Homework 9

MATH 215 (due November 14) November 7, 2022

Problem 1. 1. Prove that $\sqrt{3}$ is irrational.
2. Prove that $\sqrt{3}+1$ is irrational.
3. Prove or disprove: the sum of any two irrational numbers is irrational.

Homework 9

MATH 215

Problem 2. Prove that for any non zero integer $n, m, \operatorname{gcd}(n, m)$ is a linear combination of n and m. Namely, there are integers k, l such that $\operatorname{gcd}(n, m)=k n+l m$.
[Hint: Use the Beźout Identity and another proposition we have seen in class!]

Homework 9

MATH 215

Problem 3. Use complete induction to prove that each natural number $n>0$ can be written as the product $n=2^{m} \cdot k$, where $m \in \mathbb{N}$ and $k \in \mathbb{N}_{\text {odd }}$.

Problem 4. 1. $f_{1}: \mathbb{R} \rightarrow \operatorname{range}\left(f_{1}\right)$, defined by $f_{1}(x)=5 x-x^{2}$.
Compute $f_{1}(1)$.
2. $f_{2}: \mathbb{R} \rightarrow \operatorname{range}\left(f_{2}\right)$, defined by $f_{2}(x)=\left\{x^{2}\right\}$.

Compute $f_{2}(5)$.
3. $f_{3}: P(\mathbb{R}) \rightarrow \operatorname{range}\left(f_{3}\right)$, defined by $f_{3}(x)=x \cap \mathbb{N}$.

Compute $f_{3}(\{1, \pi,-1\})$ and $f_{3}((-\infty, 5))$.
4. $f_{4}: P(\mathbb{N}) \rightarrow \operatorname{range}\left(f_{4}\right)$, defined by $f_{4}(x)=\left\{\begin{array}{ll}\min (x) & 4 \in x \\ x & \text { else }\end{array}\right.$.

Compute $f_{4}\left(\mathbb{N}_{\text {even }}\right)$ and $f_{4}\left(\left\{n \in \mathbb{N} \mid n^{2}-2 n+1 \leq 9\right\}\right)$.
5. $f_{5}: P(\mathbb{R}) \rightarrow \operatorname{range}\left(f_{5}\right)$, defined by $f_{5}(X)=\langle X \cap \mathbb{N}, X \cap \mathbb{Z}, X \cap \mathbb{Q}\rangle$.

Compute $f_{5}(\mathbb{Z})$ and $f_{5}([-1,1])$.
6. $f_{6}: \mathbb{N} \times \mathbb{Z} \rightarrow \operatorname{range}\left(f_{6}\right)$, defined by $f_{6}(\langle n, m\rangle)=\{x \in \mathbb{N} \mid n<x<m\}$. Compute $f_{6}(\langle 1,5\rangle)$ and $f_{6}(\langle 1,-1\rangle)$.

Homework 9

MATH 215

Problem 5. For each of the functions from the previous exercise, find their domain and range.

