Homework 7

MATH 215

Problem 1. Compute that following sets, no proof required:

1. $\{\emptyset,\{\emptyset\}\} \times\{\emptyset, 1\}$.
2. a_{4}, where a_{n} is defined recursively by

$$
\begin{aligned}
& a_{0}=1, a_{1}=1, \text { and } \\
& a_{n+1}=a_{n}-2 a_{n-1}
\end{aligned}
$$

3. A_{3}, where A_{n} is defined recursively by

$$
\begin{gathered}
A_{0}=\emptyset, \text { and } \\
A_{n+1}=A_{n} \cup\left\{A_{n}\right\} .
\end{gathered}
$$

Homework 7

MATH 215

Problem 2. Prove that for every sets A, B, C,

$$
A \times(B \cap C)=(A \times B) \cap(A \times C)
$$

Homework 7

MATH 215

Problem 3. A geometric sequence is a sequence a_{n} with a constant successive ratio, namely

$$
\exists q \cdot \forall n \in \mathbb{N} \cdot \frac{a_{n+1}}{a_{n}}=q
$$

1. Prove, by definition, that the sequence $a_{n}=5 \cdot 2^{n}$ is geometric.
2. Prove the following closed formula for a geometric sequence a_{n} with constant ratio q :

$$
\forall n \in \mathbb{N} \cdot a_{n}=a_{0} \cdot q^{n}
$$

3. Prove the formula for the sum of a geometric sequence a_{n} with constant ratio q :

$$
\forall N \in \mathbb{N} \cdot a_{0}+a_{1}+a_{2}+\ldots+a_{N}=a_{0} \frac{1-q^{N+1}}{1-q}
$$

4. Compute the sum

$$
5+5^{2}+\ldots .+5^{100}
$$

Homework 7

MATH 215

Problem 4 (optional). Let a_{n} be a sequence of positive numbers. Define the sequence $b_{n}=\log \left(a_{n}\right)$. Prove that:

$$
a_{n} \text { is geometric } \Leftrightarrow b_{n} \text { is arithmetic }
$$

[Hint: use the identity $\log (a \cdot b)=\log (a)+\log (b)$]

Homework 7

MATH 215

Problem 5. Define recursively the sequence A_{n} by

$$
\begin{gathered}
A_{0}=\{1,2,3\} \\
A_{n+1}=\left\{a \cdot b \mid a, b \in A_{n}\right\}
\end{gathered}
$$

1. Compute A_{2}. No proof required.
2. Prove that for every $n \in \mathbb{N} A_{n} \subseteq A_{n+1}$.
3. Prove that for every $n \in \mathbb{N}, 2^{n+1} \in A_{n}$.

Homework 7

MATH 215

Problem 6 (Optional). Define the sum of pairs by

$$
\langle a, b\rangle+\langle c, d\rangle=\langle a+c, b+d\rangle .
$$

Define the multiplication of a real number t with a pair of real numbers $\langle a, b\rangle$ by

$$
t \cdot\langle a, b\rangle=\langle t \cdot a, t \cdot b\rangle
$$

1. Compute $\langle 1,2\rangle+2 \cdot\langle-1,2\rangle$.
2. Prove that if $\left\langle a_{0}, b_{0}\right\rangle \in \mathbb{R}^{2}$ is a pair such that for every pair $\langle a, b\rangle \in \mathbb{R}^{2}$ $\left\langle a_{0}, b_{0}\right\rangle+\langle a, b\rangle=\langle a, b\rangle$, then $\left\langle a_{0}, b_{0}\right\rangle=\langle 0,0\rangle$.
3. Prove that fore every $t \in \mathbb{R}$ and $\langle a, b\rangle \in \mathbb{R}^{2}$:

$$
t \cdot\langle a, b\rangle=\langle 0,0\rangle \Leftrightarrow(t=0 \vee\langle a, b\rangle=\langle 0,0\rangle)
$$

