Problem 1. Describe the set $P(\{\emptyset, \{\emptyset\})$ using the list principle. No proof required.

Problem 2. Prove that for every two sets *A*, *B* the following are equivalent:

- $A \subseteq B$.
- $P(A \cup B) = P(B)$.
- $P(A) \subseteq P(B)$.

[Remember: You are allowed to use the propositions and statements which appear in the class notes.]

Problem 3. Prove the following statements by induction:

- 1. For every $n \ge 2$, $n! < n^n$.
- 2. For every natural number *n*, the number $17n^3 + 103n$ is multiple of 6.

MATH 215

Problem 4. Prove that for every natural number *n*,

$$1 + 4 + 4^{2} + \dots + 4^{n} = \frac{4^{n+1} - 1}{3}.$$

Problem 5. Prove that for all odd natural numbers n, the number $2^n + 1$ is multiple of 3.

[Hint: Express n as 2k + 1 and preform induction on k.]

Problems 6,7 are optional.

Problem 6. Spot the problem in the following obviously wrong argument:

«All horses are the same color. Specifically, every finite set of horses is monochromatic.»

Proof. We argue by induction. The statement is clearly true for sets of size 1. Assume by induction that all sets of n horses are monochromatic, and consider a set of size n + 1. The first n horses are all the same color. The last n horses are all the same color. Because of the overlap, this means that all n + 1 horses are the same color. So by induction, all finite sets of horses are all the same color. \Box

Problem 7. Suppose $x \ge -1$. Prove that for all natural number *n*,

$$(1+x)^n \ge 1+nx.$$