let G be a P (ω × ω)/fin⊗ fin-generic ultrafilter over V . Then:

(1) G is not Tukey top and is also not basically generated.
(2) π∗(G) is P (ω)/fin-generic over V , where π : ω × ω → ω is the projection

to the first coordinate.
(3) G is the immediate successor of π∗(G) in the Tukey order.

Proof. For the convenience of the reader, we provide references to the proofs of the
above:

(1) [5, Thms. 47 and 60].
(2) [5, Prop. 30]
(3) [8, Thm. 6.2].

□

Together with Theorem 2.8, the following theorem provides an answer to Ques-
tion 0.1:

Theorem 2.9. Let G be a P (ω × ω)/fin⊗ fin-generic ultrafilter over V . Then

(1) fin⊗ fin ⊆ G∗.
(2) G satisfies fin⊗ fin-p.i.p.
(3) G is 2-rapid.
(4) G ·G ≡T G.

Proof. (1) is trivial. To see (2), the argument is the same as showing that the forcing
is σ-complete. For the self-inclusion of this paper, let us provide an indirect proof
assuming σ-completeness. Let ⟨Xn | n < ω⟩ ⊆ G. Since the forcing is σ-complete,

⟨Xn | n < ω⟩ ∈ V . Let X ∈ G be such that X ⊩ ∀n,Xn ∈ Ġ, then X ≤ Xn.
Otherwise, X \Xn ∈ (fin ⊗ fin)+ and then (X \Xn) ≤ X is a stronger condition

which forces that Xn /∈ Ġ, contradiction. Hence for every n < ω, X \Xn ∈ fin⊗fin.
For (3), we apply the previous theorem clause (4) to see that π∗(G) is generic

for P (ω)/fin and therefore rapid by Fact 2.7. Finally, (4) follows from (1)− (3) and
Corollary 2.6.

□

3. Transfinite iterates of fin

In this section we obtain analoguous results to the ones from the previous section,
but for ultrafilters with higher cofinal-type complexity. To do so, we will consider
the generic ultrafilters Gα obtained by the forcing P (ωα)/fin⊗α, where 1 ≤ α < ω1

(see the paragraph following Theorem 3.1). Such ultrafilters were investigated in
[8] and in yet unpublished work [6]. We point out that for 2 ≤ α, Gα is not a
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p-point and not basically generated; and for β < α, there are natural Rudin-Keisler
projections from Gα to Gβ .

Theorem 3.1 (Dobrinen). Suppose that 1 ≤ α < ω1 and Gα be a generic ultrafilter
obtained by forcing with P (ωα)/fin⊗α over V . Then Gα is not Tukey top and also
not basically generated. Moreover,

(1) For each 1 ≤ k < ω, the collection of Tukey types of ultrafilters Tukey-
reducible to Gk forms a chain of length k consisting exactly of Tukey types
of Gn for 1 ≤ n ≤ k. [8, Thm. 6.2]

(2) For each ω < α < ω1, the Tukey types of the Gβ, 1 ≤ β ≤ α are all distinct
and form a chain, but there are actually 2ω many Tukey types below Gα.
[6]

The following recursive definition of fin⊗α, for 2 ≤ α < ω1, is well-known and
has appeared in [1], [8], [9], and [20].

(1) At successor steps, fin⊗α+1 = fin ⊗ fin⊗α is the ideal on ωα+1 = ω × ωα;
explicitly, A ⊆ ωα+1 is in fin⊗α+1 iff for all but finitely many n, (A)n ∈
fin⊗α.

(2) For limit α < ω1 we fix an increasing sequence ⟨αn | n < ω⟩ with supn<ω αn =

α and define fin⊗α =
∑

fin fin
⊗αn on ωα :=

⊎
n<ω{n} × ωαn ; explicitly,

A ⊆ ωα is in fin⊗α iff for all but finitely many n, (A)n is in fin⊗αn .

The Rudin-Keisler order is defined as follows: Let I, J be ideals on X,Y respec-
tively. We say that I ≤RK J if there is a function f : Y → X such that f∗(J) = I,
where

f∗(J) = {A ⊆ X | π−1[X] ∈ J}.
It is well known that the Rudin-Keisler order implies the Tukey order.

Lemma 3.2 (Folklore). For 1 ≤ β ≤ α < ω1, we have (fin⊗β ,⊆) ≤RK (fin⊗α,⊆)

and therefore (fin⊗β ,⊆) ≤T (fin⊗α,⊆).

Proof. By induction on α. At successor steps, we define the projection to the second
coordinate, Rudin-Keisler projects I ⊗ J onto J and therefore fin⊗α+1 onto fin⊗α.
For limit α, suppose that for every m ≤ n < ω, πn,m : ωαn → ωαm is a Rudin-
Keisler projection of finαn onto finαm . Fix any N < ω Let us define f : ωα → ωαN

by applying

f(⟨k, x⟩) =

{
fk,N (x) k ≥ N

a∗ k < N

where a∗ is any fixed element of ωαN . Now if Y ⊆ ωαN , then f−1[Y ] = ∪n≥N{n}×
f−1
n,N [Y ] and f−1

n,N [Y ]. If Y ∈ finαN then f−1
n,N [Y ] ∈ fin×αn and therefore f−1[Y ] ∈

fin⊗α. If Y /∈ fin⊗αN , then f−1
n,N [Y ] /∈ fin⊗αn and therefore f−1[Y ] /∈ finα. Since

≤RK is transitive, we conclude thee lemma. □

There is a simple characterization of the Tukey type of fin⊗α given in the fol-
lowing theorem:

Theorem 3.3. For every 1 < α < ω1, (fin
⊗α,⊆) ≡T ωω.

Proof. By induction on α. For α = 2, this is Proposition 1.6. For successor α, by
Proposition 1.6,

fin⊗α+1 = fin⊗ fin⊗α ≡T fin×
∏
n<ω

fin⊗α.
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By the induction hypothesis, fin⊗α ≡T ωω, and fin ≡T ω. Therefore, by Fact 2.4,

fin×
∏
n<ω

fin⊗α ≡T ω ×
∏
n<ω

ωω ≡T ω × ωω ≡T ωω.

So we conclude that fin⊗α+1 ≡T ωω. For limit α, we have by Theorem 1.5 that

fin⊗α =
∑
fin

fin⊗αn ≤T ω ×
∏
n<ω

ωω ≡T ωω.

For the other direction, we have by the previous lemma that ωω ≡T fin⊗2 ≤T fin⊗α,
as desired. □

Definition 3.4. We say that an ultrafilter U on ωα is α-rapid if π∗(U) is rapid.
where π is the projection to the first coordinate.

It is clear that if U is α-rapid, then ωω ≤T π∗(U) ≤RK U ; hence we have the
following:

Corollary 3.5. Suppose that U is an α-rapid ultrafilter over ωα such that fin⊗α ⊆
U∗ and fin⊗α-p.i.p. holds. Then U · U ≡T U .

Proof. By Corollary 1.17 for I = fin⊗α, it remains to verify that
∏

n<ω fin⊗α ≤T U .

Indeed,
∏

n<ω fin⊗α ≡T

∏
n<ω ωω and therefore by Fact 2.4,

∏
n<ω fin⊗α ≡T ωω.

Since U is α-rapid, ωω ≤T π∗(U) ≤RK U and therefore
∏

n<ω fin⊗α ≤T U . It
follows that U · U ≡T U . □

The following fact that each fin⊗α is a σ-ideal is well-known (see [1], [8], [9],
[20]), and included here for self-containment.

Proposition 3.6. Suppose that ⟨Ai | i < ω⟩ is a decreasing sequence of sets in
(fin⊗α)+. Then there is an A ∈ (fin⊗α)+ such that for every i < ω, A \Ai ∈ fin⊗α.

Proof. By induction on α. For α = 1, fin is indeed a σ-ideal. Suppose that fin⊗α

has proven to be a σ-ideal, and let ⟨Ai | i < ω⟩ ⊆ (fin⊗α+1)+ be a decreasing
sequence. We may assume that each Ai is in standard form, namely, for every
n < ω, either (Ai)n = ∅ or (Ai)n ∈ (fin⊗α)+. Let

A =
⋃
i<ω

{(π′′Ai)(i)} × (Ai)(π′′Ai)(i)

First we note that A ∈ (fin⊗α+1)+. To see this, note that since the A′
is are de-

creasing then whenever i < j:

(1) π′′Aj ⊆ π′′Ai.
(2) For each n < ω, (Aj)n ⊆ (Ai)n.

It follows that for i < j < ω, (π′′Aj)(j) ∈ π′′Ai and (π′′A)(j) = (π′′Aj)(j) >

(π′′Ai)(i) = (π′′A)(i). So {(π′′Ai)(i) | i < ω} ∈ fin+ and for each i, (A)(π′′A)(i) =

(π′′Ai)(π′′Ai)(i) ∈ (fin⊗α)+. To see that A \Ai ∈ fin⊗α, for each i ≤ j,

(A)(π′′Aj)(j)(Aj)(π′′Aj)(j) ⊆ (Ai)(π′′Aj)(j).

We conclude that A \Ai ⊆ ∪j<i({(π′′Aj)j}× (Aj)(π′′Aj)(j) ∈ fin⊗α. At limit steps,
δ then the proof is completely analogous. □

Corollary 3.7. Let G be P (ωα)/fin⊗α-generic over V . Then G satisfies fin⊗α-
p.i.p.
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Lemma 3.8. If G is P (ωα)/fin⊗α-generic over V , then G is α-rapid.

Proof. Let f : ω → ω be any function in V [G]. By σ-closure of P (ωα)/fin⊗α,
f ∈ V . We proceed by a density argument, let X ∈ P (ωα)/fin⊗α, shrink X to
X1 ∈ P (ωα)/fin⊗α so that X1 is in standard form. By definition of (fin⊗α)+, π′′X1

is infinite and so we can shrink π′′X1 to Y1, still infinite such that Y1(n) ≥ f(n).
Define X2 = ∪n∈Y1

{n} × (X1)n. Since X1 was in standard form, for each n ∈ Y1,
(X1)n is positive, and so, X2 ∈ (fin⊗α)+. Note that X2 ⊆ X and π′′X2 = Y1. By
density there is X ∈ G such that for every n < ω, (π′′X)(n) ≥ f(n) and therefore
π∗(G) is rapid, namely G is α-rapid. □

As corollary we obtain the following theorem:

Theorem 3.9. Suppose that G is a P (ωα)/fin⊗α-generic ultrafilter over V . Then
G ·G ≡T G.

Proof. We proved that fin⊗α ⊆ G∗, G satisfies fin⊗α-p.i.p. and that G is α-rapid.
So by Corollary 3.5, G ·G ≡T G. □

Recalling Theorem 3.1, Gα <T Utop and Gα is not basically generated for each
α < ω1. The point is that although the complexity of the generic ultrafilter Gα

increases with α, it still satisfies G ·G ≡T G <T Utop

4. Milliken-Taylor Ultrafilters

In this section, we prove that Milliken-Taylor ultrafilters have the same Tukey
type as their Fubini product. Milliken-Taylor ultrafilters are ultrafilters on base set
FIN := [ω]<ω \ {∅} which witness instances of Hindman’s Theorem [16]. They are
the analogues of Ramsey ultrafilters on the base set FIN, but they are not Ramsey
ultrafilters, nor even p-points, as shown by Blass in [4], where they were called
stable ordered union ultrafilters. These ultrafilters have been widely investigated
(see for instance [15] and [22]).

We now define Milliken-Taylor ultrafilters, using notation from [30]. For n ≤ ∞,

FIN[n] denotes the set of block sequences in FIN of length n, where a block sequence
is a sequence ⟨xi : i < n⟩ ⊆ FIN such i < j < n implies max(xi) < min(xj). For

n < ω and a block sequence X = ⟨xi : i < n⟩ ∈ FIN[n], [X] = {
⋃

i∈I xi : I ⊆ n}.
For an infinite block sequence X = ⟨xi : i < ω⟩ ∈ FIN[∞],

[X] = {
⋃
i∈I

xi : I ∈ FIN}

For X,Y ∈ FIN[∞], define Y ≤ X iff [Y ] ⊆ [X]. Given X ∈ FIN[∞] and m ∈ ω,
X/m denotes ⟨xi : i ≥ n⟩ where n is least such that min(xn) > m. Define Y ≤∗ X
iff there is some m such that [Y/m] ⊆ [X]. Related definitions for finite block
sequences are similar.

Definition 4.1. An ultrafilter U on base set FIN is Milliken-Taylor iff

(1) For each A ∈ U , there is an infinite block sequence X ∈ FIN[∞] such that
[X] ⊆ A and [X] ∈ U ; and

(2) For each sequence ⟨Xn : n < ω⟩ of block sequences such that X0 ≥∗ X1 ≥∗

. . . and each [Xn] ∈ U , there is a diagonalization Y ∈ FIN[∞] such that
[Y ] ∈ U and Xn ≥∗ Y for each n < ω.
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Thus, a Milliken-Taylor ultrafilter U has {A ∈ U : ∃X ∈ FIN[∞] (A = [X])} as a
filter base, and such a filter base has the property that almost decreasing sequences
have diagonalizations. In this sense, Milliken-Taylor ultrafilter behave like p-points
even though, technically, they are not. The following ideal corresponds to property
(2):

Definition 4.2. Let I be the set of all X ⊆ FIN such that for some N ∈ ω,
∀x ∈ X,x ∩N ̸= ∅.

Claim 4.3. I is an ideal and I ⊆ U∗ for each Milliken-Taylor ultrafilter U .

Proof. Clearly, ∅ ∈ I and I is downwards closed. To see that I is closed under
unions, let X,Y ∈ I and let NX , NY ∈ ω witness this. Then max(NX , NY ) wit-
nesses that X∪Y ∈ I. By condition (1), every A ∈ U contains [X] for some infinite
block sequence X; in particular, A /∈ I. □

Proposition 4.4. If Y ≤∗ X then [Y ] \ [X] ∈ I.

Proof. If Y ≤∗ X then there is m such that [Y/m] ⊆ [X] and so every element
b ∈ [Y ] \ [X] must be a finite union of sets which includes some element below
m. □

Proposition 4.5. U satisfies I-p.i.p.

Proof. Let ⟨An | n < ω⟩ ⊆ U . Then by property (1) of U , we can shrink each An

to [Xn] ∈ U such that Xn+1 ≤ Xn. By property (2) there is [X] ∈ U such that
[X] ≤∗ [Xn] for every n. Thus [X] \ [Xn] ∈ I and in particular [X] \An ∈ I. □

Proposition 4.6. I ≡T ω.

Proof. Define f : ω → I by f(n) = {x ∈ FIN | x ∩ n ̸= ∅}. Clearly f is monotone,
and by definition of I, f is cofinal. It is also clear that f is unbounded since
∪n∈Af(n) = FIN, whenever A ∈ [ω]ω (and I in a proper ideal). □

The projection maps min and max from FIN to ω are clear. Given a Milliken-
Taylor ultrafilter U , let Umin and Umax denote the Rudin-Keisler projections of U
according to min and max, respectively. Blass showed in [4] that Umin and Umax are
both Ramsey ultrafilters. Hence, it follows that ωω ≤T Umin ≤RK U , and therefore
we have the following corollary:

Corollary 4.7.
∏

n<ω I ≤T U .

Theorem 4.8. Suppose that U is a Milliken-Taylor ultrafilter. Then U · U ≡T U .

Proof. We proved that if U is Milliken-Taylor, then for the ideal I, we have that
I ⊆ U∗, I-p.i.p., and

∏
n<ω I ≤T U . By Corollary 1.17, we conclude that U ·U ≡T

U . □

We conclude this section with a short proof that the min-max projection of U
is Tukey equivalent to its Fubini product with itself. The map min-max : FIN →
ω × ω is defined by min-max(x) = (min(x),max(x)), for x ∈ FIN. Let U be a
Milliken-Taylor ultrafilter and let Umin,max denote the ultrafilter on ω × ω which
is the min-max Rudin-Kesiler projection of U . Blass showed in [4] that Umin,max

is isomorphic to Umin · Umax and hence, Umin,max is not a p-point. Dobrinen and
Todorcevic showed in [13] that Umin,max is not a q-point, but is rapid, and that,
assuming CH, Umin and Umax are Tukey strictly below Umin,max which is Tukey
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strictly below U . It follows from the proof of Theorem 72 in [13] that Umin,max

has appropriately defined diagonalizations and hence, has the J-p.i.p. for the ideal
J = {min-max(A) : A ∈ I} ⊆ U∗

min,max on ω × ω; hence the work in this paper
implies the following theorem. However, we give a shorter proof by combining
results from [4] and [13].

Corollary 4.9. If U is a Milliken-Taylor ultrafilter, then

Umin,max ≡T Umin,max · Umin,max.

Proof. By results of Blass in [4], Umin,max
∼= Umin · Umax, and both Umin and

Umax are Ramsey ultrafilters. For rapid p-points U, V , a result in [13] showed that
U · V ≡T V · U , and hence,

(U · V ) · (U · V ) ≡T U · (V · V ) · U ≡T U · V · U ≡T U · U · V ≡T U · V.

The corollary follows. □

Remark 4.10. The theorems in this section should generalize to Milliken-Taylor

ultrafilters on FIN
[∞]
k as well as their Rudin-Keisler projections, as their diagonal-

ization properties will imply the I-p.i.p. for the naturally associated ideal I.

5. Further directions and open questions

Question 5.1. Is it a ZFC theorem that for any two ultrafilters U, V over ω,
U · V ≡T V · U?

For κ-complete ultrafilters over measurable cardinals κ, this is indeed the case,
as was proved by the authors in [2]. However, the proof essentially uses the well
foundedness of the ultrapower by a κ-complete ultrafilter U .

A natural strategy to answer the previous question would be to take U such
that U <T U · U . The only constructions of ultrafilters U such that U <T U · U
ensure that U ̸≥T ωω. By the results of this paper we can generate examples where
U ̸≥T

∏
n<ω I for some ideal I such that U is I-p.i.p.

Using such U , we need to find an ultrafilter V such that U · V ̸≡T V · U . We
know that following hold:

U · V ≡T U × V · V, V · U ≡T V × U · U

So natural assumptions would be to require that V ≡T V · V , and in order for V
not to interfere with the assumption U <T U · U , in order to have V ≤T U . This
guarantees that

U · V ≡T U <T U · U ≡T V · U
However, the assumptions above are not consistent since if V · V ≡T V then V ≥T

ωω, and therefore if V ≤T U then also U ≥T ωω. This leads to the following
question:

Question 5.2. Is it consistent that there are two ultrafilters U, V such that V ≡T

V ·V ≤T U <T U ·U? Or more precisely, is the class of ultrafilters which are Tukey
reducible to their Fubini product upwards closed with respect to the Tukey order?

It seems that the Tukey type of ωω plays an important role in the calculations
of the Tukey type of U · U :

Question 5.3. Is there an ultrafilter U such that ωω ≤T U <T U · U?
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Question 5.4. Is it consistent to have an ultrafilter U such that U is not rapid
but U ≥T ωω? What about U which is a p-point?

Question 5.5. Is there a σ-ideal I on a countable set X such that some P (X)/I
generic ultrafilter U is Tukey-top?

Question 5.6. Is it true that for every σ-ideal I on a countable set X, a generic
ultrafilter U on P (X)/I satisfies U · U ≡T U?
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