(due November 14)

Problem 1. 1. Prove that $\sqrt{3}$ is irrational.

- 2. Prove that $\sqrt{3} + 1$ is irrational.
- 3. Prove or disprove: the sum of any two irrational numbers is irrational.

Problem 2. Prove that for any non zero integer n, m, gcd(n, m) is a linear combination of n and m. Namely, there are integers k, l such that gcd(n,m) = kn + lm.

[Hint: Use the Beźout Identity and another proposition we have seen in class!]

Problem 3. Use complete induction to prove that each natural number n > 0 can be written as the product $n = 2^m \cdot k$, where $m \in \mathbb{N}$ and $k \in \mathbb{N}_{odd}$.

- **Problem 4.** 1. $f_1 : \mathbb{R} \to range(f_1)$, defined by $f_1(x) = 5x x^2$. Compute $f_1(1)$.
 - 2. $f_2 : \mathbb{R} \rightarrow range(f_2)$, defined by $f_2(x) = \{x^2\}$. Compute $f_2(5)$.
 - 3. $f_3 : P(\mathbb{R}) \rightarrow range(f_3)$, defined by $f_3(x) = x \cap \mathbb{N}$. Compute $f_3(\{1, \pi, -1\})$ and $f_3((-\infty, 5))$.
 - 4. $f_4: P(\mathbb{N}) \to range(f_4)$, defined by $f_4(x) = \begin{cases} \min(x) & 4 \in x \\ x & else \end{cases}$. Compute $f_4(\mathbb{N}_{even})$ and $f_4(\{n \in \mathbb{N} \mid n^2 - 2n + 1 \le 9\})$.
 - 5. $f_5: P(\mathbb{R}) \to range(f_5)$, defined by $f_5(X) = \langle X \cap \mathbb{N}, X \cap \mathbb{Z}, X \cap \mathbb{Q} \rangle$. Compute $f_5(\mathbb{Z})$ and $f_5([-1, 1])$.
 - 6. $f_6 : \mathbb{N} \times \mathbb{Z} \rightarrow range(f_6)$, defined by $f_6(\langle n, m \rangle) = \{x \in \mathbb{N} \mid n < x < m\}$. Compute $f_6(\langle 1, 5 \rangle)$ and $f_6(\langle 1, -1 \rangle)$.

Problem 5. For each of the functions from the previous exercise, find their domain and range.