ON THE TUKEY TYPES OF FUBINI PRODUCTS

TOM BENHAMOU AND NATASHA DOBRINEN

ABSTRACT. We extend the class of ultrafilters U over countable sets for which $U \cdot U \equiv_T U$, extending several results from [13]. In particular, we prove that for each countable ordinal $\alpha \geq 2$, the generic ultrafilter G_{α} forced by $P(\omega^{\alpha})/\text{fin}^{\otimes \alpha}$ satisfy $G_{\alpha} \cdot G_{\alpha} \equiv_T G_{\alpha}$. This answers a question posed in [13, Question 43]. Additionally, we establish that Milliken-Taylor ultrafilters possess the property that $U \cdot U \equiv_T U$.

0. INTRODUCTION

The Tukey order of partially ordered sets finds its origins in the notion of Moore-Smith convergence [31], which generalizes the usual meaning of convergence of sequence to *net*, allowing to enlarge the class of topological spaces for which continuity is equivalent to continuity in the sequential sense. Formally, given two posets, (P, \leq_P) and (Q, \leq_Q) we say that $(P, \leq_P) \leq_T (Q, \leq_Q)$ if there is map $f: Q \to P$, which is cofinal, namely, f''B is cofinal in P whenever $B \subseteq Q$ is cofinal. Schmidt [28] observed that this is equivalent to having a map $f: P \to Q$, which is unbounded, namely, $f''\mathcal{A}$ is unbounded in Q whenever $\mathcal{A} \subseteq P$ is unbounded in P. We say that P and Q are Tukey equivalent, and write $P \equiv_T Q$, if $P \leq_T Q$ and $Q \leq_T P$; the equivalence class $[P]_T$ is called the Tukey type or cofinal type of P. It turns out that the Tukey order restricted to posets (U, \supseteq) , where U is an ultrafilter, has a close relation to *ultranets* and has been studied extensively on ω by Blass, Dobrinen, Kuzeljevic, Milovich, Raghavan, Shelah, Todorcevic, Verner, and others (see for instance [5, 8, 12, 13, 21, 23, 25, 27]). Recently, the authors extended this investigation to the realm of large cardinals where they considered the Tukey order on σ -complete ultrafilters over a measurable cardinal κ in [2]. On ultrafilters, the Tukey order is determined by functions which are (weakly) monotone¹ and have cofinal images. For this reason, the Tukey order is the order one expects to use when comparing the cofinality of ultrafilters. We refer the reader to [7] and [10] for surveys of the subject.

In this paper, we investigate the connection between the Tukey type of an ultrafilter U and the Tukey type of its Fubini product with itself, $U \cdot U$. It is easy to see that $U \leq_T U \cdot U$ for every ultrafilter U. The question is, for which ultrafilters

2020 Mathematics Subject Classification. 03E02, 03E04, 03E05, 03E55, 06A06, 06A07.

Date: January 11, 2024.

Key words and phrases. ultrafilter, p-point, rapid ultrafilter, Tukey order, cofinal type, Fubini product.

The research of the first author was supported by the National Science Foundation under Grant DMS-2246703.

The research of the second author was supported by National Science Foundation Grant DMS-2300896.

¹That is, $a \leq b \Rightarrow f(a) \leq f(b)$.

does $U \equiv_T U \cdot U$ hold? Already Dobrinen and Todorcevic [13] and Milovich [24], provide a significant understanding of the relation between these two Tukey types: Dobrinen and Todorcevic proved that whenever U is a rapid *p*-point ultrafilter over ω , then $U \cdot U \equiv_T U$; Milovich proved that $U \cdot U \cdot U \equiv_T U \cdot U$ for every nonprincipal ultrafilter U. In contrast, trivial examples of ultrafilters U with the property that $U \cdot U \equiv_T U$ are the so-called *Tukey-top* ultrafilters, those ultrafilters which are maximal in the Tukey order among all ultrafilters on ω . Such an ultrafilter was constructed (in ZFC) by Isbell [18] and Juhász [19]; we denote this ultrafilter by \mathcal{U}_{top} . Henceforth, we shall only focus on nonprincipal ultrafilters U such that $U <_T \mathcal{U}_{top}$.

Dobrinen and Todorcevic also proved that for p-points, $U \cdot U \equiv_T U$ is equivalent to U being Tukey above (ω^{ω}, \leq) , where \leq refers to the everywhere domination order of functions. Furthermore, they provided an example of a p-point U which is not Tukey above ω^{ω} , and in particular satisfying $U <_T U \cdot U$. They also asked whether, besides the Tukey-top ultrafilters, the class of ultrafilters which are Tukey equivalent to their Fubini product is a subclass of the class of basically generated ultrafilters.

Question 0.1. [13, Q.43] Does $U \cdot U \equiv_T U < \mathcal{U}_{top}$ imply that U is basically generated?

Note that on measurable cardinals, the situation is quite different, as every κ complete ultrafilter U over κ satisfies that $U \cdot U \equiv_T U$ [2, Thm 5.6].

In this paper, we provide a negative answer to this question by analyzing the Tukey type of the Fubini powers of generic ultrafilters obtained by σ -closed forcings of the form P(X)/I. We define the *I*-pseudo intersection property (Definition 1.11) as a way of abstracting the notion of p-point, and use it to extend work in [13] and [24] to provide an abstract condition which guarantees that $U \cdot U \equiv_T U$ (Corollary 1.17). We then provide an equivalent formulation for U being Tukey equivalent to itself (Theorem 1.18), generalizing [13, Thm. 35].

In Section 2, we apply Theorem 1.18 to the forcing $P(\omega \times \omega)/I$, where $I = \text{fin} \otimes \text{fin} := \text{fin}^{\otimes 2}$ over $\omega \times \omega$. This forcing was first investigated by Szymánski and Zhou [29] and later by many others. We show that any generic ultrafilter G_2 for $P(\omega \times \omega)/\text{fin}^{\otimes 2}$ has the property that $G_2 \cdot G_2 \equiv_T G_2$. Blass, Dobrinen and Raghavan [5] showed that G_2 is not basically generated (so in particular is not a p-point) but also is not Tukey-top. Dobrinen proved in [8] that G_2 is in fact the Tukey immediate successor of its projected Ramsey ultrafilter, so at the same level as a weakly Ramsey ultrafilter (see [14]) in the Tukey hierarchy.

In Section 3, we investigate ultrafilters G_{α} obtained by forcing $P(\omega^{\alpha})/\text{fin}^{\otimes \alpha}$, for any $2 \leq \alpha < \omega_1$. We analyze the Tukey type of $\text{fin}^{\otimes \alpha}$ and prove that, for all $\alpha < \omega_1, G_{\alpha} \equiv_T G_{\alpha} \cdot G_{\alpha}$ (Theorem 3.9). Such ultrafilters are not p-points and also not basically generated, and each G_{α} Rudin-Keisler projects onto generic ultrafilters G_{β} for $\beta < \alpha$. By results of Dobrinen [8, 9, 6], such ultrafilters are non-Tukey top, and moreover, are quite low in the Tukey hierarchy. For instance, for $k < \omega$, the sequence $\langle G_n \mid n \leq k \rangle$ form an exact Tukey chain in the sense that if $V \leq_T G_k$, then there is $n \leq k, G_n \equiv_T V$. Related results holds for $\omega \leq \alpha < \omega_1$.

Finally, in Section 4, we prove that if U is a Milliken-Taylor ultrafilter then also U satisfies our equivalent condition and therefore $U \cdot U \equiv_T U$ (Theorem 4.8). Milliken-Taylor ultrafilters as well as those forced by $P(\omega^{\alpha})/\text{fin}^{\otimes \alpha}$ are not basically generated and in particular p-points, providing examples which answer Question 0.1 in the negative.

One question which our results are relevant for but remains open, is whether $U \cdot V \equiv_T V \cdot U$ for any ultrafilter U, V over ω . Corollaries 1.9 and 1.10 provide some progress on this question. This again contrasts with ultrafilters on a measurable cardinal κ : work of the authors in [2] showed that if U, V are κ -complete ultrafilters over κ , then $U \cdot V \equiv_T V \cdot U$. The proof essentially uses the well-foundedness of ultrapowers by κ -complete ultrafilters and therefore does not apply for ultrafilters over ω . This is discussed in Section 1.

0.1. Notation. $[X]^{<\lambda}$ denotes the set of all subsets of X of cardinality less than λ . Let fin = $[\omega]^{<\omega}$, and FIN = fin \ { \emptyset }. For a collection of sets $(P_i)_{i\in I}$ we let $\prod_{i\in I} P_i = \{f : I \to \bigcup_{i\in I} P_i \mid \forall i, f(i) \in P_i\}$. Given a set $X \subseteq \omega$, such that $|X| = \alpha \leq \omega$, we denote by $\langle X(\beta) \mid \beta < \alpha \rangle$ be the increasing enumeration of X. Given a function $f : A \to B$, for $X \subseteq A$ we let $f''X = \{f(x) \mid x \in X\}$ and for $Y \subseteq B$ we let $f^{-1}Y = \{x \in X \mid f(x) \in Y\}$. Given sets $\{A_i \mid i \in I\}$ we denote by $\bigcup_{i\in I} A_i$ the union of the A_i 's when the sets A_i are pairwise disjoint.

1. The Tukey type of a Fubini product

Given $\mathcal{A} \subseteq P(X)$, we set $\mathcal{A}^* = \{X \setminus A \mid A \in \mathcal{A}\}$. For a filter F over X, we denote the *dual ideal* by F^* , and given an ideal I we denote the *dual filter* by I^* . The following fact is easy to verify:

Fact 1.1. For any filter F, $(F, \supseteq) \equiv_T (F^*, \subseteq)$.

An ultrafilter over X is a filter U such that for every $A \in P(X)$, either $A \in U$ or $X \setminus A \in U$. So for ultrafilters we have that $U^* = P(X) \setminus U$. As the title of this section indicates, we are interested in the Fubini product of ultrafilters:

Definition 1.2. Suppose that U is a filter over X and for each $x \in X$, U_x is a filter over Y_x . We denote by $\sum_U U_x$ the filter over $\bigcup_{x \in X} \{x\} \times Y_x$, defined by

$$A \in \sum_{U} U_x$$
 if and only if $\{x \in X \mid (A)_x \in U_x\} \in U$

where $(A)_x = \{y \in Y_x \mid \langle x, y \rangle \in A\}$. If for every $x, U_x = V$ for some fixed V over a set Y, then $U \cdot V$ is defined as $\sum_U V$, which is a filter over $X \times Y$. U^2 denotes the filter $U \cdot U$ over $X \times X$.

It is well known that if U and each U_x are ultrafilters, then also $\sum_U U_x$ is an ultrafilter (see for example see [3]).

Fact 1.3. If U, V are filters over countable sets X, Y respectively, then $U \equiv_{RK} U'$, $V \equiv_{RK} V'$ for some filters U', V' over ω and $U \cdot V \equiv_{RK} U' \cdot V'$.

Given posets $(P_i, \leq_i)_{i \in I}$ we let $\prod_{i \in I} (P_i, \leq_i)$ be the ordered set $\prod_{i \in I} P_i$ with the pointwise order derived from the orders \leq_i . We call this order $\prod_{i \in I} P_i$, the *everywhere domination order*. We will omit the order when it is the natural order. In particular, any ordinal α is ordered naturally by \in , $\omega^{\omega} = \prod_{n < \omega} \omega$ is ordered by everywhere domination, and $\prod_{n < \omega} \omega^{\omega}$ is the everywhere domination order where each ω^{ω} is again ordered by everywhere domination.

Fact 1.4. If A, B are any sets with the same cardinality and (P, \preceq) is an ordered set, then $\prod_{a \in A} (P, \preceq)$ and $\prod_{b \in B} (P, \preceq)$ equipped with the everywhere domination orders are order isomorphic.

The next theorem of Dobrinen and Todorcevic provides an upper bound for the Fubini product of ultrafilters via the Cartesian product.

Theorem 1.5 (Dobrinen-Todorcevic, Thm. 32, [13]). $\sum_U U_x \leq_T U \times \prod_{x \in X} U_x$. In particular, $U \cdot V \leq_T U \times \prod_{x \in X} V$ and $U \cdot U \leq_T \prod_{x \in X} U$.

Towards answering a question from [13], Milovich improved the previous theorem over ω . Let us give a slight variation of his proof, for we will need it later:

Proposition 1.6 (Milovich, Lemma 5.1, [24]). For filters U, V over countable sets X, Y (resp.), $U \cdot V \equiv_T U \times \prod_{x \in X} V$. In particular $U \cdot U \equiv_T \prod_{x \in X} U$.

Remark 1.7. We cannot prove in general that $\sum_U U_n \equiv_T U \times \prod_{n < \omega} U_n$. For example, if U is such that $U \cdot U \equiv_T U$ (e.g., U is Ramsey) and U_0 is Tukey-top while $U_n = U$ for every n > 0, then $\sum_U U_n = U \cdot U \equiv_T U <_T U_0$ but $\prod_{n < \omega} U_n \ge_T U_0$, so we have $\sum_U U_n \not\equiv_T U \times \prod_{n < \omega} U_n$. Similar examples can be constructed even when all the U_n 's are distinct, for example, requiring that for every n > 0, $U_n \le_T U$ for some U such that $U \cdot U \equiv_T U$. Such examples are constructed in this paper in Section 3: Take U to be a generic ultrafilter for $P(\omega^{\omega})/\text{fin}^{\otimes \omega}$, and U_n the Rudin-Keisler projection of U to a generic on $P(\omega^n)/\text{fin}^{\otimes n}$.

Proof. The proof of Theorem 1.5 does not use the fact that the partial orders are ultrafilters, and we have that $U \cdot V \leq_T U \times \prod_{x \in X} V$. (Indeed, the map $F : U \times \prod_{x \in X} V \to U \cdot V$ defined by $F(A, \langle Y_x \mid x \in X \rangle) = \bigcup_{x \in A} \{x\} \times Y_x$ is monotone and cofinal). For the other direction, by Facts 1.3 and 1.4, we may assume that $X = Y = \omega$. Let us define a cofinal map from a cofinal subset of $U \cdot V$ to $U \times \prod_{n < \omega} V$. Consider the collection $\mathcal{X} \subseteq U \cdot V$ of all $A \subseteq \omega \times \omega$ such that:

(1) for all $n < \omega$, either $(A)_n = \emptyset$ or $(A)_n \in V$.

(2) $\pi'' A \in U$ and for all $n_1, n_2 \in \pi''_1 A$, if $n_1 < n_2$ then $(A)_{n_2} \subseteq (A)_{n_1}$.

It is not hard to prove that \mathcal{X} is a filter base for $U \cdot V$. Let $F : \mathcal{X} \to U \times \prod_{n < \omega} V$ be defined by $F(A) = \langle \pi''A, \langle (A)_{(\pi''_1A)(n)} | n < \omega \rangle \rangle$ where $\langle (\pi''_1A)(n) | n < \omega \rangle$ is the increasing enumeration of π''_1A . Let us prove that F is monotone and cofinal. Suppose that $A, B \in \mathcal{X}$ are such that $A \subseteq B$. Then

- a. $\pi'' A \subset \pi'' B$;
- b. for every $n < \omega$, $(\pi''A)(n) \ge (\pi''B)(n)$;
- c. for every $m < \omega$, $(A)_m \subseteq (B)_m$.

(

By requirement (2) of sets in \mathcal{X} , for every $n < \omega$,

$$A)_{(\pi''A)(n)} \subseteq (B)_{(\pi''A)(n)} \subseteq (B)_{(\pi''B)(n)}.$$

It follows that $F(A) \geq F(B)$. To see that F is cofinal, let $\langle B, \langle B_n \mid n < \omega \rangle \rangle \in U \times \prod_{n < \omega} V$. Define $A = \bigcup_{n \in B} \{n\} \times (\bigcap_{m \leq n} B_m)$. Then $\pi''A = B$ and it is straightforward that $A \in \mathcal{X}$. We claim that for every $n, F(A)_n \subseteq B_n$. Indeed, $B(n) = (\pi''A)(n) \geq n$ and therefore $F(A) = \langle B, \langle A_n \mid n < \omega \rangle \rangle$ where $A_n = \bigcap_{m < B(n)} B_m \subseteq B_n$.

Milovich used this proposition to deduce the following, answering a question in [13] and improving a result in [13] which showed that (2) below holds if F and G are both rapid p-points:

Theorem 1.8 (Milovich, Thms. 5.2, 5.4, [24]). (1) For any filters F, G, $F \cdot G \cdot G \equiv_T F \cdot G$. In particular, $F^{\otimes 2} \equiv_T F^{\otimes 3}$.

(2) If F, G are p-filters, then $F \cdot G \equiv_T G \cdot F$.

For the rest of this section, let us derive several corollaries and present new results.

Corollary 1.9. Suppose that $V \cdot V \equiv_T V$. Then $U \cdot V \equiv_T U \times V$. Moreover, if also $U \cdot U \equiv_T U$, then $U \cdot V \equiv_T V \cdot U$.

Proof. Since $V \cdot V \equiv_T V$, we have that $V \equiv_T \prod_{n < \omega} V$, hence

$$U \cdot V \equiv_T U \times \prod_{n < \omega} V \equiv_T U \times V.$$

For the second part, it is clear that $U \times V \equiv_T V \times U$ and therefore if $V \cdot V \equiv_T V$ and $U \cdot U \equiv_T U$, then $U \cdot V \equiv_T V \cdot U$.

Corollary 1.10. For any ultrafilters U, V on countable sets, $U \cdot V \cdot V \equiv_T U \times (V \cdot V)$. In particular $(U \cdot U) \cdot (V \cdot V) \equiv_T (V \cdot V) \cdot (U \cdot U)$.

As a consequence of Proposition 1.6, $U \cdot U \equiv_T U$ if and only if $U \equiv_T \prod_{n < \omega} U$. Still, checking whether U is Tukey equivalent to $\prod_{n < \omega} U$ is usually a non-trivial task. We provide below a simpler condition and explain how it generalizes some results from [13].

Definition 1.11. Let U be an ultrafilter over a countable set X and $I \subseteq U^*$ an ideal on X. We say that U has the I-pseudo intersection property (abbreviated by I-p.i.p.) if for any sequence $\langle A_n \mid n < \omega \rangle \subseteq U$ there is a set $A \in U$ such that for every $n < \omega$, $A_n \subseteq^I A$, namely, $A_n \setminus A \in I$.

This definition is a generalization of being a p-point as the following example suggests.

Example 1.12. U having the fin-p.i.p. is equivalent to U being a p-point.

Claim 1.13. For every ultrafilter U over X, U^* -p.i.p. holds.

Proof. For any sequence $\langle A_n \mid n < \omega \rangle$ we can always take $A = X \in U$, since then $A \setminus A_n = X \setminus A_n \in U^*$ by definition. \Box

Proposition 1.14. If U has the I-p.i.p., then

$$U \cdot U \leq_T U \times \prod_{n < \omega} I$$

Proof. Let U be any ultrafilter. Then by Proposition 1.6, $U \cdot U \equiv_T \prod_{n < \omega} U$. We claim that if U has the I-p.i.p., then $\prod_{n < \omega} U \leq_T U \times \prod_{n < \omega} I$. Let $\langle A_n \mid n < \omega \rangle \in \prod_{n < \omega} U$, and choose $A \in U$ such that $A \setminus A_n \in I$, which exists by I-p.i.p. Define $F(\langle A_n \mid n < \omega \rangle) = \langle A, \langle A \setminus A_n \mid n < \omega \rangle \in U \times \prod_{n < \omega} I$. We claim that F is unbounded. Indeed, suppose that $A \subseteq \prod_{n < \omega} U$ and F''A is bounded by $\langle A^*, \langle X_n^* \mid n < \omega \rangle \in U \times \prod_{n < \omega} I$. Note that $I \subseteq U^*$ and $A^* \in U$ imply that $\langle A_n^* \mid n < \omega \rangle \in \prod_{n < \omega} U$. Let us show that this is a bound for \mathcal{A} . Let $\langle A_n \mid n < \omega \rangle \in \mathcal{A}$. Then $F(\langle A_n \mid n < \omega \rangle \in \mathcal{A}) = \langle A, \langle A \setminus A_n \mid n < \omega \rangle \in \omega$ if $A_n^* = A^* \setminus X_n^*$. It follows that $A_n^* = A^* \setminus X_n^* \subseteq A \setminus (A \setminus A_n) = A \cap A_n \subseteq A_n$. Hence $\langle A_n \mid n < \omega \rangle \leq \langle A_n^* \mid n < \omega \rangle$, as desired.

Corollary 1.15. If U is a p-point then $U \cdot U \leq_T U \times \prod_{n \leq \omega} \text{fin.}$

Fact 1.16. (fin, \subseteq) $\equiv_T (\omega, \leq)$.

Proof. The collection of all sets of the form $\{0, ..., n\}$ is cofinal in fin and is clearly order isomorphic to ω .

Translating Fact 1.16 to $\prod_{n < \omega}$ fin, we see that $\prod_{n < \omega}$ fin $\equiv_T (\omega^{\omega}, \leq)$, where ω^{ω} is the set of all functions $f : \omega \to \omega$ and the order \leq refers to the everywhere domination order. We conclude that if U is a *p*-point then $U \cdot U \leq_T U \times \omega^{\omega}$ (this is the important part of [13, Thm. 33]). We can now derive the following sufficient condition:

Corollary 1.17. Let U be an ultrafilter over a countable set X, $I \subseteq U^*$ an ideal on X and

(1) U has the I-p.i.p., and (2) $\prod_{n < \omega} I \leq_T U$. Then $U \cdot U \equiv_T U$.

Proof. $U \leq_T U \cdot U \leq_T U \times \prod_{n < \omega} I \leq_T U \times U \equiv_T U$.

The above sufficient condition is in fact an equivalence:

Theorem 1.18. For every ultrafilter U over a countable set X, the following are equivalent:

- (1) $U \cdot U \equiv_T U.$
- (2) $\prod_{n<\omega} U \equiv_T U.$
- (3) There is an ideal I such that I-p.i.p. holds and $\prod_{n < \omega} I \leq_T U$.

Proof. (1) and (2) are equivalent by Proposition 1.6. (2) \Rightarrow (3) is trivial, taking $I = U^*$ and by Claim 1.13. Finally, (3) \Rightarrow (1) follows from the previous corollary. \Box

In particular, if U is a p-point, the above proposition provides the equivalence that $U \cdot U \equiv_T U$ if and only if $U \geq_T \omega^{\omega}$, recovering [13, Thm. 35].

Recall that an ultrafilter U over ω is *rapid* if for every increasing function f: $\omega \to \omega$ there is $X \in U$ such that for every $n < \omega$, $otp(X \cap f(n)) \le n$.

Fact 1.19. U is rapid if and only if the following map is cofinal: $F : U \to \omega^{\omega}$ defined by $F(X) = \langle X(n) | n < \omega \rangle$, where X(n) is the nth element of X.

As a corollary, we obtain once more a result from [13]:

Corollary 1.20. If U is a rapid p-point then $U \equiv_T U \cdot U$.

By taking ideals other than fin, we will find ultrafilters that are not p-points but are Tukey equivalent to their Fubini product.

2. The ideal fin \otimes fin

Let I, J be ideals on X, Y (resp.). We define the Fubini product of the ideals $I \otimes J$ over $X \times Y$: For $A \subseteq X \times Y$,

$$A \in I \otimes J$$
 iff $\{x \in X \mid (A)_x \notin J\} \in I$.

We note that this is the dual operation of the Fubini product of filters:

Fact 2.1. For every two ideals $I, J, (I \otimes J)^* = I^* \cdot J^*$.

Our main interest in this section is the ideal fin \otimes fin on $\omega \times \omega$, which is defined by

$$X \in \text{fin} \otimes \text{fin} \text{ iff } \{n < \omega \mid (X)_n \text{ is infinite}\} \text{ is finite.}$$

Proposition 2.2. (fin \otimes fin, \subseteq) $\equiv_T \omega^{\omega}$, where on ω^{ω} we consider the everywhere domination order.

Proof. By Fact 1.1 and the previous fact, $(\operatorname{fin} \otimes \operatorname{fin}, \subseteq) \equiv_T ((\operatorname{fin} \otimes \operatorname{fin})^*, \supseteq) \equiv_T (\operatorname{fin}^* \cdot \operatorname{fin}^*, \supseteq)$. By Proposition 1.6,

$$(\operatorname{fin}^* \cdot \operatorname{fin}^*, \supseteq) \equiv_T \prod_{n < \omega} \operatorname{fin}^* \equiv_T \prod_{n < \omega} \operatorname{fin} \equiv_T \prod_{n < \omega} \omega = \omega^{\omega}.$$

Corollary 2.3. Suppose that U is an ultrafilter over $\omega \times \omega$ such that $\operatorname{fin} \otimes \operatorname{fin} \subseteq U^*$, $\operatorname{fin} \otimes \operatorname{fin} p.i.p.$ holds for U, and $\prod_{n < \omega} (\omega^{\omega}, \leq) \leq_T U$. Then $U \cdot U \equiv_T U$.

Proof. Apply Corollary 1.17 for $I = \text{fin} \otimes \text{fin}$.

The order $\prod_{n < \omega} \omega^{\omega}$ can be simplified:

Fact 2.4. $\prod_{n < \omega} \omega^{\omega}$ is order isomorphic to ω^{ω} and in particular $\prod_{n < \omega} \omega^{\omega} \equiv_T \omega^{\omega}$.

Proof. Take any partition of ω into infinitely many infinite sets $\langle A_n \mid n < \omega \rangle$. Then any function $f : \omega \to \omega$ induces functions $\langle f \upharpoonright A_n \mid n < \omega \rangle \in \prod_{n < \omega} \omega^{A_n}$. Clearly, ω^{A_n} is isomorphic to ω^{ω} by composing each function $f : A_n \to \omega$ with the inverse of the transitive collapse $\pi_n : A_n \to \omega$.

We now look for conditions that guarantee that $U \geq_T \omega^{\omega}$. One way, is to ensure that the Rudin-Keisler projection on the first coordinate is rapid:

Definition 2.5. Suppose that U is an ultrafilter such that fin \otimes fin $\subseteq U^*$. We say that U is 2-rapid if the ultrafilter $\pi_*(U) = \{X \subseteq \omega \mid \pi^{-1}X \in U\}$ is a rapid ultrafilter on ω , where $\pi : \omega \times \omega \to \omega$ is the projection to the first coordinate.

Corollary 2.6. Suppose that U is an ultrafilter on $\omega \times \omega$ such that fin \otimes fin $\subseteq U^*$, and U is fin \otimes fin-p.i.p. and 2-rapid. Then $U \cdot U \equiv_T U$.

Given an ideal I on a set X, an I-positive set is any set in $I^+ := P(X) \setminus I$. The forcing P(X)/I is forcing equivalent to (I^+, \subseteq^I) , where the pre-order is given by $X \subseteq^I Y$ iff $X \setminus Y \in I$. If $G \subseteq P(X)$ is I^+ -generic over V, then G is an ultrafilter for the algebra $P^V(X)$ (namely $(V, \in, G) \models$ "G is an ultrafilter") and also $I \subseteq G^*$. We will only be interested in the case where X is a countable set and P(X)/I is σ -closed. This is equivalent to the following property of I: we say that I is a σ -ideal if whenever $\langle A_n \mid n < \omega \rangle$ is a \subseteq -decreasing sequence of I-positive sets, there is an $A \in I^+$ such that for every $n < \omega$, $A \setminus A_n \in I$.

Given that P(X)/I is σ -closed, the forcing does not add new reals. Hence, if G is I^+ -generic over V then $P^V(X) = P^{V[G]}(X)$ and thus, G is an ultrafilter over X in V[G]. Clearly, fin is a σ -ideal, and it is well known that the generic ultrafilter for $P(\omega)$ /fin is selective (and therefore a p-point and rapid):

Fact 2.7 (Folklore). If G is $P(\omega)/\text{fin-generic over } V$, then G is a Ramsey ultrafilter in V[G].

In particular, G is a rapid p-point. By results in [13], $G \cdot G \equiv_T G < \mathcal{U}_{top}$, and in fact, by results in [26], G is Tukey-minimal among nonprincipal ultrafilters. However, this does not answer Question 0.1 as G is a p-point and therefore basically generated. We will answer Question 0.1 below.

Next, let us move to the forcing $P(\omega \times \omega)/\text{fin} \otimes \text{fin}$. This forcing was first considered in [29] and later in many papers including [17], [5], [8], [11], and [1]. Again, it is not hard to see that fin \otimes fin is a σ -ideal. The following properties of the generic ultrafilter are due to Blass, Dobrinen and Raghavan [5] and Dobrinen [8]:

Theorem 2.8. Let G be a $P(\omega \times \omega)/\text{fin} \otimes \text{fin-generic ultrafilter over } V$. Then:

- (1) G is not Tukey top and is also not basically generated.
- (2) $\pi_*(G)$ is $P(\omega)/\text{fin-generic over } V$, where $\pi : \omega \times \omega \to \omega$ is the projection to the first coordinate.
- (3) G is the immediate successor of $\pi_*(G)$ in the Tukey order.

Proof. For the convenience of the reader, we provide references to the proofs of the above:

- (1) [5, Thms. 47 and 60].
- (2) [5, Prop. 30]
- (3) [8, Thm. 6.2].

Together with Theorem 2.8, the following theorem provides an answer to Question 0.1:

Theorem 2.9. Let G be a $P(\omega \times \omega)/\text{fin} \otimes \text{fin-generic ultrafilter over } V$. Then

- (1) fin \otimes fin $\subseteq G^*$.
- (2) G satisfies fin \otimes fin-p.i.p.
- (3) G is 2-rapid.
- (4) $G \cdot G \equiv_T G$.

Proof. (1) is trivial. To see (2), the argument is the same as showing that the forcing is σ -complete. For the self-inclusion of this paper, let us provide an indirect proof assuming σ -completeness. Let $\langle X_n \mid n < \omega \rangle \subseteq G$. Since the forcing is σ -complete, $\langle X_n \mid n < \omega \rangle \in V$. Let $X \in G$ be such that $X \Vdash \forall n, X_n \in \dot{G}$, then $X \leq X_n$. Otherwise, $X \setminus X_n \in (\text{fin} \otimes \text{fin})^+$ and then $(X \setminus X_n) \leq X$ is a stronger condition which forces that $X_n \notin \dot{G}$, contradiction. Hence for every $n < \omega, X \setminus X_n \in \text{fin} \otimes \text{fin}$.

For (3), we apply the previous theorem clause (4) to see that $\pi_*(G)$ is generic for $P(\omega)/\text{fin}$ and therefore rapid by Fact 2.7. Finally, (4) follows from (1) – (3) and Corollary 2.6.

3. TRANSFINITE ITERATES OF fin

In this section we obtain analoguous results to the ones from the previous section, but for ultrafilters with higher cofinal-type complexity. To do so, we will consider the generic ultrafilters G_{α} obtained by the forcing $P(\omega^{\alpha})/\text{fin}^{\otimes \alpha}$, where $1 \leq \alpha < \omega_1$ (see the paragraph following Theorem 3.1). Such ultrafilters were investigated in [8] and in yet unpublished work [6]. We point out that for $2 \leq \alpha$, G_{α} is not a p-point and not basically generated; and for $\beta < \alpha$, there are natural Rudin-Keisler projections from G_{α} to G_{β} .

Theorem 3.1 (Dobrinen). Suppose that $1 \leq \alpha < \omega_1$ and G_{α} be a generic ultrafilter obtained by forcing with $P(\omega^{\alpha})/\operatorname{fin}^{\otimes \alpha}$ over V. Then G_{α} is not Tukey top and also not basically generated. Moreover,

- (1) For each $1 \le k < \omega$, the collection of Tukey types of ultrafilters Tukeyreducible to G_k forms a chain of length k consisting exactly of Tukey types of G_n for $1 \le n \le k$. [8, Thm. 6.2]
- (2) For each ω < α < ω₁, the Tukey types of the G_β, 1 ≤ β ≤ α are all distinct and form a chain, but there are actually 2^ω many Tukey types below G_α.
 [6]

The following recursive definition of $\sin^{\otimes \alpha}$, for $2 \leq \alpha < \omega_1$, is well-known and has appeared in [1], [8], [9], and [20].

- (1) At successor steps, $\sin^{\otimes \alpha+1} = \sin \otimes \sin^{\otimes \alpha}$ is the ideal on $\omega^{\alpha+1} = \omega \times \omega^{\alpha}$; explicitly, $A \subseteq \omega^{\alpha+1}$ is in $\sin^{\otimes \alpha+1}$ iff for all but finitely many $n, (A)_n \in \sin^{\otimes \alpha}$.
- (2) For limit $\alpha < \omega_1$ we fix an increasing sequence $\langle \alpha_n | n < \omega \rangle$ with $\sup_{n < \omega} \alpha_n = \alpha$ and define $\sin^{\otimes \alpha} = \sum_{\text{fin}} \sin^{\otimes \alpha_n}$ on $\omega^{\alpha} := \biguplus_{n < \omega} \{n\} \times \omega^{\alpha_n}$; explicitly, $A \subseteq \omega^{\alpha}$ is in $\sin^{\otimes \alpha}$ iff for all but finitely many n, $(A)_n$ is in $\sin^{\otimes \alpha_n}$.

The Rudin-Keisler order is defined as follows: Let I, J be ideals on X, Y respectively. We say that $I \leq_{RK} J$ if there is a function $f: Y \to X$ such that $f_*(J) = I$, where

$$f_*(J) = \{ A \subseteq X \mid \pi^{-1}[X] \in J \}.$$

It is well known that the Rudin-Keisler order implies the Tukey order.

Lemma 3.2 (Folklore). For $1 \leq \beta \leq \alpha < \omega_1$, we have $(\operatorname{fin}^{\otimes \beta}, \subseteq) \leq_{RK} (\operatorname{fin}^{\otimes \alpha}, \subseteq)$ and therefore $(\operatorname{fin}^{\otimes \beta}, \subseteq) \leq_T (\operatorname{fin}^{\otimes \alpha}, \subseteq)$.

Proof. By induction on α . At successor steps, we define the projection to the second coordinate, Rudin-Keisler projects $I \otimes J$ onto J and therefore $\operatorname{fin}^{\otimes \alpha+1}$ onto $\operatorname{fin}^{\otimes \alpha}$. For limit α , suppose that for every $m \leq n < \omega, \pi_{n,m} : \omega^{\alpha_n} \to \omega^{\alpha_m}$ is a Rudin-Keisler projection of $\operatorname{fin}^{\alpha_n}$ onto $\operatorname{fin}^{\alpha_m}$. Fix any $N < \omega$ Let us define $f : \omega^{\alpha} \to \omega^{\alpha_N}$ by applying

$$f(\langle k, x \rangle) = \begin{cases} f_{k,N}(x) & k \ge N \\ a^* & k < N \end{cases}$$

where a^* is any fixed element of ω^{α_N} . Now if $Y \subseteq \omega^{\alpha_N}$, then $f^{-1}[Y] = \bigcup_{n \ge N} \{n\} \times f_{n,N}^{-1}[Y]$ and $f_{n,N}^{-1}[Y]$. If $Y \in \operatorname{fin}^{\alpha_N}$ then $f_{n,N}^{-1}[Y] \in \operatorname{fin}^{\times \alpha_n}$ and therefore $f^{-1}[Y] \in \operatorname{fin}^{\otimes \alpha_n}$. If $Y \notin \operatorname{fin}^{\otimes \alpha_N}$, then $f_{n,N}^{-1}[Y] \notin \operatorname{fin}^{\otimes \alpha_n}$ and therefore $f^{-1}[Y] \notin \operatorname{fin}^{\alpha}$. Since \leq_{RK} is transitive, we conclude thee lemma.

There is a simple characterization of the Tukey type of $\sin^{\otimes \alpha}$ given in the following theorem:

Theorem 3.3. For every $1 < \alpha < \omega_1$, $(fin^{\otimes \alpha}, \subseteq) \equiv_T \omega^{\omega}$.

Proof. By induction on α . For $\alpha = 2$, this is Proposition 1.6. For successor α , by Proposition 1.6,

$$\operatorname{fin}^{\otimes \alpha+1} = \operatorname{fin} \otimes \operatorname{fin}^{\otimes \alpha} \equiv_T \operatorname{fin} \times \prod_{n < \omega} \operatorname{fin}^{\otimes \alpha}.$$

By the induction hypothesis, $\sin^{\otimes \alpha} \equiv_T \omega^{\omega}$, and $\sin \equiv_T \omega$. Therefore, by Fact 2.4,

$$\operatorname{fin} \times \prod_{n < \omega} \operatorname{fin}^{\otimes \alpha} \equiv_T \omega \times \prod_{n < \omega} \omega^{\omega} \equiv_T \omega \times \omega^{\omega} \equiv_T \omega^{\omega}.$$

So we conclude that $\sin^{\otimes \alpha+1} \equiv_T \omega^{\omega}$. For limit α , we have by Theorem 1.5 that

$$\sin^{\otimes \alpha} = \sum_{\text{fin}} \sin^{\otimes \alpha_n} \leq_T \omega \times \prod_{n < \omega} \omega^{\omega} \equiv_T \omega^{\omega}.$$

For the other direction, we have by the previous lemma that $\omega^{\omega} \equiv_T \operatorname{fin}^{\otimes 2} \leq_T \operatorname{fin}^{\otimes \alpha}$, as desired.

Definition 3.4. We say that an ultrafilter U on ω^{α} is α -rapid if $\pi_*(U)$ is rapid. where π is the projection to the first coordinate.

It is clear that if U is α -rapid, then $\omega^{\omega} \leq_T \pi_*(U) \leq_{RK} U$; hence we have the following:

Corollary 3.5. Suppose that U is an α -rapid ultrafilter over ω^{α} such that $\operatorname{fin}^{\otimes \alpha} \subseteq U^*$ and $\operatorname{fin}^{\otimes \alpha}$ -p.i.p. holds. Then $U \cdot U \equiv_T U$.

Proof. By Corollary 1.17 for $I = \operatorname{fin}^{\otimes \alpha}$, it remains to verify that $\prod_{n < \omega} \operatorname{fin}^{\otimes \alpha} \leq_T U$. Indeed, $\prod_{n < \omega} \operatorname{fin}^{\otimes \alpha} \equiv_T \prod_{n < \omega} \omega^{\omega}$ and therefore by Fact 2.4, $\prod_{n < \omega} \operatorname{fin}^{\otimes \alpha} \equiv_T \omega^{\omega}$. Since U is α -rapid, $\omega^{\omega} \leq_T \pi_*(U) \leq_{RK} U$ and therefore $\prod_{n < \omega} \operatorname{fin}^{\otimes \alpha} \leq_T U$. It follows that $U \cdot U \equiv_T U$.

The following fact that each $\sin^{\otimes \alpha}$ is a σ -ideal is well-known (see [1], [8], [9], [20]), and included here for self-containment.

Proposition 3.6. Suppose that $\langle A_i \mid i < \omega \rangle$ is a decreasing sequence of sets in $(\operatorname{fin}^{\otimes \alpha})^+$. Then there is an $A \in (\operatorname{fin}^{\otimes \alpha})^+$ such that for every $i < \omega$, $A \setminus A_i \in \operatorname{fin}^{\otimes \alpha}$.

Proof. By induction on α . For $\alpha = 1$, fin is indeed a σ -ideal. Suppose that fin^{$\otimes \alpha$} has proven to be a σ -ideal, and let $\langle A_i \mid i < \omega \rangle \subseteq (\text{fin}^{\otimes \alpha+1})^+$ be a decreasing sequence. We may assume that each A_i is in standard form, namely, for every $n < \omega$, either $(A_i)_n = \emptyset$ or $(A_i)_n \in (\text{fin}^{\otimes \alpha})^+$. Let

$$A = \bigcup_{i < \omega} \{ (\pi''A_i)(i) \} \times (A_i)_{(\pi''A_i)(i)}$$

First we note that $A \in (\operatorname{fin}^{\otimes \alpha+1})^+$. To see this, note that since the $A'_i s$ are decreasing then whenever i < j:

- (1) $\pi''A_j \subseteq \pi''A_i$.
- (2) For each $n < \omega$, $(A_j)_n \subseteq (A_i)_n$.

It follows that for $i < j < \omega$, $(\pi''A_j)(j) \in \pi''A_i$ and $(\pi''A)(j) = (\pi''A_j)(j) > (\pi''A_i)(i) = (\pi''A)(i)$. So $\{(\pi''A_i)(i) \mid i < \omega\} \in \text{fin}^+$ and for each i, $(A)_{(\pi''A)(i)} = (\pi''A_i)_{(\pi''A_i)(i)} \in (\text{fin}^{\otimes \alpha})^+$. To see that $A \setminus A_i \in \text{fin}^{\otimes \alpha}$, for each $i \leq j$,

$$(A)_{(\pi''A_j)(j)}(A_j)_{(\pi''A_j)(j)} \subseteq (A_i)_{(\pi''A_j)(j)}.$$

We conclude that $A \setminus A_i \subseteq \bigcup_{j < i} \{ (\pi''A_j)_j \} \times (A_j)_{(\pi''A_j)(j)} \in \text{fin}^{\otimes \alpha}$. At limit steps, δ then the proof is completely analogous.

Corollary 3.7. Let G be $P(\omega^{\alpha})/\operatorname{fin}^{\otimes \alpha}$ -generic over V. Then G satisfies $\operatorname{fin}^{\otimes \alpha}$ p.i.p. **Lemma 3.8.** If G is $P(\omega^{\alpha})/\text{fin}^{\otimes \alpha}$ -generic over V, then G is α -rapid.

Proof. Let $f: \omega \to \omega$ be any function in V[G]. By σ -closure of $P(\omega^{\alpha})/\operatorname{fin}^{\otimes \alpha}$, $f \in V$. We proceed by a density argument, let $X \in P(\omega^{\alpha})/\operatorname{fin}^{\otimes \alpha}$, shrink X to $X_1 \in P(\omega^{\alpha})/\operatorname{fin}^{\otimes \alpha}$ so that X_1 is in standard form. By definition of $(\operatorname{fin}^{\otimes \alpha})^+$, $\pi''X_1$ is infinite and so we can shrink $\pi''X_1$ to Y_1 , still infinite such that $Y_1(n) \geq f(n)$. Define $X_2 = \bigcup_{n \in Y_1} \{n\} \times (X_1)_n$. Since X_1 was in standard form, for each $n \in Y_1$, $(X_1)_n$ is positive, and so, $X_2 \in (\operatorname{fin}^{\otimes \alpha})^+$. Note that $X_2 \subseteq X$ and $\pi''X_2 = Y_1$. By density there is $X \in G$ such that for every $n < \omega$, $(\pi''X)(n) \geq f(n)$ and therefore $\pi_*(G)$ is rapid, namely G is α -rapid. \Box

As corollary we obtain the following theorem:

Theorem 3.9. Suppose that G is a $P(\omega^{\alpha})/\operatorname{fin}^{\otimes \alpha}$ -generic ultrafilter over V. Then $G \cdot G \equiv_T G$.

Proof. We proved that $\operatorname{fin}^{\otimes \alpha} \subseteq G^*$, G satisfies $\operatorname{fin}^{\otimes \alpha}$ -p.i.p. and that G is α -rapid. So by Corollary 3.5, $G \cdot G \equiv_T G$.

Recalling Theorem 3.1, $G_{\alpha} <_T \mathcal{U}_{top}$ and G_{α} is not basically generated for each $\alpha < \omega_1$. The point is that although the complexity of the generic ultrafilter G_{α} increases with α , it still satisfies $G \cdot G \equiv_T G <_T \mathcal{U}_{top}$

4. MILLIKEN-TAYLOR ULTRAFILTERS

In this section, we prove that Milliken-Taylor ultrafilters have the same Tukey type as their Fubini product. Milliken-Taylor ultrafilters are ultrafilters on base set FIN := $[\omega]^{<\omega} \setminus \{\emptyset\}$ which witness instances of Hindman's Theorem [16]. They are the analogues of Ramsey ultrafilters on the base set FIN, but they are not Ramsey ultrafilters, nor even p-points, as shown by Blass in [4], where they were called *stable ordered union ultrafilters*. These ultrafilters have been widely investigated (see for instance [15] and [22]).

We now define Milliken-Taylor ultrafilters, using notation from [30]. For $n \leq \infty$, $\operatorname{FIN}^{[n]}$ denotes the set of block sequences in FIN of length n, where a *block sequence* is a sequence $\langle x_i : i < n \rangle \subseteq \operatorname{FIN}$ such i < j < n implies $\max(x_i) < \min(x_j)$. For $n < \omega$ and a block sequence $X = \langle x_i : i < n \rangle \in \operatorname{FIN}^{[n]}$, $[X] = \{\bigcup_{i \in I} x_i : I \subseteq n\}$. For an infinite block sequence $X = \langle x_i : i < \omega \rangle \in \operatorname{FIN}^{[\infty]}$,

$$[X] = \{\bigcup_{i \in I} x_i : I \in FIN\}$$

For $X, Y \in \text{FIN}^{[\infty]}$, define $Y \leq X$ iff $[Y] \subseteq [X]$. Given $X \in \text{FIN}^{[\infty]}$ and $m \in \omega$, X/m denotes $\langle x_i : i \geq n \rangle$ where n is least such that $\min(x_n) > m$. Define $Y \leq^* X$ iff there is some m such that $[Y/m] \subseteq [X]$. Related definitions for finite block sequences are similar.

Definition 4.1. An ultrafilter U on base set FIN is *Milliken-Taylor* iff

- (1) For each $A \in U$, there is an infinite block sequence $X \in \text{FIN}^{[\infty]}$ such that $[X] \subseteq A$ and $[X] \in U$; and
- (2) For each sequence $\langle X_n : n < \omega \rangle$ of block sequences such that $X_0 \geq^* X_1 \geq^* \dots$ and each $[X_n] \in U$, there is a diagonalization $Y \in \text{FIN}^{[\infty]}$ such that $[Y] \in U$ and $X_n \geq^* Y$ for each $n < \omega$.

Thus, a Milliken-Taylor ultrafilter U has $\{A \in U : \exists X \in \text{FIN}^{[\infty]} (A = [X])\}$ as a filter base, and such a filter base has the property that almost decreasing sequences have diagonalizations. In this sense, Milliken-Taylor ultrafilter behave like p-points even though, technically, they are not. The following ideal corresponds to property (2):

Definition 4.2. Let *I* be the set of all $X \subseteq$ FIN such that for some $N \in \omega$, $\forall x \in X, x \cap N \neq \emptyset$.

Claim 4.3. I is an ideal and $I \subseteq U^*$ for each Milliken-Taylor ultrafilter U.

Proof. Clearly, $\emptyset \in I$ and I is downwards closed. To see that I is closed under unions, let $X, Y \in I$ and let $N_X, N_Y \in \omega$ witness this. Then $\max(N_X, N_Y)$ witnesses that $X \cup Y \in I$. By condition (1), every $A \in U$ contains [X] for some infinite block sequence X; in particular, $A \notin I$.

Proposition 4.4. If $Y \leq^* X$ then $[Y] \setminus [X] \in I$.

Proof. If $Y \leq^* X$ then there is m such that $[Y/m] \subseteq [X]$ and so every element $b \in [Y] \setminus [X]$ must be a finite union of sets which includes some element below m.

Proposition 4.5. U satisfies I-p.i.p.

Proof. Let $\langle A_n \mid n < \omega \rangle \subseteq U$. Then by property (1) of U, we can shrink each A_n to $[X_n] \in U$ such that $X_{n+1} \leq X_n$. By property (2) there is $[X] \in U$ such that $[X] \leq^* [X_n]$ for every n. Thus $[X] \setminus [X_n] \in I$ and in particular $[X] \setminus A_n \in I$. \Box

Proposition 4.6. $I \equiv_T \omega$.

Proof. Define $f : \omega \to I$ by $f(n) = \{x \in \text{FIN} \mid x \cap n \neq \emptyset\}$. Clearly f is monotone, and by definition of I, f is cofinal. It is also clear that f is unbounded since $\bigcup_{n \in A} f(n) = \text{FIN}$, whenever $A \in [\omega]^{\omega}$ (and I in a proper ideal).

The projection maps min and max from FIN to ω are clear. Given a Milliken-Taylor ultrafilter U, let U_{\min} and U_{\max} denote the Rudin-Keisler projections of Uaccording to min and max, respectively. Blass showed in [4] that U_{\min} and U_{\max} are both Ramsey ultrafilters. Hence, it follows that $\omega^{\omega} \leq_T U_{\min} \leq_{RK} U$, and therefore we have the following corollary:

Corollary 4.7. $\prod_{n < \omega} I \leq_T U$.

Theorem 4.8. Suppose that U is a Milliken-Taylor ultrafilter. Then $U \cdot U \equiv_T U$.

Proof. We proved that if U is Milliken-Taylor, then for the ideal I, we have that $I \subseteq U^*$, I-p.i.p., and $\prod_{n < \omega} I \leq_T U$. By Corollary 1.17, we conclude that $U \cdot U \equiv_T U$.

We conclude this section with a short proof that the min-max projection of U is Tukey equivalent to its Fubini product with itself. The map min-max : FIN $\rightarrow \omega \times \omega$ is defined by min-max $(x) = (\min(x), \max(x))$, for $x \in$ FIN. Let U be a Milliken-Taylor ultrafilter and let $U_{\min,\max}$ denote the ultrafilter on $\omega \times \omega$ which is the min-max Rudin-Kesiler projection of U. Blass showed in [4] that $U_{\min,\max}$ is isomorphic to $U_{\min} \cdot U_{\max}$ and hence, $U_{\min,\max}$ is not a p-point. Dobrinen and Todorcevic showed in [13] that $U_{\min,\max}$ is not a q-point, but is rapid, and that, assuming CH, U_{\min} and U_{\max} are Tukey strictly below $U_{\min,\max}$ which is Tukey

12

strictly below U. It follows from the proof of Theorem 72 in [13] that $U_{\min,\max}$ has appropriately defined diagonalizations and hence, has the *J*-p.i.p. for the ideal $J = {\min\max(A) : A \in I} \subseteq U^*_{\min,\max}$ on $\omega \times \omega$; hence the work in this paper implies the following theorem. However, we give a shorter proof by combining results from [4] and [13].

Corollary 4.9. If U is a Milliken-Taylor ultrafilter, then

$U_{\min,\max} \equiv_T U_{\min,\max} \cdot U_{\min,\max}.$

Proof. By results of Blass in [4], $U_{\min,\max} \cong U_{\min} \cdot U_{\max}$, and both U_{\min} and U_{\max} are Ramsey ultrafilters. For rapid p-points U, V, a result in [13] showed that $U \cdot V \equiv_T V \cdot U$, and hence,

$$(U \cdot V) \cdot (U \cdot V) \equiv_T U \cdot (V \cdot V) \cdot U \equiv_T U \cdot V \cdot U \equiv_T U \cdot U \cdot V \equiv_T U \cdot V.$$

The corollary follows.

Remark 4.10. The theorems in this section should generalize to Milliken-Taylor ultrafilters on $\operatorname{FIN}_{k}^{[\infty]}$ as well as their Rudin-Keisler projections, as their diagonalization properties will imply the *I*-p.i.p. for the naturally associated ideal *I*.

5. Further directions and open questions

Question 5.1. Is it a ZFC theorem that for any two ultrafilters U, V over ω , $U \cdot V \equiv_T V \cdot U$?

For κ -complete ultrafilters over measurable cardinals κ , this is indeed the case, as was proved by the authors in [2]. However, the proof essentially uses the well foundedness of the ultrapower by a κ -complete ultrafilter U.

A natural strategy to answer the previous question would be to take U such that $U <_T U \cdot U$. The only constructions of ultrafilters U such that $U <_T U \cdot U$ ensure that $U \not\geq_T \omega^{\omega}$. By the results of this paper we can generate examples where $U \not\geq_T \prod_{n < \omega} I$ for some ideal I such that U is I-p.i.p.

Using such U, we need to find an ultrafilter V such that $U \cdot V \not\equiv_T V \cdot U$. We know that following hold:

$$U \cdot V \equiv_T U \times V \cdot V, \quad V \cdot U \equiv_T V \times U \cdot U$$

So natural assumptions would be to require that $V \equiv_T V \cdot V$, and in order for V not to interfere with the assumption $U <_T U \cdot U$, in order to have $V \leq_T U$. This guarantees that

$$U \cdot V \equiv_T U <_T U \cdot U \equiv_T V \cdot U$$

However, the assumptions above are not consistent since if $V \cdot V \equiv_T V$ then $V \geq_T \omega^{\omega}$, and therefore if $V \leq_T U$ then also $U \geq_T \omega^{\omega}$. This leads to the following question:

Question 5.2. Is it consistent that there are two ultrafilters U, V such that $V \equiv_T V \cdot V \leq_T U <_T U \cdot U$? Or more precisely, is the class of ultrafilters which are Tukey reducible to their Fubini product upwards closed with respect to the Tukey order?

It seems that the Tukey type of ω^{ω} plays an important role in the calculations of the Tukey type of $U \cdot U$:

Question 5.3. Is there an ultrafilter U such that $\omega^{\omega} \leq_T U <_T U \cdot U$?

Question 5.4. Is it consistent to have an ultrafilter U such that U is not rapid but $U \ge_T \omega^{\omega}$? What about U which is a p-point?

Question 5.5. Is there a σ -ideal I on a countable set X such that some P(X)/I generic ultrafilter U is Tukey-top?

Question 5.6. Is it true that for every σ -ideal I on a countable set X, a generic ultrafilter U on P(X)/I satisfies $U \cdot U \equiv_T U$?

References

- Karen Bakke Haga, David Schrittesser, and Asger Törnquist, Maximal almost disjoint families, determinacy, and forcing, Journal of Mathematical Logic 22 (2022), no. 1, 2150026, 42 pp.
- Tom Benhamou and Natasha Dobrinen, Cofinal types of ultrafilters over measurable cardinals, submitted (2023), arXiv:2304.07214.
- Andreas Blass, Orderings of ultrafilters, ProQuest LLC, Ann Arbor, MI, 1970, Thesis (Ph.D.)– Harvard University. MR 2939947
- Ultrafilters related to Hindman's finite-unions theorem and its extensions, Contemporary Mathematics 65 (1987), 89–124.
- Andreas Blass, Natasha Dobrinen, and Dilip Raghavan, The next best thing to a p-point, Journal of Symbolic Logic 80 (15), no. 3, 866–900.
- 6. Natasha Dobrinen, Initial Rudin-Keisler and tukey structures of ultrafilters forced by infinitedimensional Ellentuck spaces, (2015), in preparation.
- 7. _____, Survey on the Tukey theory of ultrafilters, Zbornik Radova 17 (2015), no. 25, 53-80.
- High dimensional Ellentuck spaces and initial chains in the Tukey structure of nonp-points, Journal of Symbolic Logic 81 (2016), no. 1, 237–263.
- 9. _____, Infinite-dimensional Ellentuck spaces and Ramsey-classification theorems, Journal of Mathematical Logic 16 (2016), no. 01, 1650003, 37 pp.
- <u>—</u>, Topological Ramsey spaces dense in forcings, ch. 3–58, World Scientific Publishing Co. Pte. Ltd., 2021.
- Natasha Dobrinen and Daniel Hathaway, Classes of barren extensions, Journal of Symbolic Logic 86 (2020), no. 1, 178–209.
- Natasha Dobrinen, José G. Mijares, and Timothy Trujillo, Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points, Archive for Mathematical Logic, special issue in honor of James E. Baumgartner 56 (2017), no. 7-8, 733-782, (Invited submission).
- Natasha Dobrinen and Stevo Todorcevic, Tukey types of ultrafilters, Illinois Journal of Mathematics 55 (2011), no. 3, 907–951.
- _____, A new class of Ramsey-classification Theorems and their applications in the Tukey theory of ultrafilters, Part 1, Transactions of the American Mathematical Society 366 (2014), no. 3, 1659–1684.
- Todd Eisworth, Forcing and stable ordered-union ultrafilters, Journal of Symbolic Logic 67 (2002), no. 1, 449–464.
- Neil Hindman, Finite sums from sequences within cells of a partition of n, Journal of Combinatorial Theory, Series A 17 (1974), 1–11.
- Jonathan L. Hrušak, Michael Verner, Adding ultrafilters by definable quotients, (English summary) Rend. Circ. Mat. Palermo 60 (2011), no. 3, 445–454.
- John R. Isbell, The category of cofinal types. II, Transactions of the American Mathematical Society 116 (1965), 394–416.
- Istvan Juhász, Remarks on a theorem of B. Pospíšil, General Topology and its Relations to Modern Analysis and Algebra, Academia Publishing House of the Czechoslovak Academy of Sciences, Praha, 1967, pp. 205–206.
- Miloš Kurilić, Forcing with copies of countable ordinals, Proceedings of the American Mathematical Society 143 (2015), no. 4, 1771–1784.
- Borisa Kuzeljevic and Dilip Raghavan, A long chain of p-points, Journal of Mathematical Logic 19 (18), no. 1, 1850004, 38 pp.
- Heike Mildenberger, On Milliken-Taylor ultrafilters, Notre Dame Journal of Formal Logic 52 (2011), no. 4, 381–394.

TUKEY OF FUBINI

- 23. David Milovich, Tukey classes of ultrafilters on ω , Topology Proceedings **32** (2008), 351–362.
- Forbidden rectangles in compacta, Topology and Its Applications 159 (2012), no. 14, 3180–3189.
- Dilip Raghavan and Saharon Shelah, Embedding partial orders into the p-points under Rudin-Keisler and Tukey reducibility, Transactions of the American Mathematical Society 369 (17), no. 6, 4433–4455.
- Dilip Raghavan and Stevo Todorcevic, Cofinal types of ultrafilters, Annals of Pure and Applied Logic 163 (2012), no. 3, 185–199.
- Dilip Raghavan and Jonathan L. Verner, *Chains of p-points*, Canadian Mathematics Bulletin 62 (2019), no. 4, 856–868.
- Jürgen Schmidt, Konfinalität, Zeitschrift für Mathematische Logik und Grundlagen der Matematik 1 (1955), 271–303.
- 29. Andrzej Szymánski and Hao Xua Zhou, The behavior of ω^{2*} under some consequences of Martin's axiom, in General Topology and Its Relations to Modern Analysis and Algebra. V, (ed. J.Noýak) Sigma Ser. Pure Math.3, Heldermann Verlag, 1983, p. 577–584.
- 30. Stevo Todorcevic, Introduction to Ramsey spaces, vol. 174, Princeton University Press, 2010.
- 31. John W. Tukey, Convergence and uniformity in topology, Princeton University Press, 1940.

(Benhamou) Department of Mathematics, Rutgers University, ,110 Frelinghuysen Road Piscataway, New Jersey 08854-8019

 $Email \ address: \verb"tom.benhamou@rutgers.edu"$

(Dobrinen) Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA

Email address: ndobrine@nd.edu