Homework 3

MATH 215

Problem 1. Apply each of the following claims to two specific examples of your choice or find a counterexample. In your solution, you should provide the examples and what you have concluded from the statements:
a. Suppose that n is a integer, such that 6 divides $n(n+1)(n+2)$ then 24 divides $n(n+1)(n+2)(n+3)$.
b. Suppose that x, y, z are three integers such that $x^{2}+y^{2}=z^{2}$, then either 3 divides x or 3 divides y.

Problem 2. Prove the following equivalences (using a double implication):
a. An integer is divisible by 5 if and only if its last digit is divisible by 5 . [Hint: To formally refer to the unit number of an integer n, decompose $n=10 k+d$ where k is some integer and $0 \leq d \leq 9$. Then d is the unit digit of n.]
b. An integer is divisible by 4 if and only if its last two digits form a number divisible by 4.
[Hint: Decompose $n=100 l+d$ where k, l is some integers and $0 \leq d \leq 99$. Then the number d is the last two digits.]

Homework 3

MATH 215

Problem 3. In each of the following items, determine if the conclusion logically follows from the premises and prove your answer.
a. Pre. 1: $A \wedge(B \Rightarrow \neg C)$

Pre. 2: $B \vee C$
Conclusion: $\neg C$
b. Pre. 1: $A \Rightarrow(B \vee(\neg C))$

Pre 2. $A \wedge C$
Pre 3. $D \Rightarrow \neg B$
Conclusion: $\neg D$

Homework 3

MATH 215

Problem 4.

a. Prove that for all integers n and m, if n is multiple of 6 or m is multiple of 9 then $n^{2} m$ is a multiple of 9 .
b. Prove that if a and b are odd integers, then $a^{2}-b^{2}$ is a multiple of 8 .

Homework 3

MATH 215

Problem 5. Prove that for all integers a, b, c if $a^{2}+b^{2}=c^{2}$, then $a b c$ is even.

