Problem 1. Compute the following sets. No proof required.

- 1. $\left\{a+b: a \in \{0,5\}, b \in \{2,4\}\right\} \setminus \{7,10\}.$
- 2. $(1,3) \cup [2,4)$
- 3. $\mathbb{Z} \cap [0, \infty)$
- 4. $\mathbb{N}_{even}\Delta\mathbb{N}_+$

Problem 2. Suppose that $A = \{1, 2, 3\}, B = \{1, 1, 2, 3\}, C = \{1, 3, \pi\}, D = \{x \in \mathbb{Z} \mid x \notin \mathbb{N}\}, E = \{1, \{1, 2, 3\}, 3\}.$

- Determine the truth and falsity of each of the following statements. No proof required
 - (a) A = B.
 - (b) A = C.
 - (c) $A \subseteq E$.
 - (d) $A \in E$.
 - (e) $E \subseteq D$.
- 2. List all the subsets of the set *E*.

Homework 5

(due October 7)

Problem 3. Let *X* and *Y* be sets.

- (i) Prove that $Y \setminus (Y \setminus X) = X \cap Y$.
- (ii) Prove that $X \subseteq Y$ if and only if $X \cup Y = Y$.
- (iii) Deduce that $X \subseteq Y$ if and only if $Y \setminus (Y \setminus X) = X$.

(due October 7)

Problem 4. Prove that for all sets A, X, Y we have

 $A \setminus (X \cap Y) = (A \setminus X) \cup (A \setminus Y).$

(due October 7)

Problem 5. Prove that if $A \cap B \subseteq C$ and $x \in A \setminus C$, then $x \notin B$.

[Hint: Prove it by contradiction.]