Homework 8

MATH 215

Problem 1. Compute the following gcd's using the Euclidean algorithm:

1. $\operatorname{gcd}(46,112)$.
2. $\operatorname{gcd}(426,252)$.
3. $\operatorname{gcd}(142,235)$.

Homework 8

MATH 215

Problem 2. Prove the following claims:

1. For any integers n_{1}, n_{2} and $m>0 n_{1} \equiv n_{2}(\bmod m)$ if and only if $n_{1}-n_{2}$ is divisible by m.
2. For every integers n and $m>0, n \equiv n \bmod m(\bmod m)$

Homework 8

MATH 215

Problem 3. Prove that for any non-zero integers n_{1}, n_{2} :

1. $1 \leq \operatorname{gcd}\left(n_{1}, n_{2}\right) \leq n_{1}, n_{2}$.
2. $\operatorname{gcd}\left(n_{1}, n_{2}\right)=n_{1}$ if and only if n_{1} divides n_{2}.

Homework 8

MATH 215

Problem 4. Prove that for any integers n_{1}, n_{2}, m, where $m>0$,

$$
n_{1} \bmod m=1 \Rightarrow n_{1} \cdot n_{2} \equiv n_{2}(\bmod m) .
$$

Homework 8

MATH 215

Problem 5. Prove that for every natural number n, n^{2} is divisible by 25 if and only if n is divisible by 5 .
[Hint: Use the exercise we saw in class that n is divisible by 5 iff n^{2} is divisible by 5.]

