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ABSTRACT

We continue the work done in [3], [1]. We prove that for every set A

in a Magidor–Radin generic extension using a coherent sequence such

that o
�U (κ) < κ, there is a subset C′ of the Magidor club such that

V [A] = V [C′]. Also we classify all intermediate ZFC transitive models

V ⊆ M ⊆ V [G].

1. Introduction

In this paper we consider the version of Magidor–Radin forcing for o
�U (κ) ≤ κ,

but prove results for o
�U (κ) < κ. Section 2, will also be relevant to the forcing

in Part II.

Denote by CG, the generic Magidor–Radin club derived from a generic fil-

ter G. In [1], the authors proved the following:

Theorem 1.1: Let �U be a coherent sequence and G ⊆ M[�U ] be a V -generic

filter such that o
�U (β) < δ0 := min{α | 0 < o

�U (α)} for every β ∈ CG ∪ {κ}.
Then for every set A ∈ V [G], there is C ⊆ CG such that V [A] = V [C].

In this paper we would like to generalize this result to the case where o
�U(κ)<κ.

Formally, we prove this generalization by induction κ, namely, the inductive

hypothesis is that for every δ < κ, any coherent sequence �W with maximal
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measurable δ, and any set A in a generic extension V [H ], where H ⊆ M[ �W ],

there is C ⊆ CH such that V [A] = V [C]. Here we do not restrict the order

of δ’s below κ. To be precise, the proof given in this paper is the inductive step

for the case o
�U (κ) < κ:

Theorem 1.2: Let U be a coherent sequence with maximal measurable κ such

that o
�U (κ) < κ. Assume the inductive hypothesis that for every δ < κ, any

coherent sequence �W with maximal measurable δ, and any set A in a generic

extension V [H ] for H ⊆ M[ �W ], there is C ⊆ CH such that V [A] = V [C]. Then

for every V -generic filter G ⊆ M[�U ] and any set A ∈ V [G], there is C ⊆ CG

such that V [A] = V [C].

As a corollary of this, we obtain the main result of this paper:

Theorem 1.3: Let �U be a coherent sequence such that o
�U (κ) < κ. Then for

every V -generic filter G ⊆ M[�U ], such that ∀α ∈ CG.o
�U (α) < α and every

A ∈ V [G], there is C ⊆ CG such that V [A] = V [C].

The first problem which rises when we let o
�U (κ) ≥ δ0 is that we might lose

completness for some of the pairs in a condition p. For example, if

p = 〈〈δ0, A0〉, 〈κ,A1〉〉,

we will be unable to take into account all the measures on κ, since there are δ0

many of them and only δ0-completness. The idea is to split M[�U ] to the part

below o
�U (κ) and above it. The cardinality of the lower part is lower than the the

degree of ≤∗-closure of the upper part. The upper part is an instance of M[�U ],

where the order of every measurable is below the order of κ which is similar to

the framework of Theorem 1.1, then some but not all of the arguments of [1]

generalize.

Note that the classification we had in [1] for models of the form V [C′] does
not extend, even if o

�U (κ) = δ0.

Example 1.4: Consider CG such that CG(ω) = δ0 and o
�U (κ) = δ0. Then in V [G]

we have the following sequence C′ = 〈CG(CG(n)) | n < ω〉 of points of the

generic CG which is determined by the first Prikry sequence at δ0.

Then I(C′, CG) = 〈CG(n) | n < ω〉 /∈ V , where I(X,Y ) is the indices

of X ⊆ Y in the increasing enumeration of Y .

The forcingMI [�U ] which was defined in [1] is no longer defined in V since I /∈V.
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In this case, we will add points to C′, which are simply 〈CG(n) | n < ω〉,
then the forcing will be a two-step iteration. The first will be to add the

Prikry sequence 〈CG(n) | n < ω〉, then the second will be a Diagonal Prikry

forcing adding points from the measures 〈U(κ,CG(n)) | n < ω〉, which is of the

form MI [�U ].

Generally, we will define forcing Mf [�U ], which are not subforcing of M[�U ],

but are a natural diagonal generalization of M[�U ] and a bit closer to Magidor’s

original formulation in [5].

The classification of models is given by the following theorem:

Theorem 1.5: Assume that for every α ≤ κ, o
�U (α) < α. Then for ev-

ery V -generic filter G ⊆ M[�U ] and every transitive ZFC intermediate model

V ⊆ M ⊆ V [G], there is a closed subset Cfin ⊆ CG such that:

(1) M = V [Cfin].

(2) There is a finite iteration Mf1 [�U ]∗M
∼
f2 [�U ]∗· · ·∗M

∼
fn [�U ], and a V -generic

H∗ filter for Mf1 [�U ] ∗M
∼
f2 [�U ] ∗ · · · ∗M

∼
fn [�U ] such that

V [H∗] = V [Cfin] = M.

2. Basic definitions and preliminaries

We will follow the description of Magidor forcing as presented in [2].

Let �U = 〈U(α, β) | α ≤ κ , β < o
�U (α)〉 be a coherent sequence. For

every α ≤ κ, denote

∩�U(α) =
⋂

i<o�U (α)

U(α, i).

Definition 2.1: M[�U ] consists of elements p of the form p = 〈t1, . . . , tn, 〈κ,B〉〉.
For every 1 ≤ i ≤ n, ti is either an ordinal κi if o

�U (κi) = 0 or a pair 〈κi, Bi〉
if o

�U (κi) > 0.

(1) B ∈ ∩�U(κ), min(B) > κn.

(2) For every 1 ≤ i ≤ n,

(a) 〈κ1, . . . , κn〉 ∈ [κ]<ω (increasing finite sequence below κ),

(b) Bi ∈ ∩�U(κi),

(c) min(Bi) > κi−1 (i > 1).
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Definition 2.2: For p = 〈t1, t2, . . . , tn, 〈κ,B〉〉, q = 〈s1, . . . , sm, 〈κ,C〉〉 ∈ M[�U ],

define p ≤ q (q extends p) iff:

(1) n ≤ m.

(2) B ⊇ C.

(3) ∃1 ≤ i1 < · · · < in ≤ m such that for every 1 ≤ j ≤ m:

(a) If ∃1≤r≤n such that ir=j then κ(tr)=κ(sir ) and C(sir ) ⊆ B(tr).

(b) Otherwise ∃ 1 ≤ r ≤ n+ 1 such that ir−1 < j < ir then

(i) κ(sj) ∈ B(tr),

(ii) B(sj) ⊆ B(tr) ∩ κ(sj),

(iii) o
�U (sj) < o

�U (tr).

We also use “p directly extends q”, p ≤∗ q if:

(1) p ≤ q,

(2) n = m.

Let us add some notation: for a pair t = 〈α,X〉 we denote κ(t) = α, B(t) = X .

If t = α is an ordinal then κ(t) = α and B(t) = ∅.
For a condition p = 〈t1, . . . , tn, 〈κ,B〉〉 ∈ M[�U ] we denote n = l(p), pi = ti,

Bi(p) = B(ti) and κi(p) = κ(ti) for any 1 ≤ i ≤ l(p), tl(p)+1 = 〈κ,B〉, t0 = 0.

Also denote

κ(p) = {κi(p) | i ≤ l(p)} and B(p) =
⋃

i≤l(p)+1

Bi(p).

Remark 2.3: Condition 3.b.iii is not essential, since the set

{p ∈ M[�U ] | ∀i ≤ l(p) + 1.∀α ∈ Bi(p).o
�U (α) < o

�U (κi(p))}
is a dense subset of M[�U ] and the order between any two elements of this dense

subset automatically satisfies 3.b.iii.

Definition 2.4: Let p∈M[�U ]. For every i≤ l(p)+1, and α∈Bi(p) with o
�U (α)>0,

define

p�〈α〉 = 〈p1, . . . , pi−1, 〈α,Bi(p) ∩ α〉, 〈κi(p), Bi(p) \ (α+ 1)〉, pi+1, . . . , pl(p)+1〉.
If o

�U (α) = 0, define

p�〈α〉 = 〈p1, . . . , pi−1, α, 〈κi(p), Bi(p) \ (α+ 1)〉, . . . , pl(p)+1〉.
For 〈α1, . . . , αn〉 ∈ [κ]<ω define recursively,

p�〈α1, . . . , αn〉 = (p�〈α1, . . . , αn−1〉)�〈αn〉.
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Proposition 2.5: Let p ∈ M[�U ]. If p��α ∈ M[�U ], then it is the minimal

extension of p with stem

κ(p) ∪ {�α1, . . . , �α|�α|}

Moreover, p��α ∈ M[�U ] iff for every i ≤ |�α| there is j ≤ l(p) such that:

(1) �αi ∈ (κj(p), κj+1(p)).

(2) o
�U (�αi) < o

�U (κj+1).

(3) Bj+1(p) ∩ �αi ∈ ∩�U(�αi).

Note that if we add a pair of the form 〈α,B ∩ α〉, then in B ∩ α there might

be many ordinals which are irrelevant to the forcing, namely, ordinals β ∈ B∩α

with o
�U (β) ≥ o

�U (α); such ordinals cannot be added to the sequence.

Definition 2.6: Let p ∈ M[�U ]. Define for every i ≤ l(p)

p � κi(p) = 〈p1, . . . , pi〉 and p � (κi(p), κ) = 〈pi+1, . . . , pl(p)+1〉.

Also, for λ with o
�U (λ) > 0 define

M[�U ] � λ = {p � λ | p ∈ M[�U ] and λ appears in p},
M[�U ] � (λ, κ) = {p � (λ, κ) | p ∈ M[�U ] and λ appears in p}.

Note that M[�U ] � λ is just Magidor forcing on λ and M[�U ] � (λ, κ) is a subset

of M[�U ]. The following decomposition is straightforward.

Proposition 2.7: Let p ∈ M[�U ] and 〈λ,B〉 be a pair in p. Then

M[�U ]/p � (M[�U ] � λ)/(p � λ)× (M[�U ] � (λ, κ))/(p � (λ, κ)).

Remark 2.8: When considering �U in some model V ⊆ N ⊆ V [CG ∩λ], since we

added generic sequences, not all of the measures in �U remain measures in N .

However, each measure U(ξ, i) for λ < ξ ≤ κ and i < o
�U (ξ) generates a normal

measure W (ξ, i) over ξ such that

�W = 〈W (ξ, i) | λ < ξ ≤ κ, i < o
�U (ξ)〉

is a coherent sequence. Since M[�U ] � (λ, κ) is a dense subset of M[ �W ], forcing

over N with M[�U ] � (λ, κ) is the same as forcing with M[ �W ].
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Proposition 2.9: Let p ∈ M[�U ] and 〈λ,B〉 be a pair in p. Then the order ≤∗

in the forcing (M[�U ] � (λ, κ))/(p � (λ, κ)) is δ-directed where

δ = min{ν > λ | o�U (ν) > 0},

meaning that for every X ⊆ M[�U ] � (λ, κ) such that |X | < δ and for every

q ∈ X, p ≤∗ q, there is an ≤∗-upper bound for X .

Lemma 2.10: M[�U ] satisfies κ+-c.c.

The following is known as the Prikry condition:

Lemma 2.11: M[�U ] satisfies the Prikry condition, i.e., for any statement in the

forcing language σ and any p ∈ M[�U ] there is p ≤∗ p∗ such that p∗||σ, i.e.,
either p∗ � σ or p � ¬σ.
The next lemma can be found in [5]:

Lemma 2.12: Let G ⊆ M[�U ] be generic and suppose that A ∈ V [G] is

such that A ⊆ Vα. Let p ∈ G and 〈λ,B〉 be a pair in p such that α < λ.

Then A ∈ V [G � λ].

Proof. Consider the decomposition 2.7 p = 〈q, r〉, where q ∈ M[�U ] � λ

and r ∈ M[�U ] � (λ, κ). Work in V [G � λ]. Let A∼ be a M[�U ] � (λ, κ)-name for A.

For every x ∈ Vα use the Prikry condition 2.11, to find r ≤∗ rx such that rx

decides the statement r ∈ A∼. By definition of λ and Proposition 2.15, the forcing

M[�U ] � (λ, κ) is |Vα|+-directed with the ≤∗ order. Hence there is r ≤∗ r∗ such

that px ≤∗ p∗ for every x ∈ Vα. By density, we can find such r∗ ∈ G � (λ, κ). It
follows that A = {x ∈ Vα | r∗ � x ∈ A∼} is definable in V [G � λ].

Corollary 2.13: M[�U ] preserves all cardinals.

Definition 2.14: Let G ⊆ M[�U ] be generic. Define the Magidor club

CG = {ν | ∃p ∈ G∃i ≤ l(p) s.t. ν = κi(p)}.
We will abuse notation by sometimes considering CG as the canonical enu-

meration of the set CG. The set CG is closed and unbounded in κ, therefore, the

order type of CG determines the cofinality of κ in V [G]. The next propositions

can be found in [2].
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Proposition 2.15: Let G ⊆ M[�U ] be generic. Then G can be reconstructed

from CG as follows:

G = {p ∈ M[�U ] | (κ(p) ⊆ CG) ∧ (CG \ κ(p) ⊆ B(p))}.
In particular V [G] = V [CG].

Proposition 2.16: Let G ⊆ M[�U ] be generic.

(1) CG is a club at κ.

(2) For every δ ∈ CG, o
�U (δ) > 0 iff δ ∈ Lim(CG).

(3) For every δ ∈ Lim(CG), and every A ∈ ∩�U(δ), there is ξ < δ such that

CG ∩ (ξ, δ) ⊆ A.

(4) If 〈δi | i<θ〉 is an increasing sequence of elements ofCG, let δ
∗=supi<θ δi.

Then o
�U (δ∗) ≥ lim supi<θ o

�U (δi) + 1.1

(5) Let δ ∈ Lim(CG) and let A be a positive set, A ∈ (∩�U(δ))+, i.e.,

δ \A /∈ ∩�U(δ).2 Then sup(A ∩ CG) = δ.

(6) If A ⊆ Vα, then A ∈ V [CG ∩ λ], where λ = max(Lim(CG) ∩ α+ 1).

(7) For every V -regular cardinal α, if cfV [G](α) < α then α ∈ Lim(CG).

Proof. (1), (2), (3) can be found in [2].

To see (4), use closure of CG, and find q ∈ G such that δ∗ appears in q. Since

there are only finitely many ordinals in q, there is some i < θ such that for

every j > i, δj does not appear in q. By 2.2, since every such δj appears in

some qj ∈ G which is compatible with q, o
�U (δj) < o

�U (δ∗). Hence

lim sup
j<θ

o
�U (δj) + 1 ≤ sup

i<j<θ
o
�U (δj) + 1 ≤ o

�U (δ∗).

For (5), let ρ < δ. Each condition p, such that δ = κi(p) for some i ≤ l(p) + 1,

must satisfy that sup(A ∩ Bi(p)) = δ. Hence we can extend p using an ele-

ment of A ∩ Bi(p) above ρ. By density, sup(A ∩ CG) ≥ ρ. Since ρ is general,

sup(A ∩ CG) = δ.

(6) is a direct corollary of 2.12. As for (7), assume that cfV [G](α) < α,

and let X ⊆ α be a club such that otp(X) = cfV [G](α). Then X ∈ V [G] \ V .

Let λ = max(Lim(CG) ∩ α + 1), then λ ≤ α. By (6), X ∈ V [CG ∩ λ]. To-

ward a contradiction, assume that λ < α, then the forcing M[�U ] � λ is α-c.c.,

but cfV [CG∩λ](α) < α, contradiction.

1 For a sequence of ordinals 〈ρj | j < γ〉, lim supj<γ ρj = min{supi<j<γ ρj | i < γ}.
2 Equivalently, if there is some i < o

�U (δ) such that A ∈ U(δ, i).
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The Mathias-like criteria for Magidor forcing is due to Mitchell [6]:

Theorem 2.17: Let U be a coherent sequence and assume that c : α → κ is

an increasing function. Then c is M[�U ]-generic iff:

(1) c is continuous.

(2) c � β is M[�U � β]-generic for every β ∈ Lim(α).

(3) X ∈ ∩�U(κ) iff ∃β < κ, Im(c) \ β ⊆ X .

An equivalent formulation of the Mathias criteria is to require that for every

β ∈ Lim(α), and for every X ∈ ∩�U(c(β)), there is ξ < β such that c′′(ξ, β) ⊆ X .

For an additional proof of 2.17, we refer the reader to the last section, where

we define a forcing notion Mf [�U ], which generalizes M[�U ], and prove in 5.14 a

Mathias-like criteria for it.

Proposition 2.18: Let G ⊆ M[�U ] be a V -generic filter and CG the corre-

sponding Magidor sequence. Let p ∈ G, then for every i ≤ l(p) + 1:

(1) If o
�U (κi(p)) ≤ κi(p), then

otp([κi−1(p), κi(p)) ∩ CG) = ωo
�U (κi(p)).

(2) If o
�U (κi(p)) ≥ κi(p), then

otp([κi−1(p), κi(p)) ∩CG) = κi(p).

Proof. We prove (1) by induction on κi(p). If κi(p) = 0, then

CG ∩ [κi−1(p), κi(p)) = {κi−1(p)}.
Hence

otp(CG ∩ [κi−1(p), κi(p))) = 1 = ω0 = ωo
�U (κi(p)).

Assume the lemma holds for any δ < κi(p). If o
�U (κi(p)) = α + 1 ≤ κi(p),

then

X = {β < κi(p) | o�U (β) = α} ∈ U(κi(p), α),

hence by Proposition 2.16

sup(X ∩ CG ∩ [κi−1(p), κi(p))) = κi(p).

We claim that otp(X ∩ CG ∩ [κi−1(p), κi(p)) = ω. Otherwise, let ρ < κi(p) be

such that ρ is a limit point ofX∩CG∩[κi−1(p), κi(p)). Again by Proposition 2.16

o
�U (ρ) ≥ lim sup(o

�U (ξ) | ξ ∈ X ∩ CG ∩ [κi−1(p), κi(p))) = α+ 1,
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contradicting Definition 2.2. Let 〈δn | n < ω〉 be the increasing enumeration

of X ∩CG ∩ [κi−1(p), κi(p)). By induction hypothesis, for every n < ω,

otp(CG ∩ [δn, δn+1)) = ωα.

Hence

otp(CG ∩ [κi−1(p), κi(p)) = ωα+1.

For limit o
�U (κi(p)), use Proposition 2.16(5) to see that the sequence

〈δα | α < o
�U (κi(p))〉

where

δα = min{ρ ∈ CG ∩ [κi−1(p), κi(p)) | o�U (ρ) = α}
is well defined; x = sup(δα | α < θ) ≤ κi(p) is an element of CG and, by Propo-

sition 2.16(4), o
�U (x) ≥ o

�U (κi(p)), hence x = κi(p). For every α < o
�U (κi(p)),

otp(CG ∩ [κi(p), δα)) = ωα,

since p�〈δα〉 ∈ G and by induction hypothesis. It follows that

otp(CG ∩ [κi−1(p), κi(p)) = sup
α<o�U (κi(p))

(otp(CG ∩ [κi−1(p), δα))

= sup
α<o�U (κi(p))

ωα = ωo
�U (κi(p)).

For (2), use (1) and the limit stage to conclude that if o
�U (κi(p)) = κi(p),

then

otp(CG ∩ [κi−1(p), κi(p)) = κi(p).

If o
�U (κi(p)) > κi(p), then {α < κi(p)) | o�U (α) = α} ∈ U(κi(p), κi(p)), hence by

Proposition 2.16 there are unboundedly many α ∈ CG ∩ [κi−1(p), κi(p)) =: Y

such that o
�U (α) = α. Hence

κi(p) = sup(Y ) = sup(otp(CG ∩ [κi−1(p), α) | α ∈ Y ) ≤ κi(p),

so equality holds.

Proposition 2.18 suggests a connection between the index in CG of ordinals

appearing in p and the Cantor normal form.
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Definition 2.19: Let p ∈ G. For each i ≤ l(p) define

γi(p) =

i∑
j=1

ωo
�U (κj(p)).

Also for an ordinal α, denote oL(α) = γn where α =
∑n

i=1 ω
γi ·mi is the Cantor

normal form and γ1 > γ2 > · · · > γn.

Corollary 2.20: Let G ⊆ M[�U ] be V -generic and CG the corresponding

Magidor sequence.

(1) If p ∈ G, then for every 1 ≤ i ≤ l(p),

p � ∼CG(γi(p)) = κi(p).

(2) For every α < otp(CG),

o
�U (CG(α)) = oL(α).

Proof. This is directly from 2.18.

For more details and basic properties of Magidor forcing see [5], [2] or [1].

We are going to handle subsequences of the generic club; the following simple

definition will turn out to be useful.

Definition 2.21: Let X,X ′ be sets of ordinals such that X ′ ⊆ X ⊆ On.

Let α = otp(X,∈) be the order type of X and φ : α → X be the order iso-

morphism witnessing it. The indices of X ′ in X are

I(X ′, X) = φ−1′′X ′ = {β < α | φ(β) ∈ X ′}.
In the last part of the proof we will need the definition of quotient forcing.

Definition 2.22: Let ∼C
′ be a M[�U ]-name for a subset of CG, and let C′ ⊆ CG

such that ∼C
′
G = C′. Define P

∼C
′ , the complete subalgebra of 〈RO(M[�U ]),≤B 〉3

generated by the conditions X = {||α ∈ ∼C
′|| | α < κ}.

By [4, 15.42], V [C′] = V [H ] for some V -generic filter H of P
∼C

′ . In fact,

C′ = {α < κ | ||α ∈ ∼C
′|| ∈ X ∩H}.

3 RO(M[�U ]) is the set of all regular open cuts of M[�U ](see for example [4, Thm. 14.10]), as

usual we identify M[�U ] as a dense subset of RO(M[�U ]). The order ≤B is in the standard

position of Boolean algebras orders i.e., p ≤B q means p � q ∈ Ĝ.
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Definition 2.23: Define the function π : M[�U ] → P
∼C

′ by

π(p) = inf(b ∈ P
∼C

′ | p ≤B b).

It not hard to check that π is a projection, i.e.,

(1) π is order preserving,

(2) ∀p ∈ M[�U ].∀q ≤B π(p).∃p′ ≥ p.π(p′) ≤B q,

(3) Im(π) is dense in P
∼C

′ .

Definition 2.24: Let π : P → Q be any projection, let H ⊆ Q be V -generic, and

define
P/H = π−1′′H.

We abuse notation by defining M[�U ]/C′ = M[�U ]/H , where H is some generic

for P
∼C

′ such that V [H ] = V [C′]. It is known that if G is V [C′]-generic

forM[�U ]/C′, then G is V -generic forM[�U ] and ¯π′′G=H , hence V [G]=V [C′][G].

3. Magidor forcing with o
�U (κ) ≤ κ

Assume that o
�U (κ) ≤ κ. Let G ⊆ M[�U ] be a V -generic filter, and let p ∈ G.

By Proposition 2.18, otp(CG ∩ (κl(p)(p), κ)) = ωo
�U (κ). Hence,

(3.1) cfV [G](κ) = cfV [G](ωo
�U (κ))

Corollary 3.1: (1) If o
�U (κ) < κ, then κ is singular in V [G].

(2) If o
�U (κ) = κ, then cfV [G](κ) = ω.

Proof. (1) follows directly from equation (3.1). For (2), the set

E = {α < κ | o�U (α) < α} ∈ ∩�U(κ).

Hence, by proposition 2.16 find ρ < κ such that CG \ ρ ⊆ E. In V [G] con-

sider the sequence: α0 = min(CG \ ρ), then αn+1 = CG(αn). This is a

well defined sequence of ordinals below κ since otp(CG) = κ. Also, since

{α < κ | ωα = α} ∈ ∩�U(κ), there is n < ω such that for every m ≥ n,

o
�U (αm+1) = αm.

To see that α∗ := supn<ω αn = κ, assume otherwise, then by closure of CG,

α∗ ∈ CG. Also α∗ > ρ, hence o
�U (α∗) < α∗. By proposition 2.16(4),

o
�U (α∗) ≥ lim sup

n<ω
o
�U (αn) + 1 = sup

n<ω
αn = α∗,

a contradiction.
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If o
�U (κ) ≤ κ we can decompose every set A ∈ ∩�U(κ) in a very canonical way:

Proposition 3.2: Assume that o
�U (κ) ≤ κ. Let A ∈ ∩�U(κ).

(1) For every i < κ define Ai = {ν ∈ A | o�U (ν) = i}. Then A =
⊎

i<κ Ai

and Ai ∈ U(κ, i).

(2) There exists A∗ ⊆ A such that:

(a) A∗ ∈ ∩�U(κ).

(b) For every 0 < j < o
�U (κ) and α ∈ A∗

j , A
∗ ∩ α ∈ ∩�U(α).

Proof. (1) Note that

Xi := {ν < κ | o�U (ν) = i} ∈ U(κ, i)

and

Ai = Xi ∩ A ∈ U(κ, i).

Moreover, every α < κ, o
�U (α) < κ, since there are at most 22

α

< κ measures

over α.

(2) For any i < o
�U (κ),

Ult(V, U(κ, j)) |= A = jU(κ,j)(A) ∩ κ ∈
⋂
i<j

U(κ, i).

Coherency of the sequence implies that

A′ := {α < κ | A ∩ α ∈ ∩�U(α)} ∈ U(κ, j);

this is for every j < o
�U (κ).

Define inductively A(0) = A, A(n+1) = A
′(n). By definition, ∀α ∈ A

(n+1)
j ,

A(n) ∩ α ∈ ∩�U(α). Define A∗ =
⋂

n<ω A(n) ∈ ∩�U(κ); this set has the required

property.

3.1. Extension types. By convention, for a set of ordinals B, [B]<α is the

set of increasing sequences of length less than α of ordinals in B, [B][<α] is

the set of not necessarily increasing sequences of length less than α of ordinals

in B. For sets of ordinals Bi for 1 ≤ i ≤ n, let
∏n

i=1 Bi be the set of in-

creasing sequence 〈α1, . . . , αn〉 such that αi ∈ Bi. For double indexed sets Bi,j

for 1 ≤ i ≤ n, 1 ≤ j ≤ m, the set
∏n

i=1

∏n
j=1 Bi,j is viewed as a product of sin-

gle indexed sets using the left lexicographical order.
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Definition 3.3: Let p ∈ M[�U ]. Define the following:

(1) For every i ≤ l(p) + 1, let

Bi,α(p) = Bi(p) ∩Xα,

where Xα := {β < κ | o�U (β) = α} are the sets defined in Proposi-

tion 3.2.

(2) Ex(p) =
∏l(p)+1

i=1 [o
�U (κi(p))]

[<ω].

(3) If X ∈ Ex(p), then X is of the form 〈X1, . . . , Xn+1〉. Denote xi,j , the

j-th element of Xi, for 1 ≤ j ≤ |Xi| and mc(X) is the last element of X

and l(X) =
∑n+1

i=1 |Xi|.
(4) Let X ∈ Ex(p); then

�α = 〈 �α1, . . . , �αl(p)+1〉 ∈
l(p)+1∏
i=1

|Xi|∏
j=1

Bi,xi,j (p) =: X(p).

Call X an extension-type of p and �α is of type X ; note that �α is an

increasing sequence of ordinals.

The idea of extension-types is simply to classify extensions of p according to

the measures from which the ordinals added to the stem of p are chosen. Note

that if o
�U (κ) = λ < κ, then there is a bound on the number of extension-types,

|Ex(p)| < min{ν > λ | o�U (ν) > 0}.
By Proposition 3.2 any p ∈ M[�U ] can be extended to p ≤∗ p∗ such that for

every X ∈ Ex(p) and any �α ∈ X(p), p��α ∈ M[�U ]. Let us move to this dense

subset of M[�U ].

Proposition 3.4: Let p ∈ M[�U ] be any condition and p ≤ q ∈ M[�U ]. Then

there exists unique X ∈ Ex(p) and �α ∈ X(p) such that p��α ≤∗ q. Moreover,

for every X ∈ Ex(p) the set {p��α | �α ∈ X(p)} forms a maximal antichain

above p.

Proof. The first part is trivial. We will prove that {p��α | �α ∈ X(p)} forms an

antichain above p, by induction on l(X). For l(X) = 1, we merely have some

X(p) = Bi,ξ(p) ∈ U(κi(p), ξ). To see it is an antichain, let β1 < β2 be in X(p).

Toward a contradiction, assume that p�β1, p
�β2 ≤ q. Then β1 appears in a

pair in q and is added between κi−1(p) and β2, so by Definition 2.2 it must be

that ξ = o
�U (β1) < o

�U (β2) = ξ, a contradiction.
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To see it is maximal, fix q ≥ p and let �α be such that p��α ≤∗ q. Consider

the type of �α,

Y ∈ Ex(p);

then �α ∈ Y (p). In Yi let j be the minimal such that yi,j ≥ ξ. If yi,j = ξ

then q ≥ p�〈αi,j〉 ∈ X(p) and we are done. Otherwise, yi,j > ξ, in which case

one of the pairs in q is of the form 〈αi,j , B〉 where B ∈ ∩�U(αi,j) and B ⊆ Bi(p).

Any α ∈ B ∩Bi,ξ(p) will satisfy that p�〈α〉 ∈ X(p) and p�〈α〉, q ≤ q�〈α〉.
Assume that the claim holds for l(X) = n, and let X ∈ Ex(p) be such

that l(X) = n+1. Let �α, �β ∈ X(p) be distinct. If for some xi,j �= mc(X) we have

αi,j �= βi,j , apply the induction to X \mc(X) to see that p��α\α∗, p��β \β∗ are

incompatible, hence p��α, p��β are incompatible. If �α\α∗ = �β\β∗, then α∗ �= β∗

and by the case n = 1 we are done. To see it is maximal, let q ≥ p apply

the induction to X ′ which is the extension-type obtained from X by removing

mc(X) to find �α ∈ X ′(p) such that p��α is compatible with q and let q′ be a

common extension. Again by the case n = 1, there is 〈α〉 ∈ mc(X)(p��α) such

that p��α�〈α〉 and q′ are compatible.

Definition 3.5: Let U1, . . . , Un be ultrafilters on κ1 ≤ · · · ≤ κn respectively,

and define recursively the ultrafilter
∏n

i=1 Ui over
∏n

i=1 κi, as follows: for

B ⊆ ∏n
i=1 κi

B ∈
n∏

i=1

Ui ↔
{
α1 < κ1 | Bα1 ∈

n∏
i=2

Ui

}
∈ U1

where Bα = B ∩ ({α} ×∏n
i=2 κi).

Proposition 3.6: If U1, . . . , Un are normal ultrafilters, then
∏n

i=1 Ui is gener-

ated by sets of the form A1 × · · · ×An such that Ai ∈ Ui.

Proof. By induction of n, for n = 1 there is nothing to prove. Assume

that the proposition holds for n − 1, and let B ∈ ∏n
i=1 Ui. By definition,

A1 = {α1 < κ1 | Bα1 ∈ ∏n
i=2 Ui} ∈ U1, and by the induction hypoth-

esis each Bα1 contains a set of the form A2,α1 × · · · ×An,α1 . By normality,

Ai := Δα∈A1Ai,α ∈ Ui. Consider 〈α1, . . . , αn〉 ∈ A1×· · ·×An, by convention, for

each 2 ≤ i ≤ n, α1 ≤ αi, and by definition of diagonal intersection, αi ∈ Ai,α1 ,

hence 〈α2, . . . , αn〉 ∈ A2,α1 × · · · × An,α1 ⊆ Bα1 . It follows by the definition

of Bα1 that 〈α1, . . . , αn〉 ∈ B, hence A1 × · · · ×An ⊆ B.
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Every X ∈ Ex(p) defines an ultrafilter

�U(X, p) =

n+1∏
i=1

|Xi|∏
j=1

U(κi(p), xi,j).

Note that X(p) ∈ �U(X, p) by the definition of the product. Fix an extension-

type X of p; every extension of p of type X corresponds to some element in the

set X(p) which is just a product of large sets.

Let us state here some combinatorial properties; the proof can be found in [1].

Lemma 3.7: Let κ1 ≤ κ2 ≤ · · · ≤ κn be a non-descending finite sequence

of measurable cardinals and let U1, . . . , Un be normal measures4 over them

respectively. Assume F :
∏n

i=1 Ai −→ ν where ν < κ1 and Ai ∈ Ui. Then

there exists Hi ⊆ Ai, Hi ∈ Ui such that
∏n

i=1 Hi is homogeneous for F , i.e.,

| Im(F �
∏n

i=1 Hi)| = 1.

Let F :
∏n

i=1 Ai → X be a function, and I ⊆ {1, . . . , n}. Let
( n∏

i=1

Ai

)
I

=

{
�α � I | �α ∈

n∏
i=1

Ai

}
.

For �α′ ∈ (
∏n

i=1 Ai)I , define FI(�α
′) = F (�α) where �α � I = �α′. With no further

assumption, FI is not a well defined function.

Lemma 3.8: Let κ1 ≤ κ2 ≤ · · · ≤ κn be a non descending finite sequence

of measurable cardinals and let U1, . . . , Un be normal measures over them, re-

spectively. Assume F :
∏n

i=1 Ai −→ B where B is any set, and Ai ∈ Ui.

Then there exist Hi ⊆ Ai, Hi ∈ Ui and set a I ⊆ {1, . . . , n} such that

FI � (
∏n

i=1 Hi)I : (
∏n

i=1 Hi)I → B is well defined and injective.

Definition 3.9: Let F :
∏n

i=1 Ai → X be a function. An important coordi-

nate is an index r ∈ {1, . . . , n}, such that for every �α, �β ∈ ∏n
i=1 Ai,

F (�α) = F (�β) → �α(r) = �β(r).

Lemma 3.8 ensures the existence of a set I of important coordinates, such

that I is ideal in the sense of removing any coordinate defect definition of FI

as a function, and any coordinate outside of I is redundant.

We will need here another property that does not appear in [1].

4 A measure over a measurable cardinal λ is a λ-complete nonprincipal ultrafilter over λ.
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Lemma 3.10: Let κ1 ≤ κ2 ≤ · · · ≤ κn and θ1 ≤ θ2 ≤ · · · ≤ θm be non-

descending finite sequences of measurable cardinals with corresponding normal

measures U1, . . . , Un,W1, . . . ,Wm. Let

F :

n∏
i=1

Ai → X, G :

m∏
j=1

Bj → X

be functions such that X is any set, Ai ∈ Ui and Bj ∈ Wj . Assume that

I ⊆ {1, . . . , n} and J ⊆ {1, . . . ,m} are sets of important coordinates for F,G

respectively obtained by lemma 3.8. Then there exist A′
i ∈ Ui and B′

j ∈ Wj

such that one of the following holds:

(1) Im(F �
∏n

i=1 A
′
i) ∩ Im(G �

∏m
j=1 B

′
j) = ∅.

(2) (
∏n

i=1 A
′
j)I = (

∏m
j=1 B

′
j)J and FI � (

∏n
i=1 A

′
i)I = GJ � (

∏m
j=1 B

′
j)J .

Proof. Fix F,G. Let us first deal with some trivial cases: If I = J = ∅, i.e., F,G
are constantly dF , dG, respectively, either d1 �= d2 and (1) holds, or d1 = d2

and (2) holds. If I = ∅ and j0 ∈ J �= ∅, then F is constantly dF . If dF /∈ Im(G)

then (1) holds, otherwise, there is �β such that G(�β) = dF ; remove �βj0 from Bj0 ,

then . If �β′ ∈ B1 × · · · × Bj0 \ {�βj0} × · · · × Bm, then G(�β′) �= dF , otherwise,
�β′ � J = �β � J and in particular �βj0 = �β′

j0
, a contradiction. Similarly, if J = ∅

and I �= ∅ then we can ensure (1). We assume that I, J �= ∅; also, without
loss of generality, assume that κ1 ≤ θ1. If κ1 < θ1, shrink the sets so that

min(B1) > κ1. We proceed by induction on 〈n,m〉 ∈ N2
+ with respect to the

lexicographical order.

Case 1: Assume that n = m = 1. Assume that I, J �= ∅. Define

H1 : A1 ×B1 → {0, 1}, H1(α, β) = 1 ⇔ F (α) = G(β).

By Lemma 3.7, shrink A1, B1 to A′
1, B

′
1 so that H1 is constant with colors c1.

If c1 = 1, by fixing α we see that G is constant on B′
1 with some value γ.

It follows that J = ∅, a contradiction. Assume that c1 = 0; then for every

α ∈ A1, β ∈ B1 if α < β we have H1(α, β) = 0, which implies F (α) �= G(β).

This suffices for the case κ1 < θ1. If κ1 = θ1, then it is possible that β < α, so

define

H2 : B1 ×A1 → {0, 1} H2(β, α) = 1 ⇔ F (α) = G(β).

Again shrink the sets so that H2 is constantly c2 ∈ {0, 1}. In case c2 = 1

we reach a similar contradiction to c1 = 1. Assume that c2 = 0, together
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with c1 = 0; it follows that if β �= α then F (α) �= G(β). If U1 �= W1, then we

can avoid the situation where α = β by separating A′
1, B

′
1 and conclude that

Im(F � A′
1) ∩ Im(G � B′

1) = ∅.
If U1 = W1 then define

H3 : A′
1 ∩B′

1 → {0, 1}, H3(α) = 1 ⇔ F (α) = G(α).

Again by 3.7 we can assume that H3 is constant on A∗. If that constant is 1

then we have

F � A∗ = G � A∗

(in particular, I = J = {1} and FI � (A∗)I = GJ � (A∗)J ), otherwise

Im(F � A∗) ∩ Im(G � A∗) = ∅.

Case 2a: Assume n = 1 and m > 1. By the assumption that I, J �= ∅,
I = {1}. Define

H1 : A1 ×
m∏
j=1

Bj → {0, 1}, H1(α, �β) = 1 ⇔ F (α) = G(�β).

Shrink the sets so that H1 is constantly c1. As before, if c1 = 1 then F,G

are constant which is a contradiction. Assume that c1 = 0, which means that

whenever α < β1, then F (α) �= G(�β). As before, if κ1 < θ1 then we are done.

If κ1 = θ1, for each β ∈ B1, consider the function

Gβ :

m∏
j=2

Bj \ (β + 1) → X, Gβ(�β) = G(β��β).

Apply induction to F and Gβ , {1}, J \ {1} to find

Aβ
1 ∈ U1, Bβ

j ∈ Wj for 2 ≤ j ≤ m

such that one of the following holds:

(1) Aβ
1 = (

∏m
j=1 B

β
j )J\{1}, and F � Aβ

1 = (Gβ)J\{1} � (
∏m

j=2 B
β
j )J\{1}.

(2) Im(F � Aβ
1 ) ∩ Im(Gβ �

∏m
j=2 B

β
j ) = ∅.

Denote by jβ ∈ {1, 2} the relevant case. There is B′
1 ⊆ B1, B

′
1 ∈ W1, and

j∗ ∈ {1, 2} such that for every β ∈ B′
1, jβ = j∗. Let

A′
1 = Δβ∈B′

1
Aβ

1 , B′
j = Δβ∈B′

1
Bβ

j

(since θ1 = κ1 we can take the diagonal intersection).
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If j∗ = 1, then sinceAβ
1 = (

∏m
j=1 B

β
j )J\{1}, it follows that J={j0} andAβ

1 =Bβ
j0
,

thus A′
1 = B′

j0 . Also for β1, β
′
1, and some β1, β

′
1 < β2, . . . , βm in the product,

G(〈β1, . . . , βm〉) = (mbnGβ1)j0(βj0 )

= F (βj0) = (Gβ′
1
)j0(βj0)

= G(〈β′
1, . . . , βn〉).

Hence 1 /∈ J , A′
1 = B′

j0
= (

∏m
j=1 B

′
j)J and F1 � A′

1 = Gj0 � B′
j0
.

If j∗ = 2, for every 〈β1, . . . , βm〉 ∈ ∏m
j=1 B

′
j ,

G(〈β1, . . . , βm〉) ∈ Im

(
Gβ1 �

m∏
j=1

Bβ
j

)
.

Now if β1 < α ∈ A′
1 then by definition of diagonal intersection α ∈ Aβ1

1 and

therefore F (α) ∈ Im(F � Aβ1

1 ) and we are done. Together with the assumption

that c1 = 0, we conclude that if α �= β1 then F (α) �= G(�β). As before, we

can avoid this situation if U1 �= W1. Assume that U1 = W1, and assume

that A′
1 = B′

1. Let

T1 : A′
1 ×

m∏
j=2

B′
j → {0, 1}, T1(α, �β) = 1 ⇔ F (α) = G(α, �β).

We shrink A′
1 and B′

j so that T1 is constantly d1. If d1 = 0 then we have

eliminated the possibility of α = β, and again we conclude that

Im

(
F �

n∏
i=1

A′
i

)
∩ Im

(
G �

m∏
j=1

B′
j

)
= ∅.

If d1 = 1 then G only depends on B′
1, i.e., J = {1}, hence( m∏

j=1

B′
j

)
{1}

= A′
1 and F � A′

1 = G{1} � A′
1.

Case 2b: Assume n > 1 and m = 1. Then by the assumption that I, J �= ∅
it follows that J = {1}. For α ∈ A1 define the functions

Fα :

n∏
i=2

Ai \ (α+ 1) → X, Fα(�α) = F (α, �α).

By the induction hypothesis applied to Fα, G and I \ {1}, {1}, we obtain

Aα
i ∈ Ui for 2 ≤ i ≤ n, Bα

j ∈ Wj for 1 ≤ j ≤ m
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such that one of the following holds:

(1) (
∏n

i=2 A
α
i )I\{1} = Bα

1 and (Fα)I\{1} � (
∏n

i=2 A
α
i )I\{1} = G � Bα

1 .

(2) Im(Fα �
∏n

i=2 A
α
i ) ∩ Im(G � Bα

1 ) = ∅.
Denote by iα ∈ {1, 2} the relevant case. There is A′

1 ⊆ A1, A′
1 ∈ U1, and

i∗ ∈ {1, 2} such that for every α ∈ A′
1, iα = i∗. Let

A′
i = Δα∈A1A

α
i , B′

1 = Δα∈A1B
α
1

(since θ1 ≥ κ1 we can take the diagonal intersection).

If i∗ = 1, then (
∏n

i=2 A
α
i )I\{1} = Bα

1 , hence I = {i0}. Note that Aα
i0

= Bβ
1 and

in turn it follows that A′
i0

= B′
1 ∈ Ui0 ∩W1.

Let α, α′ ∈ A′
1, and α1, α

′
1 < α2 < · · · < αn in the product. Then

F (〈α1 · · ·αn〉) = (Fα1){i0}(αi0) = G(αi0 ) = (Fα′
1
){i0}(αi0) = F (〈α′

1 · · ·αn〉).

From this it follows that 1 /∈ I, B′
1 = A′

i0
= (

∏n
i=1 A

′
i)I and FI � A′

i0
= G � B′

1.

Assume i∗ = 2, which means that for every 〈α1, . . . , αn〉 ∈
∏n

i=1 A
′
1, by defini-

tion of diagonal intersection, 〈α2, . . . , αn〉 ∈
∏n

i=2 A
α1

i hence

F (〈α1, . . . , αn〉) = Fα1(〈α2, . . . , αn〉) ∈ Im

(
Fα1 �

n∏
i=2

Aα1

i

)
.

If β ∈ B′
1, we cannot conclude automatically that β ∈ Bα1

1 , since it is pos-

sible that β1 ≤ α1. If κ1 < θ1, then β1 ≤ α1 is impossible, thus, β ∈ Bα1
1

and G(β1) ∈ Im(G � Bα1
1 ). Since iα1 = i∗ = 2, it follows that

F (〈α1, . . . , αn〉) �= G(β1)

which implies

Im

(
F �

n∏
i=1

A′
i

)
∩ Im(G � B′

1) = ∅.

If θ1 = κ1, then we define

H2 : B1 ×
n∏

i=1

Ai → {0, 1}, H2(β, �α) = 1 ⇔ F (�α) = G(β).

Shrink the sets so that H2 is constantly c1. As before, if c1 = 1 then F,G are

constant which is a contradiction. Assume that c1 = 0, which means that when-

ever β < α1, then F (�α) �= G(β). So we are left with the case α1 = β. If U1 �= W1
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then we can eliminate such an example, and if U1 = W1 consider A∗
1 = A′

1 ∩B′
1:

T2 : A∗
1 ×

n∏
i=2

A′
i → {0, 1}, T2(α, �α) = 1 ⇔ G(α) = F (α, �α).

We shrink A∗
1 and A′

i so that T2 is constantly d1. If d1 = 0 then we have

eliminated the possibility of α = β, and again we conclude that

Im

(
F �

n∏
i=1

A′
i

)
∩ Im(G � A∗

1) = ∅.

If d1 = 1 then F only depends on A∗
1, i.e., I = {1}, hence

(
A∗

1 ×
n∏

i=2

A′
i

)
{1}

= A∗
1 and G � A∗

1 = G{1} � A∗
1.

Case 3: Assume n,m > 1. For α ∈ A1 define the functions

Fα :
n∏

i=2

Ai \ (α+ 1) → X, Fα(�α) = F (α, �α).

By the induction hypothesis applied to Fα, G and I \ {1}, J , we obtain

Aα
i ∈ Ui for 2 ≤ i ≤ n, Bα

j ∈ Wj for 1 ≤ j ≤ m

such that one of the following holds:

(1) (
∏n

i=2 A
α
i )I\{1} = (

∏m
j=1 B

α
j )J , and

(Fα)I\{1} �
( n∏

i=2

Aα
i

)
I\{1}

= GJ �
( m∏

j=1

Bα
j

)
J

.

(2) Im(Fα �
∏n

i=2 A
α
i ) ∩ Im(G �

∏m
j=1 B

α
j ) = ∅.

Denote by iα ∈ {1, 2} the relevant case. There is A′
1 ⊆ A1, A′

1 ∈ U1, and

i∗ ∈ {1, 2} such that for every α ∈ A′
1, iα = i∗. Let

A′
i = Δα∈A1A

α
i , B′

j = Δα∈A1B
α
j

(Since θ1 ≥ κ1 we can take the diagonal intersection).

If i∗ = 1, then ( n∏
i=2

Aα
i

)
I\{1}

=

( m∏
j=1

Bα
j

)
J

.
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Denote I \ {1} = {i1, . . . , ik}, J = {j1, . . . , jk}. Note that for every 1 ≤ r ≤ k,

Aα
ir = Bβ

jr
, thus A′

ir = B′
jr ∈ Uir ∩Wjr . It follows that

( n∏
i=1

A′
i

)
I\{1}

=

( m∏
j=1

B′
j

)
J

.

Let α, α′ ∈ A′
1, �α ∈ ∏n

i=2 A
′
i with min(�α) > α,α′. Then

Fα(�α) = (Fα)I\{1}(�α � I) = GJ(�α � I) = (Fα′)I\{1}(�α � I) = Fα′(�α).

From this it follows that 1 /∈ I and FI = FI\{1} = GJ . Assume i∗ = 2,

which means that for every 〈α1, . . . , αn〉 ∈ ∏n
i=1 A

′
1, by definition of diagonal

intersection, 〈α2, . . . , αn〉 ∈
∏n

i=2 A
α1

i , hence

F (〈α1, . . . , αn〉) = Fα1(〈α2, . . . , αn〉) ∈ Im

(
Fα1 �

n∏
i=2

Aα1

i

)
.

If �β ∈ ∏m
j=1 B

′
j , we cannot conclude automatically that �β ∈ ∏m

j=1 B
α1

j , since it

is possible that β1 ≤ α1. If κ1 < θ1, then β1 ≤ α1 is impossible, thus,

�β ∈
m∏
j=1

Bα1

j and G(〈β1, . . . , βn〉) ∈ Im(G �
n∏

j=1

Bα1

j ).

Since iα1 = i∗ = 2, it follows that F (〈α1, . . . , αn〉) �= G(〈β1, . . . , βn〉), which
implies

Im

(
F �

n∏
i=1

A′
i

)
∩ Im

(
G �

n∏
j=1

B′
j

)
= ∅.

If θ1 = κ1, we repeat the same process. We use Gβ and fix F , denoting jβ

the relevant case, and shrink the sets so that j∗ is constant. In case j∗ = 1 the

proof is the same as i∗ = 1. So we assume that i∗ = j∗ = 2, meaning that for

every 〈α〉��α ∈ ∏n
i=1 A

′
i and every 〈β〉��β ∈ ∏m

j=1 B
′
j

α �= β → F (α, �α) �= G(β, �β).

We are left with the case α = β.

Case 3a: Assume that U1 �= W1. Then we can just shrink the sets A′
1, B

′
1

so that A′
1 ∩B′

1 = ∅. Together with the construction of case 3, conclude that

Im

(
F �

n∏
i=1

A′
i

)
∩ Im

(
G �

m∏
j=1

B′
j

)
= ∅.
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Case 3b: Assume that U1 = W1. Then we shrink the sets so that A′
1 = B′

1.

For every α ∈ A′
1 we apply the induction hypothesis to the functions Fα, Gα,

this time denoting the cases by r∗. If r∗ = 2, then we have eliminated the

possibility of F (α, �α) = G(α, �β); together with i∗ = 2, j∗ = 2 we are done.

Finally, assume r∗ = 1, namely that for

I∗ := I \ {1} ⊆ {2, . . . , n}, J∗ := J \ {1} ⊆ {2, . . . ,m}

we have

( n∏
i=2

A′
i

)
I∗
=

( m∏
j=2

B′
j

)
J∗

and (Fα)I∗ �
( n∏

i=2

A′
i

)
I∗
=(Gα)J∗ �

( m∏
j=2

B′
j

)
J∗
.

Since A′
1 = B′

1 it follows that

(∗)

( n∏
i=1

A′
i

)
I∗∪{1}

=

( m∏
j=1

B′
j

)
∈J∗∪{1}

and

(Fα)I∗∪{1} �
( n∏

i=2

A′
i

)
I∗

= (Gα)J∗ �
( m∏

j=2

B′
j

)
J∗∪{1}

Since if 〈α〉��α ∈ (
∏n

i=1 A
′
i)I ,

FI∗∪{1}(α, �α) = (Fα)I∗(�α) = (Gα)J∗(�α) = GJ∗∪{1}(α, �α),

we claim that 1 ∈ I if and only if 1 ∈ J . By symmetry, it suffices to prove one

implication. For example, if 1 ∈ I, then I = I∗ ∪ {1}, take �α � I,

�α′ � I ∈
( n∏

i=1

A′
i

)
I

which differs only at the first coordinate, therefore F (�α) �= F (�α′). By (∗), there
are �β, �β′ ∈ ∏m

i=1 B
′
i such that

�β � (J∗ ∪ {1}) = �α � I and �β′ � (J∗ ∪ {1}) = �α′ � I.

It follows from (∗) that G(�β) = F (�α) �= F (�α′) = G(�β′), therefore 1 ∈ J .

In any case, FI � (
∏n

i=1 A
′
i)I = GJ � (

∏m
i=1 B

′
i)J .



Vol. TBD, 2022 MODELS OF MAGIDOR–RADIN FORCING. I 23

4. The main result

Let us turn to prove the main result (Theorem 1.3) for Magidor forcing

with o
�U (κ) < κ. The proof presented here is based on what was done in [1] and

before that in [3]; it is a proof by induction of κ.

4.1. Short sequences. In this section we prove the theorem for sets A of

small cardinality.

Proposition 4.1: Let p ∈ M[�U ] be any condition, X an extension-type of p.

For every �α ∈ X(p) let p�α ≥∗ p��α. Then there exists p ≤∗ p∗ such that for

every �β ∈ X(p∗), every p∗��β ≤ q is compatible with p�β .

Proof. By induction of l(X). If l(X) = 1, X = 〈ξ〉, then �U(X, p) = U(κi(p), ξ)

and X(p) = Bi,ξ(p). For each β ∈ Bi,ξ(p)

pβ = 〈〈κ1(p), A
β
1 〉, . . . , 〈κi−1(p), A

β
i−1〉, 〈β,Bβ〉, 〈κi(p), A

β
i 〉, . . . , 〈κ,Aβ〉〉.

For j>i let A∗
j=

⋂
β∈Bi,ξ(p)

Aβ
j . For j<i we can find A∗

j and shrink Bi,ξ(p) to Eξ

so that for every β ∈ Eξ and j < i Aβ
j = A∗

j . For i, first let E = Δα∈Bi,ξ(p)A
β
i .

By ineffability of κi(p) we can find A∗
ξ ⊆ Eξ and a set B∗ ⊆ κi(p) such that for

every β ∈ A∗
ξ , B

∗ ∩ β = Bβ . We claim that B∗ ∈ U(κi(p), γ) for every γ < ξ,

Ult(V, U(κi(p), ξ)) |= B∗ = jU(κi(p),j)(B
∗) ∩ κi(p),

and since

{β < κ | B∗ ∩ β ∈ ∩�U(β)} ∈ U(κi(p), ξ),

it follows that B∗∈⋂
jU(κi(p),ξ)(

�U)(κi(p)). By coherency

B∗ ∈
⋂
γ<ξ

U(κi(p), γ).

Define

A∗
i = B∗ � A∗

ξ � (∪ξ<iEi) ∈ ∩�U(κi(p)).

Let q ≥ p∗�β and suppose that q ≥∗ (p∗�β)��γ. Then every γ ∈ �γ such

that γ > β belongs to some A∗
j \ β for j ≥ i, and by the definition of these

sets γ ∈ Aβ
j . If γ < κi−1, then also γ ∈ A∗

j for some j < i. Since β ∈ Eξ it

follows that Aβ
j = A∗

j , so γ ∈ Aβ
j . For γ ∈ (κi−1, β), by definition of the order

we have o
�U (γ) < o

�U (β) = ξ and therefore γ ∈ A∗
i,η ∩ β for some η < ξ, but

A∗
i,η ∩ β ⊆ B∗ ∩ β = Bβ ;
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it follows that q, pβ are compatible. For general X , fix min(�β) = β. Apply

the induction hypothesis to p�β and p�β to find p∗β ≥∗ p�β. Next apply the

case n = 1 to p∗β and p, find p∗ ≥ p. Let q ≥ p∗��β and denote β = min(�β)

then q is compatible with p∗β thus let q′ ≥ q, p∗β. Since q′ ≥ p∗β and q′ ≥ p∗��β

it follows that q′ ≥ p∗�β �β. Therefore there is q′′ ≥ q′, p�β.

Lemma 4.2: Let λ < κ, p ∈ M[�U ] � (λ, κ), q ∈ M[�U ] � λ and X ∈ Ex(p). Also.

let ∼x be an ordinal M[�U ]-name. There is p ≤∗ p∗ such that:

If ∃�α ∈ X(p∗)∃p′ ≥∗p∗��α 〈q, p′〉|| ∼x,

then ∀�α ∈ X(p∗)〈q, p∗��α〉||∼x.
Proof. Fix p, λ, q,X as in the lemma. Consider the set

B0 = {�β ∈ X(p) | ∃p′ ∗≥p��β s.t. 〈q, p′〉||∼x}.

One and only one of B0 and X(p) \ B0 is in �U(X,P ). Denote this set by A′.
By Proposition 3.6, we can find A′

i,j ∈ U(αi, xi,j) such that

l(p)+1∏
i=1

|Xi|∏
j=1

A′
i,j ⊆ A′.

Let p ≤∗ p′ be the condition obtained by shrinking Bi,j(p) to A′
i,j so that

X(p′) =
∏n+1

i=1

∏|Xi|
j=1 A

′
i,j . If

∃�β ∈ X(p′) ∃p′′ ∗≥p′��β 〈q, p′′〉|| ∼x,

then �β ∈ B0 ∩ A′ and therefore B0 = A′. We conclude that

∀�β ∈ X(p′) ∃p�β ∗≥p′��β 〈q, p�β〉|| ∼x.

By Proposition 4.1 we can amalgamate all these p�β to find p′ ≤∗ p∗, such that

for every �β ∈ X(p∗), p∗��β decides ∼x; then p∗ is as wanted.

Lemma 4.3: Consider the decomposition of 2.7 at some λ ≥ o
�U (κ) and let ∼x

be a M[�U ]-name for an ordinal. Then for every p ∈ M[�U ] � (λ, κ), there exists

p ≤∗ p∗ such that for every X ∈ Ex(p) and q ∈ M[�U ] � λ the following holds:

If ∃�α ∈ X(p∗) ∃p′ ≥∗p∗��α 〈q, p′〉|| ∼x,

then ∀�α ∈ X(p∗) 〈q, p∗��α〉||∼x.
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Proof. Fix q ∈ M[�U ] � λ and X ∈ Ex(p). Use Lemma 4.2 to find p ≤∗ pq,X

such that

If ∃�α ∈ X(pq,X) ∃p′ ≥∗(pq,X)��α s.t. 〈q, p′〉|| ∼x,

then ∀�α ∈ X(pq,X) 〈q, (pq,X)��α〉||∼x.

By the definition of λ, the forcingM[�U ]�(λ, κ) is≤∗-max(|Ex(p)|+, |M[�U ]�λ|+)-
directed. Hence we can find p ≤∗ p∗ so that for every X, q, pq,X ≤∗ p∗.

Lemma 4.4: Let A ∈ V [G] be a set of ordinals such that |A| < κ. Then there

exists C′ ⊆ CG such that V [A] = V [C′].

Proof. Assume that |A| = λ′ < κ and let δ = max(λ′, otp(CG)) < κ. Split M[�U ]

as in Proposition 2.7. Find p ∈ G such that some λ ≥ δ appears in p. The

generic G also splits to G = G1 × G2 where G1 is the generic for Magidor

forcing below λ and, by Remark 2.8, G2 is V [G1]-generic for the upper part of

the forcing. Let 〈∼ai | i < λ′〉 be a M[�U ]-name for A in V and p ∈ M[�U ] � (λ, κ).
For every i < λ′ find p ≤∗ pi as in Lemma 4.3, such that for every q ∈ M[�U ] � λ
and X ∈ Ex(p) we have

(∗)
If ∃�α ∈ X(pi) ∃p�i �α ≤∗p′ 〈q, p′〉 || ∼ai,

then ∀�α ∈ X(pi) 〈q, p�i �α〉 || ∼ai.

Since in M[�U ] � (λ, κ) we have λ+-closure for ≤∗, we can find a single pi ≤∗ p∗.
Next, for every i < λ′, fix a maximal antichain Zi ⊆ M[�U ] � λ such that for

every q ∈ Zi there is an extension-type Xq,i for which

∀�α ∈ p�∗ Xq,i 〈q, p�∗ �α〉 || ∼ai;

these antichains can be found using (∗) and Zorn’s lemma. Recall that the

sets Xq,i(p∗) are a product of large sets. Define Fq,i : Xq,i(p∗) → On by

Fq,i(�α) = γ ⇔ 〈q, p�∗ �α〉 � ∼ai = γ̌.

By Lemma 3.8 we can assume that there are important coordinates

Iq,i ⊆ {1, . . . ,Dom(Xq,i(p∗))}.
Fix i < λ′. For every q, q′ ∈ Zi we apply Lemma 3.10 to the functions Fq,i, Fq,i′

and find p∗ ≤∗ pq,q′ for which one of the following holds:

(1) Im(Fq,i � A(Xq,i, pq,q′)) ∩ Im(Fq′,i � A(Xq′,i, pq,q′)) = ∅.
(2) (Fq,i)Iq,i � (A(Xq,i, pq,q′))Iq,i = (Fq′,i)Iq′ ,i � (A(Xq′,i, pq,q′))Iq′ ,i .
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Finally find p∗ such that for every q, q′, pq,q′ ≤∗ p∗. By density, there is

such p∗ ∈ G2. We use Fq,i to translate information from CG to A and vice versa,

distinguishing from [1] that this translation is made in V [G1] rather than V :

For every i < λ′, G1 ∩ Zi = {qi}. Use Lemma 3.4 to find Di ∈ Xqi,i(p
∗) such

that p∗�Di ∈ G2, define Ci = Di � Iqi,i and let

C′ =
⋃
i<λ′

Ci.

Define, as in Definition 2.21, I(Ci, C
′) ∈ [otp(CG)]

<ω, since

otp(C′) ≤ otp(CG) ≤ λ,

and by Proposition 2.16(6), G2 does not add λ-sequences of ordinals below λ

to V [G1]. We conclude that 〈I(Ci, C
′) | i < λ′〉 ∈ V [G1]. It follows that

(V [G1])[A] = (V [G1])[〈Ci | i < λ′〉] = (V [G1])[C
′].

In fact let us prove that 〈Ci | i < λ′〉 ∈ V [A]. Indeed, define in V [A] the sets

Mi = {q ∈ Zi | ai ∈ Im(Fq,i)}.

Then, for any q, q′ ∈ Mi ai ∈ Im(Fqi) ∩ Im(Fq′,i) �= ∅. Hence 2 must hold for

Fq,i, Fq′,i, i.e.,

(Fq,i)Iq,i � (Xq,i(p
∗))Iq,i = (Fq′,i)Iq′ ,i � (Xq′,i(p

∗))Iq′ ,i .

This means that no matter how we pick q′i ∈ Mi, we will end up with the

same function (Fq′i,i)Iq′i,i
� (Xq′i,i(p

∗))Iq′
i
,i
. In V [A], choose any q′i ∈ Mi and

let D′
i ∈ F−1

q′i,i
(ai), C

′
i = Di � Iq′i,i. Since qi, q

′
i ∈ Mi we have Ci = C′

i, hence

〈Ci | i < λ′〉 ∈ V [A]. We still have to determine what information A uses in the

part of G1, namely, {q′i | i < λ′}, 〈I(Ci, C
′) | i < λ′〉 ∈ V [A]. This set can be

coded as a subset of ordinals below (2λ)+, therefore

{q′i | i < λ′}, 〈I(Ci, C
′) | i < λ′〉 ∈ V [G1].

By the induction hypothesis applied to G1, we can find C′′ ⊆ CG1 such that

V [{q′i | i < λ′}, 〈I(Ci, C
′) | i < λ′〉] = V [C′′].

Since all the information needed to restore A is coded in C′ � C′′, it is clear

that V [A] = V [C′′ � C′].
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4.2. General subsets of κ. Assume that A ∈ V [G] such that A ⊆ κ. For

some A’s the proof, similar to the one in [1], works. This proof relies on the

following lemma:

Lemma 4.5: Assume that o
�U (κ) < κ and let A ∈ V [G], sup(A) = κ. Assume

that ∃C∗ ⊆ CG such that

(1) C∗ ∈ V [A] and ∀α < κ A ∩ α ∈ V [C∗].
(2) cfV [A](κ) < κ.

Then ∃C′ ⊆ CG such that V [A] = V [C′].

Proof. Let 〈αi | i < λ〉 ∈ V [A] be cofinal in κ. Since |C∗| < κ, by Lemma 4.4

we can find C′′ ⊆ CG such that

V [C′′] = V [C∗, 〈αi | i < λ〉] ⊆ V [A].

In V [C′′], choose for every i a bijection

πi : 2
αi → PV [C′′](αi).

Since A∩αi ∈ V [C′′] there is δi such that πi(δi) = A∩αi. Finally let C′ ⊆ CG

such that

V [C′] = V [C′′, 〈δi | i < λ〉].
We claim that V [A] = V [C′]. Obviously, C′ ∈ V [A], for the other direction

〈A ∩ αi | i < λ〉 = 〈πi(δi) | i < λ〉 ∈ V [C′].

Thus A ∈ V [C′].

Definition 4.6: We say that A ∩ α stabilizes if

∃α∗ < κ. ∀α < κ. A ∩ α ∈ V [A ∩ α∗].

First we deal with A’s such that A ∩ α does not stabilize.

Lemma 4.7: Assume o
�U (κ) < κ, A ⊆ κ unbounded in κ such that A ∩ α does

not stabilizes. Then there is C′ ⊆ CG such that V [C′] = V [A].

Proof. Work in V [A]. Define the sequence 〈αξ | ξ < θ〉:
α0 = min{α | V [A ∩ α] � V }.

Assume that 〈αξ | ξ < λ〉 has been defined and for every ξ, αξ < κ. If λ = ξ+1

then set

αλ = min{α | V [A ∩ α] � V [A ∩ αξ]}.



28 T. BENHAMOU AND M. GITIK Isr. J. Math.

To see that αλ is a well defined ordinal below κ, note that by the assumption

that A does not stabilize, there is α < κ such that A ∩ α /∈ V [A ∩ αξ], hence

V [A ∩ αξ] � V [A ∩ α].

If λ is limit, define

αλ = sup(αξ | ξ < λ);

if αλ = κ define θ = λ and stop. The sequence 〈αξ | ξ < θ〉 ∈ V [A] is a

continuous, increasing unbounded sequence in κ. Therefore,

cfV [A](κ) = cfV [A](θ).

Let us argue that θ < κ. Work in V [G], for every ξ < θ pick Cξ ⊆ CG such

that V [A ∩ αξ] = V [Cξ]. The map ξ �→ Cξ is injective from θ to P (CG), by the

definition of αξ’s. Since o
�U (κ) < κ, |CG| < κ, and κ stays strong limit in the

generic extension. Therefore

θ ≤ |P (CG)| = 2|CG| < κ.

Hence κ changes cofinality in V [A], according to Lemma 4.5; it remains to

find C∗. Denote λ = |CG| and work in V [A], for every ξ < θ, Cξ ∈ V [A]

(although the sequence 〈Cξ | ξ < θ〉 may not be in V [A]). Cξ witnesses that

∃dξ ⊆ κ. |dξ| ≤ λ and V [A ∩ αξ] = V [dξ].

Fix d = 〈dξ|ξ < θ〉 ∈ V [A]. It follows that d can be coded as a subset of κ

of cardinality ≤ λ · θ < κ. Finally, by Lemma 4.4, there exists C∗ ⊆ CG such

that V [C∗] = V [d] ⊆ V [A], so

∀α < κ. A ∩ α ∈ V [dξ] ⊆ V [C∗].

Next we assume that A ∩ α stabilizes on some α∗ < κ. By Lemma 4.4,

there exists C∗ ⊆ CG such that V [A ∩ α∗] = V [C∗], if A ∈ V [C∗] then we

are done. Assume that A /∈ V [C∗]. To apply Lemma 4.5, it remains to

prove that cfV [A](κ) < κ. The subsequence C∗ must be bounded; denote

κ1 = sup (C∗) < κ and κ∗ = max(κ1, otp(CG)). Find p ∈ G that decides the

value of κ∗ and assume that κ∗ appears in p (otherwise take some ordinal above

it). As in Lemma 2.7 we split

M[�U ]/p � (M[�U ] � κ∗)/(p � κ∗)× (M[�U ] � (κ∗, κ))/(p � (κ∗, κ))
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There is a complete subalgebra P of RO((M[�U ] � κ∗)/(p � κ∗)) such that

V [C∗] = V [H ] for some V -generic filter H ⊆ P. Let

Q = [(M[�U ] � κ∗)/(p � κ∗)]/C∗

be the quotient forcing completing P to (M[�U ] � κ∗)/(p � κ∗). Finally note

that G is generic over V [C∗] for

S = Q× (M[�U ] � (κ∗, κ))/(p � (κ∗, κ)).

Lemma 4.8: cfV [A](κ) < κ.

Proof. Let G = G1 × G2 be the decomposition such that G1 is generic for Q

above V [C∗] and G2 is M[�U ] � (κ∗, κ)-generic over V [C∗][G1]. Let ∼A be an

S-name for A in V [C∗], and 〈q0, p0〉 ∈ G such that

〈q0, p0〉 � “∀α < κ ∼A ∩ α is old” (i.e., in V [C∗]).

Proceed by a density argument in M[�U ] � (κ∗, κ))/p � (κ∗, κ); let p0 ≤ p. As in

Lemma 4.4 find p ≤∗ p∗ such that for all q0 ≤ q ∈ Q and X ∈ Ex(p∗):

∃�α�〈α〉 ∈ X(p∗)∃p′ ≥∗ p∗��α�〈α〉
〈q, p′〉||∼A ∩ α ⇒ ∀�α�〈α〉 ∈ X(p∗). 〈q, p∗��α�〈α〉〉 || ∼A ∩ α.

Denote the consequent result by (∗)X,q. Since ∼A∩α is forced to be old, we will

find many q,X for which (∗)q,X holds. For such q,X , for every �α�〈α〉 ∈ X(p∗)
define the value forced for ∼A ∩ α by a(q, �α, α). Fix q,X such that (∗)q,X holds.

Assume that the maximal measure which appears in X is U(κi(p),mc(X))

and fix �α ∈ (X \ {mc(X)})(p∗). For every α ∈ Bi,mc(X)(p) \ max(�α) the set

a(q, �α, α) ⊆ α is defined. By ineffability, we can shrink Bi,mc(X)(p) to Aq,�α
i,mc(X)

and find a set A(q, �α) ⊆ κi(p) such that for every α ∈ Aq,�α
i,mc(X),

A(q, �α) ∩ α = a(q, �α, α).

Define

A′
i,mc(X) = Δ�α,qA

q,�α
i,mc(X).

Let p∗ ≤∗ p′ be the condition obtained by shrinking to those sets. Then p′ has
the property that whenever (∗)q,X holds for some q ∈ Q and X ∈ Ex(p′), there
exist sets A(q, �α) for �α ∈ (X \{mc(X)})(p′) such that for every �α�〈α〉 ∈ X(p′),

A(q, �α) ∩ α = a(q, �α, α).

By density there is such p′ ∈ G2.
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Work in V [A]. For every �α and q, if A(q, �α) is defined, let

η(q, �α) = min(AΔA(q, �α)),

otherwise η(q, �α) = 0. Now η(q, �α) is well defined since A /∈ V [C∗] and

A(q, �α) ∈ V [C∗]. Also let

η(�α) = sup(η(q, �α) | q ∈ Q).

If η(�α) = κ then we are done (since |Q| < κ). Define a sequence in V [A]: α0 =κ∗.
Fix ξ < otp(CG) and assume that 〈αi | i < ξ〉 is defined. At limit stages take

αξ = sup(αi | i < ξ) + 1.

Assume that ξ = λ+ 1 and let

αξ = sup(η(�α) + 1 | �α ∈ [αλ]
<ω).

If at some point we reach κ we are done. If not, let us prove by induction on ξ

that CG(ξ) < αξ, which will indicate that the sequence αξ is unbounded in κ.

At limit ξ we have CG(ξ) = sup(CG(β) | β < ξ) since the Magidor sequence

is a club. By the definition of the sequence αξ and the induction hypothesis,

αξ > CG(ξ). If ξ = λ+1, use Corollary 2.20 to find �α�〈α〉 and q ∈ Q such that

〈q, p′��α�〈α〉〉 � α̌ = ∼CG(ξ̌).

Fix any q′ ∈ Q above q, and split the forcing at α so that

〈q′, p′��α�〈α〉〉 = 〈q′, r1, r2〉,
where r1∈M[�U ]�(κ∗, α) and r2∈M[�U ]�(α, κ). Let H1 be some generic up to α

with 〈q′, r1〉 ∈ H1 and work in V [C∗][H1]. The name ∼A has a natural interpreta-

tion in V [C∗][H1] as aM[�U ] � (α, κ)-name, (∼A)H1 . Use the fact thatM[�U ]�(α, κ)
is ≤∗-closed and the Prikry condition to find r2 ≤∗ r′2 ∈ M[�U ] � (α, κ) and A0

such that

r′2 �
M[�U ]�(α,κ) (∼A)H1 ∩ α = A0.

Since it is forced that ∼A is old,

A0 ∈ V [C∗]

and therefore we can find 〈q′′, r′1〉 ∈ Q×M[�U ] � (κ∗, α) such that

〈q′′, r′1〉 ≥ 〈q′, r1〉
and

〈q′′, r′1〉 � “r′2 � ∼A ∩ α = A0” therefore 〈q′′, r′1, r′2〉 � ∼A ∩ α = A0.
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Since r2 ≤∗ r′2 and r′1 ∈ M[�U ] � (κ∗, α), then there is some �β ∈ [α]<ω such

that

〈r′1, r′2〉∗ ≥ p′��β�〈α〉.
Let X be the extension-type of �β�〈α〉; by definition of p′, (∗)q′′,X holds. Use

density to find a condition q∗ in the generic of Q such that for some extension-

type X that decides the ξth element of CG, (∗)X,q∗ holds. The set

{p′��γ | �γ ∈ X(p′)}
is a maximal antichain according to Proposition 3.4, so let �C�CG(ξ) be the

extension of p′ of type X in CG. By the construction of q∗ and p′ we have that

〈q∗, p′� �C�CG(ξ)〉 � ∼A ∩ ˇCG(ξ) = A(q∗, �C) ∩ ˇCG(ξ).

Since (∼A)G = A, A(q∗, �C)∩CG(ξ) = A∩CG(ξ) (otherwise we would have found

compatible conditions forcing contradictory information). This implies that

η(q∗, �C) ≥ CG(ξ).

By the induction hypothesis αλ > CG(λ) and �C ⊆ CG(λ), thus �C ∈ [αλ]
<ω so

αξ > sup(η(�α) | �α ∈ [αλ]
<ω) ≥ η(�C) ≥ η(q∗, �C) ≥ CG(ξ).

This proves that

〈αξ | ξ < otp(CG) < κ〉 ∈ V [A]

is cofinal in κ indicating cfV [A](κ) < κ.

Thus we have proven the result for any subset of κ.

Corollary 4.9: Let A ∈ V [G] be a set of ordinals such that |A| = κ. Then

there is C′ ⊆ CG such that V [A] = V [C′].

Proof. By κ+-c.c. of M[�U ], there is B ∈ V , |B| = κ such that A ⊆ B. Fix in V

φ : κ → B a bijection and let B′ = φ−1′′A. Then B′ ⊆ κ. By the theorem for

subsets of κ there is C′ ⊆ CG such that

V [C′] = V [B′] = V [A].

4.3. General sets of ordinals. In [1], we gave an explicit formulation of

subforcings of M[�U ] using the indices of subsequences of CG. In the larger

framework of this paper, these indices might not be in V . By Example 1.4,

subforcing of the Magidor forcing can be an iteration of Magidor type forcing.
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Lemma 4.10: Let A ∈ V [G] be such that A ⊆ κ+. Then there is C∗ ⊆ CG

such that:

(1) ∃α∗ < κ+ such that C∗ ∈ V [A ∩ α∗] ⊆ V [A].

(2) ∀α < κ+ A ∩ α ∈ V [C∗].

Proof. Work in V [G]. For every α < κ+ find subsequences Cα ⊆ CG such that

V [Cα] = V [A ∩ α]

using Corollary 4.9. The function α �→ Cα has range P (CG) and domain κ+

which is regular in V [G], and since o
�U (κ) < κ then |CG| < κ, and since κ is

strong limit (even in V [G]) |P (CG)| < κ < κ+. Therefore there exist E ⊆ κ+

unbounded in κ+ and α∗ < κ+ such that for every α ∈ E, Cα = Cα∗ . Set

C∗ = Cα∗ . Note that for every α < κ there is β ∈ E such that β > α, therefore

A ∩ α = (A ∩ β) ∩ α ∈ V [A ∩ β] = V [C∗].

Lemma 4.11: Let C∗ be as in the last lemma. If there is α < κ such that

A ∈ V [CG ∩ α][C∗]. Then V [A] = V [C∗].

Proof. Consider the quotient forcing M[�U ]/C∗ ⊆ M[�U ] completing V [C∗] to
V [C∗][G]. Then the forcing

Q = (M[�U ]/C∗) � α

completes V [C∗] to V [C∗][CG ∩ α] and |Q| < κ. By the assumption,

A ∈ V [C∗][CG ∩ α], and for every β < κ+, A ∩ β ∈ V [C∗]. Let ∼A ∈ V [C∗]
be a Q-name for A and q ∈ G � α be any condition such that

q � ∀β < κ+, ∼A ∩ β ∈ V [C∗].

In V [C∗], for every β < κ+ find qβ ≥ q such that qβ ||Q∼A ∩ β. There is q∗ ≥ q

and E ⊆ κ+ of cardinality κ+ such that for every β ∈ E, qβ = q∗. By density,

find such q∗ ∈ G � α in the generic. In V [C∗], consider the set

B = {X ⊆ κ+ | ∃β q∗ � X = ∼A ∩ β}.
Let us argue that ∪B = A. Let X ∈ B; then there is β < κ+ such that

q∗ � X = ∼A∩β then X = A∩β ⊆ A thus,
⋃
B ⊆ A. Let γ ∈ A. There is β ∈ E

such that γ < β, by the definition of E there is X ⊆ β such that q∗ � ∼A∩β = X ;

it must be thatX = A∩β otherwise we would have found compatible conditions

forcing contradictory information. But then γ ∈ A∩β = X ⊆ ∪B. We conclude

that A = ∪B ∈ V [C∗].
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Eventually we will prove that there is α < κ such that A ∈ V [CG ∩ α][C∗]
and by the last lemma we will be done.

We would like to change C∗ so that it is closed. We can do that above

α0 := otp(CG):

Lemma 4.12: V [CG ∩ α0][Cl(C∗)] = V [CG ∩ α0][C
∗].5

Proof. Consider I(C∗, Cl(C∗)) ⊆ otp(CG). By Proposition 2.16(5),

I(C∗, Cl(C∗)) ∈ V [CG ∩ α0].

Thus V [CG ∩ α0][C
∗] = V [CG ∩ α0][Cl(C∗)].

Work in N := V [CG ∩ α0]. Since C∗ ∩ α0 ∈ V [CG ∩ α0], we can assume

min(C∗) > α0. Since I = I(C∗, CG \ α0) ⊆ otp(CG), it follows that I ∈ N .

In N , consider the coherent sequence

�W = �U∗ � (α0, κ] = 〈U∗(β, δ) | δ < o
�U (β), α0 < δ < κ〉

where U∗(β, δ) is the ultrafilter generated by U(β, δ) in N . Also denote

G∗ = G � (α0, κ). The following proposition is to be compared with Remark 2.8.

Proposition 4.13: N [G∗] is a M[ �W ]-generic extension of N .

Proof. Let us argue that the Mathias criteria holds. Let X ∈ ∩ �W (δ) where

δ∈Lim(CG∗). By definition of �W , for every i<o
�W (δ), there is Xi∈U(δ, i) such

that Xi ⊆ X . The choice of Xi’s is done in N and the sequence 〈Xi | i < o
�U (δ)〉

might not be in V . Fortunately, M[�U ] � α0 is α+
0 -c.c. and α+

0 < δ, so in V we

can find sets

Ei := {Xi,j | j ≤ α0} ⊆ U(δ, i)

such that Xi ∈ Ei. By δ-completness of U(δ, i), the set X∗
i := ∩Ei ∈ U(δ, i)

and X∗
i ⊆ Xi ⊆ X . Note that

X∗ :=
⋃

i<o�U (δ)

X∗
i ∈ ∩�U(δ)

and therefore by genericity of G there is ξ < δ such that

CG ∩ (ξ, δ) ⊆ X∗ ⊆ X.

Hence CG∗ ∩ (max(α0, ξ), δ) ⊆ X .

5 For a set of ordinals X, Cl(X) = X ∪ Lim(X) = {ξ | ξ ∈ X ∨ sup(X ∩ ξ) = ξ}.
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Note that o
�W (κ) < min{ν | o �W (ν) = 1} and I(C∗, CG) ∈ N . In [1], this

is the situation dealt with, a forcing denoted by MI [ �W ] ∈ N [C∗] was defined

where I = I(C∗, CG) and used to conclude the theorem. We only state here

the main results and definitions and refer the reader to [1] for the full definition

and proofs.

Proposition 4.14: Let G∗ ⊆ M[ �W ] be an N -generic filter and C ⊆ CG∗

be closed. Assume that I = I(C,CG∗) ∈ N . Then there is a forcing notion

MI [ �W ] ∈ N and a projection πI : M[ �W ] → MI [ �W ] such that N [GI ] = N [C],

where GI = π′′
IG

∗ ⊆ MI [ �W ] is the N -generic filter obtained by projecting G∗.

Lemma 4.15: LetG∗⊆M[ �W ] be anN -generic filter. Then the forcingM[ �W ]/GI

satisfies κ+-c.c. in N [G∗].

The referee pointed out a simpler argument than the one given in [1] for the

continuation of the proof. First we conclude the following (see for example [4,

Thm. 16.4]:

Corollary 4.16: The forcing M[ �W ]/GI ×M[ �W ]/GI satisfies κ+-c.c.

The next theorem is needed in order to apply Lemma 4.11 and to conclude

the case for A ⊆ κ+.

Theorem 4.17: A ∈ N [C∗].

Proof. Let I = I(Cl(C∗), CG∗). Then

I,MI [ �W ], πI ∈ N.

Let GI be the generic induced for MI [ �W ] from G. It follows that M[ �W ]/GI is

defined inN . Toward a contradiction, assume that A /∈ N [C∗]. By Lemma 4.12,

N [C∗] = N [Cl(C∗)], hence A /∈ N [Cl(C∗)]. Let ∼A be a name for A in M[�U ]/GI .

Work in N [GI ]. By corollary 4.14, N [GI ] = N [Cl(C∗)]. We define a tree

T ∈ N [GI ] of height κ
+. For every α < κ+ define the αth level of the tree by

Levα(T ) = {B ⊆ α | ||∼A ∩ α = B|| �= 0},

where the truth value is taken in RO(M[ �W ]/GI)—the complete Boolean algebra

of regular open sets for M[ �W ]/GI . The order of the tree T is simply end-

extension. Different B’s in Levα(T ) yield incompatible conditions of M[ �W ]/GI
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and we have κ+-c.c. by Lemma 4.15, thus

∀α < κ+ |Levα(T )| ≤ κ.

Work in N [G∗]; denote Aα = A ∩ α. Recall that

∀α < κ+ Aα ∈ N [Cl(C∗)] = N [GI ],

thus Aα ∈ Levα(T ) which makes A a branch through T . At this point, the

referee pointed out an argument by Unger [7] showing that a forcing P such

that P×P satisfies κ+-c.c. has the κ+-approximation property and, in particular,

cannot add new branches to κ+ trees in the ground model (see Definition 2.2,

the discussion succeeding it, and Lemma 2.4 in [7]). By Corollary 4.16, the

product of M[ �W ]/GI in κ+-c.c. in N [GI ] and therefore M[ �W ]/GI does not add

new branches to κ+ which implies that A ∈ N [GI ].

For self-inclusion reasons and for the convenience of the reader, let us give

another argument. For every B ∈ Levα(T ) define

b(B) = ||∼A ∩ α = B||.
Assume that B′ ∈ Levβ(T ) and α ≤ β; then B = B′ ∩ α ∈ Levα(T ). More-

over, b(B′) ≤B b(B) (we switch to Boolean algebra notation: p ≤B q means p

extends q). Note that for such B,B′, if b(B′) <B b(B) then there is

0 < p ≤B (b(B) \ b(B′)) ≤B b(B).

Therefore

p ∩ b(B′) ≤B (b(B) \ b(B′)) ∩ b(B′) = 0

meaning p⊥b(B′). As before, in N [G∗] we denote Aα = A ∩ α ∈ Levα(T ).

Consider the ≤B-non-increasing sequence 〈b(Aα) | α < κ+〉. If there exists

some γ∗ < κ+ on which the sequence stabilizes, define

A′ =
⋃

{B ⊆ κ+ | ∃α b(Aγ∗) � ∼A ∩ α = B} ∈ N [Cl(C∗)].

We claim that A′ = A. Notice that if B,B′, α, α′ are such,

b(Aγ∗) � ∼A ∩ α = B, b(Aγ∗) � ∼A ∩ α′ = B′.

Without loss of generality α ≤ α′; then we must have B′∩α = B, otherwise the

non zero condition b(Aγ∗) would force contradictory information. Consequently,

for every ξ < κ+ there exists ξ < γ < κ+ such that

b(Aγ∗) � ∼A ∩ γ = A ∩ γ,
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hence A′ ∩ γ = A ∩ γ. This is a contradiction to A /∈ N [Cl(C∗)]. We conclude

that the sequence 〈b(Aα) | α < κ+〉 does not stabilize. By regularity of κ+,

there exists a subsequence

〈b(Aiα) | α < κ+〉

which is strictly decreasing. Use the observation we made to find pα ≤B b(Aiα)

such that pα⊥b(Aiα+1). Since b(Aiα) are decreasing, for any β > α pα⊥b(Aiβ )

thus pα⊥pβ . This shows that 〈pα | α < κ+〉 ∈ N [G∗] is an antichain of size κ+

which contradicts Lemma 4.15.

Sets of ordinals above κ+
: By induction on sup(A) = λ > κ+. It suffices

to assume that λ is a cardinal.

Case 1: cfV [G](λ) > κ, the arguments for κ+ works.

Case 2: cfV [G](λ) ≤ κ and since κ is singular in V [G] then cfV [G](λ) < κ.

Since M[�U ] satisfies κ+-c.c. we must have that ν := cfV (λ) ≤ κ. Fix

〈γi | i < ν〉 ∈ V

cofinal in λ. Work in V [A], for every i < ν find di ⊆ κ such that

V [di] = V [A ∩ γi].

By induction, there exists C∗ ⊆ CG such that V [〈di | i < ν〉] = V [C∗], therefore:

(1) ∀i < ν A ∩ γi ∈ V [C∗].
(2) C∗ ∈ V [A].

Work in V [C∗]. For i < ν fix

〈Xi,δ | δ < 2γi〉 = P (γi).

Then we can code A∩γi by some δi such that Xi,δi = A∩γi. By Corollary 4.9,

we can find C′′ ⊆ CG such that

V [C′′] = V [〈δi | i < ν〉].

Finally we can find C′ ⊆ CG such that V [C′] = V [C∗, C′′]; it follows that

V [A] = V [C′]. Theorem 1.3
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5. Classification of intermediate models

Let G ⊆ M[�U ] be a V -generic filter. Assume that for every α ≤ κ,

o
�U (α) < α.

Let M be a transitive ZFC model such that V ⊆ M ⊆ V [G]. We would like to

prove it is a generic extension of a “Magidor-like” forcing which will be defined

shortly.

By Example 1.4, the class of forcings MI [�U ] does not capture all the inter-

mediate models of a generic extension by M[�U ]. The reason is that if

o
�U (κ) ≥ min{α | o�U (α) = 1},

there are subsets C ⊆ CG such that I(C,CG) does not necessarily exist in the

ground model, which was crucial in the definition of MI [�U ]. Here we generalize

this class to a class of forcings denoted by Mf [�U ]. We will prove that every

intermediate model is a generic extension for a finite iteration of forcings of the

form Mf [�U ]. The major difference between Mf [�U ] and MI [�U ] is the existence of

a concrete projection of M[�U ] onto MI [�U ] which keeps only the ordinals which

will sit at index i ∈ I in the generic club. As for the generic set produced

by Mf [�U ], we cannot determine in advance how this set sits inside CG. For ex-

ample if MI [�U ] turns out to be the standard Prikry forcing, then the projection

tells us what indices the Prikry sequence fill in CG, and the forcing made sure to

leave “room” for the missing elements of CG. On the other hand, if Mf [�U ] pro-

duces a Prikry sequence, there will be many ways to place this Prikry sequence

inside CG. One might claim that this is only a technicality, but if we aim to

describe a forcing which produces a generic extension for an intermediate model

of the form V [C], where C ⊆ CG, then Example 5.1 below describes a situation

that I(C,CG) /∈ V [C], and in particular there is no model V ⊆ N ⊆ V [C] such

that V [C] is a generic extension of N by MI [�U ]. Instead of using I(C,CG), the

forcing Mf [�U ] uses the sequence 〈o�U (α) | α ∈ C〉 which is definable in V [C].

Example 5.1: Consider κ such that o
�U (κ) = δ0 := min{α | o�U (α) = 1}. Let

p = 〈〈δ0, A〉, 〈κ,B〉〉 ∈ M[�U ];

then p � CG∼(ω) = δ0. Let G ⊆ M[�U ] be such that p ∈ G, and consider the first

Prikry sequence for CG(ω) = δ0, namely {CG(n) | n < ω}, and let

C = {CG(CG(n) + 1) | n < ω}.
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Since for each n < ω, CG(CG(n) + 1) is successor in CG,

o
�U (CG(CG(n) + 1)) = 0

and therefore C is a Prikry sequence for U(κ, 0). Note that

I(C,CG) = {CG(n) + 1 | n < ω}
and I(C,CG) /∈ V [C]. Otherwise {CG(n) | n < ω} ∈ V [C], which is a contra-

diction since Prikry extensions do not add bounded subsets to κ.

Proposition 5.2: Let C,D ⊆ CG. There exists E such that

C ∪D ⊆ E ⊆ CG ∩ sup(C ∪D) and V [C,D] = V [E].

Proof. By induction on sup(C ∪D). If sup(C ∪D) ≤ CG(ω) then |C|, |D| ≤ ℵ0.

We can take E = C ∪D, clearly

I(C,C ∪D), I(D,C ∪D) ⊆ ω,

thus these sets belong to V . In the general case, consider I(C,C ∪ D) and

I(D,C ∪D). Since

o
�U (sup(C ∪D)) < sup(C ∪D)

it follows that

otp(C ∪D) ≤ otp(CG ∩ sup(C ∪D)) < sup(C ∪D).

Denote λ = otp(CG ∩ sup(C ∪D)). By Theorem 1.3, there is F ⊆ CG ∩ λ such

that

V [I(C,C ∪D), I(D,C ∪D)] = V [F ].

Apply the induction hypothesis to F, (C ∪D) ∩ λ and find E∗ ⊆ λ such that

V [E∗] = V [F, (C ∪D) ∩ λ].

Let E = E∗ ∪ (D ∪C) \ λ; then E ∈ V [C,D] as both E∗, D ∪C are in V [C,D].

In V [E] we can find

E∗ = E ∩ λ and (D ∪ C) \ λ = E \ λ.
Thus F, (C ∪D) ∩ λ ∈ V [E] and therefore also

D ∪ C, I(C,C ∪D), I(D,C ∪D) ∈ V [E].

It follows that C,D ∈ V [E].
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Corollary 5.3: For every C′ ⊆ CG there is C∗ ⊆ CG ∩ sup(C′) such that C∗

is closed and V [C′] = V [C∗].

Proof. Again we proceed by induction on sup(C′). If sup(C′) = CG(ω)

then C∗ = C′ is already closed. For general C′, consider C′ ⊆ Cl(C′); then
I(C′, Cl(C′)) is bounded by some ν < sup(C′). So there is D ⊆ CG ∩ ν such

that V [D] = V [I(C ′, Cl(C′))]. By Proposition 5.2, we can find E such that

D ∪ Cl(C′) ∩ ν ⊆ E ⊆ CG ∩ ν

and

V [E] = V [D,Cl(C′)].

By the induction hypothesis there is a closed E∗ such that E ⊆ E∗ ⊆ CG ∩ ν

and V [E] = V [E∗]. Finally, let

C∗ = E∗ ∪ {sup(E∗)} ∪Cl(C′) \ ν.

Then C∗ ∈ V [C′], and also Cl(C′) and I(C′, Cl(C′)) can be constructed in

V [C∗] so C′ ∈ V [C∗]. Obviously, C∗ is closed, hence C∗ is as desired.

Definition 5.4: Let λ < κ be ordinal. A function f : λ → κ is suitable if, for

all δ ∈ Lim(λ),

lim sup
α<δ

f(α) + 1 ≤ f(δ).

We would like to define Mf [�U ] for a suitable f to be the forcing which con-

structs a continuous sequence such that the order of the elements of the sequence

is prescribed by f . However, we must require some connection to �U . In Exam-

ple 5.5 below, we provide a suitable function which cannot describe the orders

of any generic subsequence.

Example 5.5: Assume that o
�U (κ) = ω1 and ∀α < κ.o

�U (α) < ω1. Let f :ω+1→κ

be defined by f(0) = f(ω) = ω1 and f(n+ 1) = 0. There is no C ⊆ CG ∪ {κ}
with otp(C) = ω + 1 such that o

�U (C(i)) = f(i). There are two reasons for

that: The first, is that there is no α < κ that can be C(0), since by assumption

o
�U (α) < ω1 = f(0). The second reason is that cfV [G](κ) = ω1, hence there is

no unbounded ω-sequence of ordinals of order 0 below κ.

Let us restrict our attention to a more specific family of suitable functions.
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Definition 5.6: Let G ⊆ M[�U ] be V -generic and C ⊆ CG be closed,

λ + 1 = otp(C ∪ {sup(C)}), and 〈C(i) | i ≤ λ〉 be the increasing continuous

enumeration of C. The suitable function derived from C, denoted by fC , is

the function fC : λ+1 → κ, defined by fC(i) = o
�U (C(i)). A suitable function is

called a derived suitable function if it is derived from some closed C ⊆ CG.

Proposition 5.7: If C ⊆ CG is a closed subset, then fC is suitable.

Proof. Let δ ∈ Lim(λ+ 1). Then C(δ) ∈ Lim(CG ∪ {κ}) and therefore there is

ξ < C(δ) such that for every x ∈ CG ∩ (ξ, C(δ)), o
�U (x) < o

�U (C(δ)). Let ρ < δ

be such that for every ρ < i < δ, ξ < C(i) < C(δ). Then

sup
ρ<i<δ

o
�U (C(i)) + 1 ≤ o

�U (C(δ))

and also

min{( sup
α<i<δ

o
�U (C(i)) + 1) | α < δ} ≤ o

�U (C(δ)).

Definition 5.8: Let f : λ + 1 → κ be a derived suitable function. Define the

forcing Mf [�U ]. The conditions are functions F such that:

(1) F is a finite partial function, with Dom(F )⊆λ+1. such that λ∈Dom(F ).

(2) For every i ∈ Dom(F ) ∩ Lim(λ + 1):

(a) F (i) = 〈κ(F )
i , A

(F )
i 〉.

(b) o
�U (κ

(F )
i ) = f(i).

(c) A
(F )
i ∈ ∩�U(κ

(F )
i ).

(d) Let j = max(Dom(F ) ∩ i) or j = −1 if i = min(Dom(F )). Then

for every j < k < i, f(k) < f(i).

(3) For every i ∈ Dom(F ) \ Lim(λ):

(a) F (i) = κ
(F )
i .

(b) o
�U (κ

(F )
i ) = f(i).

(c) i− 1 ∈ Dom(F ).

(4) The map i �→ κ
(F )
i is increasing.

Definition 5.9: The order of Mf [�U ] is defined as follows; F ≤ G iff:

(1) Dom(F ) ⊆ Dom(G).

(2) For every i ∈ Dom(G), let j = min(Dom(F ) \ i).
(a) If i ∈ Dom(F ), then κ

(F )
i = κ

(G)
i , and A

(G)
i ⊆ A

(F )
i .

(b) If i /∈ Dom(F ), then κ
(G)
i ∈ A

(F )
j , and A

(G)
i ⊆ A

(F )
j .
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Proposition 5.10: Let f be a suitable derived function. Then Mf [�U ] is a

forcing notion.

Proof. It is not hard to check that ≤ is a partial order on Mf [�U ]. To

see Mf [�U ] �= ∅, let C be such that f = fC . We define a finite sequence α0 = λ,if

α0 is successor, α1 = α0−1. Otherwise, if there is no β such that f(β) ≥ f(α0);

then we halt the definition. If there is such β, let

α1 = max{β < α0 | f(β) ≥ f(α0)}.
By the suitability requirement, this maximum is defined and α1 < α0. In a

similar fashion if α1 is successor, let α2 = α1 − 1, if there is no β such that

f(β) ≥ f(α1), then we halt the definition, otherwise,

α2 = max{β < α1 | f(β) ≥ f(α1)}
and α2 < α1 < α0. After finitely many steps we reach αk such that for every

β < αk, f(β) < f(αk). The function F defined by Dom(F ) = {αk, . . . , α1} and

F (αi) = 〈C(αi), C(αi) \ C(αi+1) + 1〉
satisfies Definition 5.8.

Example 5.11: Assume that f : ω + 1 → κ, defined by f(n) = 0 and f(ω) = 1.

Then Mf [�U ] first picks some measurable κF
ω of order 1, then adds a Prikry

sequence to the measure U(κF
ω , 0).

If we only change f at ω, f(ω) = 2, then we still force a Prikry sequence for

the measure U(κF
ω , 0), but the first part chooses a measurable of order 2.

Example 5.12: Let f : ω2 + ω + 1 → κ defined by

f(ω · n+m) = n, f(ω2) = ω, f(ω2 +m+ 1) = 1, f(ω2 + ω) = 2.

Clearly, f is suitable. Now Mf [�U ] first picks a measurable κ
(F )
ω2+ω of order 1.

By condition (2)(d) of Definition 5.8, we must also pick κ
(F )
ω2 of order ω, since

f(ω2) > f(ω2 + ω). Then in the interval (κ
(F )
ω2 , κ

(F )
ω2+ω) the forcing generates

a Prikry sequence for U(κ
(F )
ω2+ω, 1) and below κ

(F )
ω2 the forcing generates a di-

agonal Prikry sequence {κ(F )
ωn | n < ω} for the measures 〈U(κ

(F )
ω·n, n) | n < ω〉.

For each n < ω, the forcing generates a Prikry sequence {κ(F )
ω·n+m| | m < ω}

for U(κ
(F )
ω·(n+1), n) in the interval [κ

(F )
ω·n, κ

(F )
ω·(n+1)). So in all Mf [�U ] generates a

sequence of order type ω2 + ω + 1.
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Let f : ωo
�U (κ) + 1 → κ, defined by f(α) = oL(α) (see Definition 2.19).

By Proposition 2.20, for every V -generic filter G ⊆ M[�U ] with p0 : 〈〈κ, κ〉〉 ∈ G,

f = fCG. Hence above p0, M[�U ] is isomorphic to Mf [�U ]. Note that forcing

with M[�U ] above p0 is in the framework of this section since ∀α ∈ CG ∪ {κ}.
o
�U (α) < α.

Similar to M[�U ], we decompose sets A
(F )
i =

⊎
ξ<o�U (κ

(F )
i )

A
(F )
i,ξ . Also, if j

is as in condition (2)(d) of Definition 5.8 and j < i1 < · · · < ik < i, then for

every �α ∈ ∏k
r=1A

(F )
f(ir)

, G := F��α is such that Dom(G) = Dom(F )∪{i1, . . . , ik}
and G(x) = F (x) unless x = ir, in which case G(x) = �α(r).

Proposition 5.13: Let f : λ+ 1 → κ ∈ V be a derived suitable function and

H ⊆ Mf [�U ] be a V -generic filter. Let

C∗
H := {κ(F )

i | i ∈ Dom(F ), F ∈ H}.

Then,

(1) otp(C∗
H) = λ+ 1 and C∗

H is continuous.

(2) For every i ≤ λ, o
�U (C∗

H(i)) = f(i).

(3) V [C∗
H ] = V [H ].

(4) For every δ ∈ Lim(λ + 1), and every A ∈ ∩�U(δ), there is ξ < δ such

that C∗ ∩ (ξ, δ) ⊆ A.

(5) For every successor ρ < λ, H � ρ := {F � ρ | F ∈ H} is V -generic for

Mf�ρ[�U ].

Proof. To see (1), let us argue by induction on i < λ that the set

Ei = {F ∈ Mf [�U ] | i ∈ Dom(F )}

is dense. Let F ∈ Mf [�U ]; if i ∈ Dom(F ) we are done. Otherwise, let

jM := min(Dom(F ) \ i) > i > max(Dom(F ) ∩ i) =: jm.

By condition (3)(c) of Definition 5.8 and minimality of jM , jM ∈ Lim(λ + 1).

Split into two cases. First, if i is successor, then we can find F ≤ G such

that i− 1 ∈ Dom(G) by induction hypothesis. By conditions (2)(d) and (2)(b),

f(i) < o
�U (κ

(F )
jM

). By condition (2)(c), we can find α ∈ A
(F )
jM

such that α > κi
jm

,

o
�U (α) = f(i) and A

(F )
jM

∩ α ∈ ∩�U(α). Then

G′ = G ∪ {〈i, 〈α,A(F )
jM

∩ α〉〉}
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is as wanted. If i is limit, since f is suitable, there is i′ < i such that for

every i′ < k < i, f(k) < f(i). Again by induction, find F ≤ G such that

i′ ∈ Dom(G). Then the desired G′ is constructed as in the successor step.

Denote by FH , the function with domain λ + 1, and let FH(i) = γ be the

unique γ such that for some F ∈ H , i ∈ Dom(F ) and κ
(F )
i = γ. Then it is clear

that FH is order preserving and 1− 1 from λ to C∗
H . By the same argument as

for M[�U ], we conclude also that FH is continuous.

For (2), note that C∗
H(i) = FH(i), thus there is a condition F ∈ H such

that F (i) = C∗
H(i). Hence o

�U (C∗
H(i)) = f(i) by the definition of the condition

in Mf [�U ].

For (3), as usual we note that H can be defined in terms of C∗
H as the

filter HC∗
H

of all the conditions F ∈ Mf [�U ] such that for every i ≤ λ:

(1) If i ∈ Dom(F ), then κ
(F )
i = C∗

H(i).

(2) If i /∈ Dom(F ), then C∗
H(i) ∈ ⋃

i∈Dom(F ) A
(F )
i .

(4) is the standard density argument given for M[�U ].

As for (5), note that the restriction function φ : Mf [�U ] → Mf�ρ[�U ] is a projec-

tion of forcings from the dense subset {F ∈ Mf [�U ] | ρ ∈ Dom(F )} ontoMf�ρ[�U ],

which suffices to conclude (5).

The following theorem is a Mathias criteria for Mf [�U ].

Theorem 5.14: Let f : λ+ 1 → κ ∈ V be a derived suitable function, and let

C ⊆ κ be such that:

(1) otp(C) = λ+ 1 and C is continuous.

(2) For every i ≤ λ, o
�U (C(i)) = f(i).

(3) For every δ ∈ Lim(λ + 1), and A ∈ ∩�U(C(δ)), there is ξ < δ such

that C ∩ (ξ, δ) ⊆ A.

Then there is a V -generic filter H ⊆ Mf [�U ] such that C∗
H = C.

Proof. Define HC to consist of all the conditions F ∈ Mf [�U ] such that for

every i ∈ Dom(F ):

(1) F (i) = C(i).

(2) C \ {κ(F )
i | i ∈ Dom(F )} ⊆ ⋃

i∈Dom(F ) A
(F )
i .

We prove by induction on λ that HC is V -generic. Assume for every ρ < λ and

any suitable function g : ρ+ 1 → κ, every C′ satisfying (1)− (3), the definition

of HC′ is generic for Mg[�U ]. Let f, C be as in the theorem. For every δ < λ, by
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definition, HC � δ+1 = HC�δ+1. Hence by the induction hypothesis HC � δ+1

is generic for Mf�δ+1[�U ]. Also, it is a straightforward verification that HC is a

filter. Let D be a dense open subset of Mf [�U ].

Claim 1: For every F ∈ Mf [�U ], there is F ≤ GF such that:

(1) ξ := max(Dom(F ) ∩ λ)) = max(Dom(GF ) ∩ λ).

(2) There are ξ < i1 < · · · < ik < λ+ 1 such that every �α ∈ ∏k
j=1 A

(F )
λ,f(ij)

,

G�
F �α ∈ D.

Proof. For every i1 < · · · < ik < λ+ 1 and every F ≤ G such that

max(Dom(F ) ∩ λ) = max(Dom(G) ∩ λ) and G(λ) = F (λ),

consider the set

B =

{
�α ∈

k∏
j=1

A
(G)
λ,f(ij)

| ∃R.G��α ≤∗ R ∈ D

}
.

Then

B ∈
k∏

j=1

U(κ
(F )
λ , f(ij)) ∨

k∏
j=1

A
(F )
λ,f(ij)

\B ∈
k∏

j=1

U(κ
(F )
λ , f(ij)).

Denote the set which is in
∏k

j=1 U(κ
(F )
λ , f(ij)) by B′. By normality, there are

Bij ∈ U(κ
(F )
λ , f(ij)) such that

∏k
j=1 Bij ⊆ B′. Let A∗

G,i1,...,ik
∈ ∩�U(κ

(F )
λ ) be the

set obtained by shrinking only the sets A
(F )
λ,f(ij)

to Bij . Since o
�U (κ

(F )
λ ) < κ

(F )
λ

the possibilities for G (note that G(λ) must be F (λ)) and i1, . . . , ik are at

most λ. So by κ
(F )
λ -completness

A∗ =
⋂

G,i1,...,ik

A∗
G,i1,...,ik

∈ ∩�U(κ
(F )
λ ).

Let F ≤∗ F ∗ be the condition obtained by shrinking A
(F )
λ to A∗. By density,

there is G ≥ F such that G ∈ D. So there is �α ∈ [A∗]<ω such that

(G � max(Dom(F ) ∩ λ)) ∪ {〈λ, 〈κ(F )
λ , A∗〉}��α ≤∗ G.

Let ij ∈ Dom(G) be such that κ
(G)
ij

= �α(j); then o
�U (αj) = f(ij) and

�α ∈ ∏k
j=1 A

(F∗)
λ,f(ij)

. Hence for every �β ∈ ∏k
j=1 A

(F∗)
λ,f(ij)

, there is G�β such that

(G � max(Dom(F ) ∩ λ)) ∪ {〈λ, 〈κ(F )
λ , A∗〉}��β ≤∗ G�β ∈ D.

Note that �β ∈ [A∗]<ω, hence we are in the same situation as in Proposition 4.1,

so we can find a single F ≤ GF as wanted.
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For every possible lower part F0 below C(λ) i.e., F0=F �λ for some F ∈Mf [�U ]

with κ
(F )
λ = C(λ), use the claim to find F0 ∪ {〈λ, 〈C(λ), C(λ)〉〉} ≤ GF0 . Let

A∗ = ΔF0AF0

:= {α < C(λ) | ∀F0.F0(max(Dom(F0))) < α → α ∈AF0} ∈ ∩�U(C(λ)).

There is ξ < C(λ) such that C ∩ (ξ, C(λ)) ⊆ A∗. Pick any κ′ ∈ C ∩ [ξ, C(λ))

and let δ < λ be such that C(δ) = κ′. By the claim, the set

E =

{
F ∈ Mf�δ+1[�U ] | ∃δ < i1 < · · · < ik. ∀�α ∈

k∏
j=1

A∗
f(ij)

. G�
F �α ∈ D

}

is dense. Since HC � δ + 1 is generic, there is G∗ ∈ (HC � ξ + 1) ∩ E. By

condition (2) of the assumption of the theorem, f(ij) = o
�U (C(ij)) and since

ξ < i1 < · · · < ik, 〈C(i1), C(i2), . . . , C(ik)〉 ∈
∏k

j=1 A
∗
f(ij)

. Thus

(G∗ ∪ {〈λ, 〈κ,A∗〉〉})�〈C(i1), C(i2), . . . , C(ik)〉 ∈ HC ∩D,

which concludes the proof that HC is generic. Obviously condition (1) of the

definition of HC ensures that C∗
HC

= C.

Theorem 5.15: Let G ⊆ M[�U ] be V -generic and let C ⊆ CG be any closed

subset. Let fC be the suitable function derived from C. If fC ∈ V , then there

is a V -generic H ⊆ MfC [�U ] such that C∗
H = C.

Proof. Let us certify that C satisfies the assumptions of Theorem 5.14 with

respect to fC . (1), (2) are immediate from the definition of fC and by closure

of C. To see condition (3), let δ ∈ Lim(λ + 1) and A ∈ ∩�U(C(δ)). Since

C(δ) ∈ Lim(C), and C ⊆ CG, C(δ) ∈ Lim(CG). By Proposition 2.16(3), there

is ξ < δ such that CG ∩ (ξ, δ) ⊆ A and also C ∩ (ξ, δ) ⊆ A.

Example 5.16: Consider the Prikry forcing with U(κ, 0), take C = CG �even.
Then

otp(C ∪ {κ}) = ω + 1 fC(n) = o
�U (CG(2n)) = 0, fC(ω) = o

�U (κ) > 0.

The forcing MfC [�U ] is simply the Prikry forcing with U(κ, 0). Distinguishing

from the forcing MI [�U ], where we must leave “room” for the missing elements

of the full generic CG, it is possible that MfC [�U ] did not leave ordinals between

successive points of the Prikry sequence.
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Theorem 5.17: Assume that ∀α ≤ κ.o
�U (α) < α. Let G ⊆ M[�U ] be a V -

generic filter and let V ⊆ M ⊆ V [G] be an intermediate ZFC model. Then

there is a closed subset C∗
fin ⊆ CG such that M = V [C∗

fin] and V [C∗
fin] is a

generic extension of a finite iteration of the form

Mf1 [�U ] ∗M
∼
f2 [�U ] ∗ · · · ∗M

∼
fn [�U ].

Proof. By [4, Thm. 15.43], there is A ∈ V [G] such that V [A] = M . By Theo-

rem 1.3, there is C′ ⊆ CG such that M = V [A] = V [C′]. Apply Corollary 5.3 to

find a closed C∗ ⊆ CG ∪ {κ} such that V [C′] = V [C∗]. Let λ0 = κ, recursively

define λi+1 = otp(CG ∩ λi). By the assumption ∀α ≤ κ.o
�U (α) < α and Propo-

sition 2.18, otp(CG ∩ λi) < λi. Hence after finitely many steps, λn ≤ CG(ω),

denote κi = λn−i. Let C
∗
n := C∗ and consider the derived suitable function

fn := fC∗
n∩(κn−1,κn] : otp(C

∗
n ∩ (κn−1, κn]) → κ

Since for each x ∈ C∗
n ∩ (κn−1, κn),

o
�U (x) < otp(CG ∩ κn) and otp(C∗ ∩ (κn−1, κn)) ≤ κn−1,

by Proposition 2.16(6), fn ∈ V [C∗
n] ∩ V [CG ∩ κn−1]. By Proposition 1.3 there

isD ⊆ CG∩κn−1 such that V [fn] = V [D]; apply Proposition 5.2 toD,C∗
n∩κn−1

to find E ⊆ κn−1 such that V [D,C∗
n ∩κn−1] = V [E]. Next, apply Corollary 5.3

to E in order to find a closed subset C∗
n−1 ⊆ CG ∩ κn−1 ∪ {κ} such that

V [C∗
n−1] = V [E]. Now consider the derived suitable function

fn−1 := fC∗
n−1∩(κn−2,κn−1] : otp(C

∗
n−1 ∩ (κn−2, κn − 1]) → κ.

By the same arguments as before, fn−1 ∈ V [C∗
n−1] ∩ V [CG ∩ κn−2] and there

is a closed subset C∗
n−2 ⊆ CG ∩ κn−2 ∪ {κn−2} such that C∗

n−2 ∈ V [C∗
n−1] and

V [C∗
n−2] = V [C∗

n−1 ∩ κn−2, fn−1]. In a similar fashion we define C∗
0 , C

∗
1 , . . . , C

∗
n

such that:

(1) For every 0 ≤ i ≤ n, C∗
i ⊆ CG ∩ κi ∪ {κi} is closed.

(2) V [C∗
0 ] ⊆ V [C∗

1 ] ⊆ V [C∗
2 ] ⊆ · · · ⊆ V [C∗

n] = M .

(3) For every 0≤ i≤n, V [C∗
i ]=V [C∗

i+1∩κi, fi+1], where fi+1=fC∗
i+1∩(κi,κi+1].

(4) f0 ∈ V .

Item (4) follows from C∗
0 ⊆ {CG(n) | n < ω},

C∗
fin = C∗

0 � (C∗
1 \ κ0) � (C∗

2 \ κ1) � · · · � (C∗
n \ κn−1).
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Claim 2: (1) C∗
fin is closed.

(2) For every 0 ≤ i ≤ n, V [C∗
fin ∩ κi] = V [C∗

i ] and, in particular,

V [C∗
fin] = V [C∗] = M.

(3) For every 0 < i ≤ n, fi = fC∗
fin∩(κi−1,κi] ∈ V [C∗

fin ∩ κi−1].

Proof. C∗
fin is closed as the union of finitely many closed sets. We prove (2) by

induction, for i = 0, C∗
fin ∩ κ0 = C∗

0 . Assume that V [C∗
fin ∩ κi] = V [C∗

i ]. Then

V [C∗
fin ∩ κi+1] = V [C∗

fin ∩ κi, C
∗
fin ∩ (κi, κi+1)] = V [C∗

i , C
∗
i+1 \ κi].

To see that V [C∗
i , C

∗
i+1\κi]=V [C∗

i+1], we use the third property of the sequence

C∗
j , namely that V [C∗

i ] = V [C∗
i+1 ∩ κi, fi+1] to see that C∗

i+1∈V [C∗
i , C

∗
i+1\κi]

and therefore C∗
i+1 ∈ V [C∗

i , C
∗
i+1 \ κi]. As for the other direction, by the sec-

ond property, C∗
i ∈ V [C∗

i+1] and also C∗
i+1 \ κi ∈ V [C∗

i+1], so we conclude

that V [C∗
fin ∩ κi+1] = V [C∗

i+1].

As for (3), note that C∗
fin ∩ (κi−1, κi] = C∗

i ∩ (κi−1, κi], and by property (3)

of the sequence C∗
j , fi ∈ V [C∗

i−1]. By (2) of the claim it follows that

fC∗
fin∩(κi−1,κi] = fC∗

i ∩(κi−1,κi] = fi ∈ V [C∗
i−1] = V [C∗

fin ∩ κi−1].

Therefore for every i ≤ n, Mfi [�U ] is defined in V [C∗
fin ∩ κi−1]; denote this

model by Ni. Recall Remark 2.8: the club CG ∩ (κi−1, κi) is V [CG ∩ κi−1]-

generic for the forcing M[�U ] � (κi−1, κi)
6 and therefore it is Ni-generic as

Ni ⊆ V [CG ∩ κi−1].

Hence we can apply Theorem 5.15 to C∗
fin ∩ (κi−1, κi] ⊆ CG ∩ (κi + 1) and find

a Ni-generic filter H ⊆ Mfi [�U ] such that

Ni[H ] = Ni[C
∗
fin ∩ (κi−1, κi] = V [C∗

fin ∩ κi−1][C
∗
fin ∩ (κi−1, κi]] = V [C∗

fin ∩ κi].

In particular, V [C∗
fin ∩ κ0] is a generic extension of V by Mf0 [�U ].

Let
∼
fi be a (Mf0 [�U ] ∗ M

∼
f1 [�U ] ∗ · · · ∗ M

∼
fi−1 [�U ])-name for fi. Then there is

a V -generic filter H∗ for the iteration Mf1 [�U ] ∗ M
∼
f2 [�U ] ∗ · · · ∗ M

∼
fn [�U ] such

that V [H∗] = V [C∗
fin] = M (see, for example, [4, Thm. 16.2]).

6 Alternatively, it is V [CG ∩ κi−1]-generic for M[ �W ] � (κi−1, κi), where �W is the coherent

sequence generated by �U in V [CG ∩ κi−1].
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