Homework 4

MATH 215

Problem 1. Determine which of the following statements are true. For the ones which are true, provide a proof:

1. $\{1,-1\} \in\{1,-1,\{1\},\{-1\}\}$.
2. $7 \in\left\{n \in \mathbb{N}\left|\left|n^{2}-n-3\right| \leq 5\right\}\right.$.
3. $1 \in\left\{\mathbb{N}, \mathbb{Z}, \mathbb{N}_{\text {even }}\right\}$.
4. $16 \in\left\{x \in \mathbb{N} \mid \forall y \in \mathbb{N} . y<4 \Rightarrow y^{2}+2 y<x\right\}$.

Homework 4

MATH 215

Problem 2. Find a formal expression (Using the list principle or the separation principle) for the following sets:

1. The set of all integers below 100 which are are divisible by 3 .
2. The set of all integers which are the successor of a power of 2 .

Homework 4

MATH 215

Problem 3. Compute the following sets using the list principle and global symbols $\mathbb{N}, \mathbb{N}_{\text {even }}, \mathbb{N}_{\text {odd }}$ and \mathbb{Z}. No proof in needed.

1. $\left\{x \in \mathbb{N} \mid \exists k \in \mathbb{N} . k+x \in \mathbb{N}_{\text {even }}\right\}$.
2. $\left\{x \in \mathbb{N} \mid x^{2}+2 x-3=0\right\}$.
3. $\left\{x \in \mathbb{Z} \mid \forall y \in \mathbb{N} . y<x \Rightarrow y^{2}<x^{2}\right\}$

Homework 4

MATH 215

Problem 4. Negate the following statements and proof/disprove the statement:

1. $\exists x \cdot x<1 \Rightarrow \exists y \cdot y>x$.
2. $(\forall x \cdot x>100) \vee(\exists y \cdot \forall x \cdot y+x=x)$.
3. $\forall x \cdot \forall y \cdot x<y \Rightarrow(\exists z \cdot x<z \wedge z<y)$.
