(due October 28)

Problem 1. Compute the following gcd's using the Euclidean algorithm:

- 1. *gcd*(46, 112).
- 2. gcd(426,252).
- 3. *gcd*(142,235).

Problem 2. Prove the following claims:

- 1. For any integers n_1 , n_2 and m > 0 $n_1 \equiv n_2 \pmod{m}$ if and only if $n_1 n_2$ is divisible by m.
- 2. For every integers *n* and m > 0, $n \equiv n \mod m \pmod{m}$

Problem 3. Prove that for any non-zero integers n_1 , n_2 :

- 1. $1 \leq gcd(n_1, n_2) \leq n_1, n_2$.
- 2. $gcd(n_1, n_2) = n_1$ if and only if n_1 divides n_2 .

(due October 28)

Problem 4. Prove that for any integers n_1, n_2, m , where m > 0,

 $n_1 \operatorname{mod} m = 1 \Longrightarrow n_1 \cdot n_2 \equiv n_2(\operatorname{mod} m).$

Problem 5. Prove that for every natural number n, n^2 is divisible by 25 if and only if n is divisible by 5.

[Hint: Use the exercise we saw in class that *n* is divisible by 5 iff n^2 is divisible by 5.]