Homework 2

MATH 215
(due Septeber 9)
September 7, 2022

Problem 1. Formalize each of the following statements using the propositional calculus.
(a) Every solution of $x^{2}-5 x+6=0$ is positive.
(b) Every prime number is greater than 1.

Homework 2

MATH 215
(due Septeber 9)
September 7, 2022

Problem 2. For each of the following statements, write the negation of the sentences without the negation symbol " \neg ", and prove the negation:

1. $(\exists x \cdot x>5) \Rightarrow(\forall y \cdot y>-100)$.
2. $\exists \epsilon .(\epsilon>0) \wedge(\forall x . x>0 \Rightarrow x>\epsilon)$.
3. $\forall x \cdot(x>5) \Leftrightarrow(\forall y \cdot y>-100)$.
(Hint: Recall that $A \Leftrightarrow B \equiv(A \Rightarrow B) \wedge(B \Rightarrow A))$

Homework 2

MATH 215
(due Septeber 9)
September 7, 2022

Problem 3. Prove the following statement:
For all integers a, b, and for every positive integer n, if both a and b are multiple of n, then $a-b$ is a multiple of n.

Homework 2

MATH 215
(due Septeber 9)
September 7, 2022

Problem 4. Prove or disprove (prove their negation) the following statements:
a. For all integers n, a, b, c, if $a-b$ and $b-c$ are multiples of n, then $a-c$ is a multiple of n.
b. $\forall x \cdot x^{2}<5 \vee 2 x+1 \geq 7$.
c. $\forall x .(\forall y \cdot y+x<y) \vee(\exists y \cdot 0<y \wedge y<x)$
d. For all integer a, b, if both $a+1$ and $b+1$ are even, then $a b+1$ is even.
e. $\forall x \cdot \exists y \cdot x+y>y \Rightarrow x^{2}<0$.

Homework 2

MATH 215
(due Septeber 9)
September 7, 2022

Problem 5. Prove the following universal implication:
If n is even then $n+2$ is even.

