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KUREPA TREES AND THE FAILURE OF THE GALVIN

PROPERTY

TOM BENHAMOU, SHIMON GARTI, AND SAHARON SHELAH

Abstract. We force the existence of a non-trivial κ-complete ultrafilter
over κ which fails to satisfy the Galvin property. This answers a question
asked in [5].
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1. Introduction

Let κ be strongly regular (that is, κ = κ<κ) and uncountable. Let F

be a normal filter over κ. A delightful theorem of Galvin says that if one
considers a family C = {Cα : α ∈ κ+} ⊆ F then one can always find a
subfamily {Cαi

: i ∈ κ} of C such that
⋂

{Cαi
: i ∈ κ} ∈ F . The statement

and the proof were published in [2].
One may wonder whether the assumption κ = κ<κ is necessary. The

answer is yes, and the failure of the Galvin property is consistent as proved
by Abraham and Shelah in [1]. The failure of the Galvin property was
further investigated in [8], [9] and [4]. Of course, κ < κ<κ in any such
model, hence if κ is strongly inaccessible then the Galvin property holds
at every normal filter over κ. Following the notation of [4] we denote by
Gal(F , κ, κ+) the following statement:

∀{Aα : α ∈ κ+} ⊆ F , ∃I ∈ [κ+]κ, ∩α∈IAα ∈ F .

Galvin’s theorem applies to any normal filter. In particular, if U is a
normal ultrafilter over a measurable cardinal κ then Gal(U , κ, κ+) holds
true.

The normality of the filter plays an important rôle in Galvin’s proof.
Essentially, given a family C = {Cα : α ∈ κ+} one can isolate a subfamily
{Cαi

: i ∈ κ} of C whose intersection equals its diagonal intersection up to
some F -negligible set. Normality, therefore, is crucial here since it makes
sure that the filter is closed under diagonal intersections.

However, the scope of Galvin’s property is wider. For example, the first
author and Gitik proved in [5] that if U is a p-point or a product of p-
points over κ then Gal(U , κ, κ+) holds. Following this statement they posed
several questions about the applicability of Galvin’s theorem to non-normal
ultrafilters. One of the interesting cases is a measurable cardinal κ, since
such a cardinal carries many κ-complete ultrafilters which are not necessarily
normal.

Question 1.1. Let κ be a measurable cardinal.

(ℵ) Is it consistent that ¬Gal(U , κ, κ+) for some κ-complete ultrafilter
over κ?

(i) Is it consistent that ¬Gal(U , κ, κ+) where U is κ-complete and ex-
tends the club filter of κ?

It has been shown in [5] that consistently κ is a measurable cardinal
and Gal(U , κ, κ+) holds at every κ-complete ultrafilter over κ. To see this,
consider Solovay’s inner model L[U ] where U is a normal ultrafilter over
κ. Kunen proved in [12] that if W is a κ-complete ultrafilter over κ in L[U ]
then W is Rudin-Keisler equivalent to U n for some n ∈ ω. Now if U and
V are Rudin-Keisler equivalent then Gal(U , κ, κ+) holds iff Gal(V , κ, κ+)
holds. Since Gal(U n, κ, κ+) is true for every n ∈ ω, the above statement
follows.
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The main result of this paper is the consistency of the opposite situa-
tion. Namely, it is consistent that U is a κ-complete ultrafilter over κ and
Gal(U , κ, κ+) fails. Moreover, it is possible to force this failure for some U

which extends the club filter of κ. This result shows that normality and κ-
completeness differ with respect to basic combinatorial properties, as shown
e.g. in [10].

Our notation is standard for the most part. If κ = cf(κ) < µ then
S
µ
κ = {δ ∈ µ : cf(δ) = κ}. If µ ≥ cf(µ) > ω then this set is stationary in µ.

We employ the Jerusalem forcing notation, so p ≤P q means that p is weaker
than q. If κ = cf(κ) > ℵ0 then the club filter over κ is denoted by Dκ. If
κ is supercompact then a Laver diamond for κ is a function h : κ → Vκ

which enjoys the following property. For every set x and every sufficiently
large λ > κ there is a fine and normal meausre U over [λ]<κ such that
U (h)(κ) = x. Finally, the polarized relation

(

α
β

)

→
(

γ
δ

)

θ
means that for

every c : α × β → θ one can find A ∈ [α]γ , B ∈ [β]δ and i ∈ θ such that
c ↾ (A×B) is constantly i. According to Hajnal in [11], this notation is due
to Galvin. For basic background in polarized partition relations (which play
a central role in our proof) we suggest [15].
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2. Preliminaries

In this section we collect some information about Kurepa trees. A Kurepa
tree on ℵ1 is a tree T of height ℵ1 such that every level of T is countable
and there are at least ℵ2-many cofinal branches of T . As depicted in [3,
Chapter 31], it exceeded in stature all the trees of the field, its branches
multiplied and its boughs grew long.

We are interested in the generalization of this concept to strongly inac-
cessible cardinals. If one imitates the classical definition of Kurepa trees
then the tree <κ2 is Kurepa whenever κ is strongly inaccessible, thus the
concept of Kurepa trees becomes uninteresting. We shall use the traditional
substitute:

Definition 2.1 (Slim Kurepa trees). A κ-tree T is a slim Kurepa tree iff
|Lβ(T )| ≤ |β| for every β ∈ κ and the cardinality of the set of cofinal
branches of T is at least κ+.

Before proceeding let us exclude from the discussion a seemingly stronger
concept. Call T very slim if |Lβ(T )| < |β| for every β ∈ κ. Let us show
that the number of cofinal branches in such trees must be small.

Claim 2.2. Suppose that κ = cf(κ) > ℵ0. Then there are no very slim

κ-Kurepa trees.

Proof.
Let T be a very slim κ-tree. We intend to prove that the cardinality of
the set of cofinal branches of T is strictly less than κ. For every β ∈ κ let
θβ = |Lβ(T )|, so θβ < |β|. By Fodor’s lemma there are a stationary S ⊆ κ

and a fixed cardinal θ ∈ κ such that β ∈ S ⇒ θβ = θ. Choose such a pair
(S, θ) where θ is minimal. Let B be the set of cofinal branches of T . We
claim that |B| ≤ θ.

Assume towards contradiction that |B| > θ and let {bα : α ∈ θ+} ⊆ B
be a set of pairwise distinct cofinal branches. For every pair of ordinals
{α, δ} ∈ [θ+]2 let βαδ ∈ κ be so that bα(βαδ) 6= bδ(βαδ). Let ξ =

⋃

{βαδ :
{α, δ} ∈ [θ]2}. Notice that ξ ∈ κ since κ = cf(κ) > θ+. Choose β ∈ S such
that β > ξ. For every α ∈ θ+ let xα = bα ∩ Lβ(T ). By the above choices if
α 6= δ then xα 6= xδ. However, |Lβ(T )| = θ < θ+, so this is impossible.

�2.2
Back to the concept of slim Kurepa trees, one can force such trees at

smallish large cardinals. In what follows, we always assume that a tree is
downward-closed. Let K be the following forcing notion described in [6],
which adds a slim Kurepa tree. A condition p = (tp, fp) in K is a pair in
which tp is a normal tree of height β + 1 (where β ∈ κ) and |Lα(t

p)| ≤ |α|
whenever α ≤ β, so tp approximates a slim κ-tree. In addition, fp is a
partial function from κ+ into Lβ(t

p) (where β is the index of the maximal
level of tp) and |dom(fp)| ≤ |β|. If p, q ∈ K then p ≤K q iff tp is a subtree of
tq,dom(fp) ⊆ dom(f q) and fp(δ) ≤tq f q(δ) whenever δ ∈ dom(fp).
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It is easy to see that if κ<κ = κ then K is κ-complete and κ+-cc. Hence
if G ⊆ K is V -generic then no cardinals are collapsed in V [G]. Let T =
⋃

{tp : p ∈ G}. By density arguments one can see that T is a slim κ-Kurepa
tree, and if κ is strongly inaccessible then it remains so in V [G]. Moreover,
one can force such trees and preserve the property of weak compactness.

However, if κ is sufficiently large then no such trees can live over κ. If
κ is ineffable then there are no slim κ-Kurepa trees. Actually, in L this
fact characterizes ineffability, see [7]. A fortiori, if κ is measurable then
every κ-tree with κ+ cofinal branches is not slim. To see this, suppose that
T is such a tree and let  : V → M be an elementary embedding with
crit() = κ. By elementarity, (T ) is a (κ)-tree in M . But (T ) is not slim
since |Lκ((T ))| ≥ κ+, a fact which follows from the existence of κ+-many
cofinal branches of T in V . By elementarity, again, T is not slim in V .

This simple observation sets down a constraint on slim Kurepa trees at
measurable cardinals, but it also opens a window to a possible weakening
of this concept which can live happily with measurability and even stronger
large cardinal properties. The point is that the non-slimness seems to con-
centrate on certain levels below (κ), so by restricting the slimness to non-
problematic levels we may hope to fix this issue.

Definition 2.3. Let κ be a strongly inaccessible cardinal and let S be a
stationary subset of κ. A slim S-Kurepa tree is a tree T ⊆ <κκ such that
for every α ∈ S, |Lα(S)| ≤ |α| and sup(T ) := {t ∈ κκ : ∀α < κ, t ↾ α ∈ T }
is a set of size at least κ+. Also T is called a stationary-slim Kurepa tree if
for some stationary set S ⊆ κ, T is a slim S-Kurepa tree.

Let us briefly describe the idea behind our next definition. Adding a
Cohen subset to a measurable cardinal κ may destroy measurability. But
adding it on top of an Easton product which adds a Cohen subset at every
strongly inaccessible α ∈ κ will preserve measurability. This can be viewed
as a baby-version of Laver’s indestructibility from [13]. While Laver wanted
to take care of every κ-directed-closed forcing notion, it is possible to focus
on a narrower class of forcing notions. In the following we define a forcing
notion which applies this idea to the poset which adds a slim Kurepa tree.

Definition 2.4 (The forcing for adding a stationary-slim Kurepa tree). Let
κ be a regular cardinal and S a stationary subset of κ. The forcing Q(S)
is the forcing for adding a stationary subset of S, namely, Q = {X ⊆ S :
|X| < κ} where the order is end extension which is denoted by ≤end. Define
the forcing K(S) to be the forcing notion which consists of triples 〈X, t, f〉
where:

(a) X ∈ Q(S).
(b) t is a normal tree of height β + 1 < κ, β + 1 ≤ sup(X).
(c) For every α ∈ X ∩ β + 1, |Lα(t)| ≤ |α|.
(d) f : κ+ → Lβ(t) is a partial function, and |f | ≤ |β|.

For the order, we set 〈X, t, f〉 ≤ 〈Y, s, g〉 iff:
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(α) X ≤end Y .
(β) s ↾ β + 1 = t.
(γ) Dom(f) ⊆ Dom(g).
(δ) For every α ∈ Dom(f), f(α) ≤s g(α).

Denote the projection to each coordinate by π1(〈a, b, c〉) = a, π2(〈a, b, c〉) =
b, π3(〈a, b, c〉) = c.

The following is clear:

Proposition 2.5. If κ<κ = κ then 〈K(S),≤〉 is κ-closed and κ+-cc.

The proposition below shows that K(S) adds a stationary set and a
Kurepa tree which is slim in this set.

Proposition 2.6. Let S ⊆ Sκ
ω be stationary and let G be V -generic for

K(S), define S∗ =
⋃

{π1(p) : p ∈ G} and T =
⋃

{π2(p) | p ∈ G}. Then S∗

is stationary at κ and T is a slim S∗-Kurepa tree.

Proof.
Let C ⊆ κ be any club in V [G], and let C

˜
be a K(S)-name for it. Choose

p ∈ G which forces that C
˜
is a club at κ. We proceed by a density argument.

Let q0 ≥ p be any condition. Let us define inductively sequences (qβ : β <

κ), (δβ : β < κ) such that:

(1) (qβ : β < κ) is increasing and continuous, namely π1(qβ) = ∪j<βπ1(qj).
(2) sup(π1(qβ)) ≤ δβ and qβ+1 
 δβ ∈ C

˜
.

(3) (δβ : β < κ) is strictly increasing and continuous.

The condition q0 was already defined. Since K(S) is κ-closed, the set Eq0 :=
{α ∈ κ : ∃q′ ≥ q0, q

′ 
 α ∈ C
˜
} contains a club subset of κ, hence for some

δ0 ∈ Eq0 − sup(π1(q0)) and q0 ≤ q1, we have q1 
 δ0 ∈ C
˜
. Assume we have

defined qα, δα for α < β < κ, satisfying (1) − (3). For limit β, let qβ be
a least upper bound of (qα : α < β), in particular π1(qβ) = ∪α<βπ1(qα),
hence by induction δβ := sup(δα : α < β) ≥ sup(π1(qβ)). Note that since
qβ ≥ qα for each α < β, qβ 
 δα ∈ C

˜
and since qβ 
 C

˜
is a club, we have

qβ 
 δβ ∈ C
˜
. At successor step β + 1, define Eqβ as before, but using the

condition qβ instead of q0, and find δβ+1 ∈ Eqβ − sup(π1(qβ)∪{δβ +1}) and
qβ+1 ≥ qβ such that qβ+1 
 δβ+1 ∈ C

˜
. This concludes the construction.

By (3), the set C∗ = {δβ : β is limit, β < κ} forms a club. By the
stationarity of S, there is some limit β such that δβ ∈ S ∩ C∗. Consider
qβ, then by (2), sup(π1(q)) ≤ δβ. Extend q to q+ such that δβ ∈ π1(q

+),
this is possible since δβ ∈ S and above sup(π1(q

+). Thus q+ 
 δβ ∈ S
˜
∗. As

in the limit step, note that q+ ≥ qβ ≥ qi+1 for every i < β, hence by (2)
q+ 
 δi ∈ C

˜
, hence q+ 
 δβ ∈ C

˜
. We conclude that q+ 
 δβ ∈ C

˜
∩ S
˜
∗. By

density this means that C ∩ S∗ 6= ∅.
For the second part, clearly T is a normal tree such that for each α ∈ S∗,

Lα(T ) is of size at most α. Let us argue that there are κ+-many branches
in T . Indeed for every α ∈ κ+ the set {f(α) : ∃t,X, 〈X, t, f〉 ∈ G ∧ α ∈
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Dom(f)} is a branch in T . By density we can make these branches distinct,
so we are done.

�2.6
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3. Kurepa meets Galvin

In this section we prove the main result of the paper. Our strategy is to
prove two incompatible statements. One of them is a negative combinato-
rial claim which follows from the existence of a certain slim κ-Kurepa tree.
The opposite one is a positive statement which follows from the assump-
tion that every κ-complete ultrafilter over κ satisfies the Galvin property.
The pertinent combinatorial property is a generalization of the following
(unpublished) result also due to Galvin.

Claim 3.1. If there exists a Kurepa tree then
(

ω2
ω1

)

9
(

2
ω1

)

ω
.

Proof.
Suppose that f, g : ω1 → ω. We shall say that f and g are almost disjoint iff
|{β ∈ ω1 : f(β) = g(β)}| ≤ ℵ0. Let T be a Kurepa tree. We intend to build
a collection F = {fα : α ∈ ω2} ⊆ ω1ω such that F is a family of pairwise
almost disjoint functions.

For every β ∈ ω1 fix an enumeration (tβn : n ∈ ω) of the elements of
Lβ(T ). Let (bα : α ∈ ω2) be an enumeration of the ω1-branches of T (or
some of them, if there are more than ℵ2 branches). For every α ∈ ω2 define
fα : ω1 → ω as follows:

fα(β) = m ⇔ bα ∩ Lβ(T ) = tβm.

Notice that if α0 < α1 < ω2 then for some β0 ∈ ω1 we have bα0 ↾ β0 =
bα1 ↾ β0 and bα0(β) 6= bα1(β) whenever β ∈ [β0, ω1). By the definition of our
functions we see that fα0(β) 6= fα1(β) for every β ∈ [β0, ω1).

Letting F = {fα : α ∈ ω2} we may conclude that F is almost disjoint. All
we need now is to convert such a family to a coloring which exemplifies the
negative relation

(

ω2

ω1

)

9
( 2
ω1

)

ω
. To this end, define a coloring c : ω2×ω1 → ω

as follows:
c(α, β) = fα(β).

If α0 < α1 < ω2 and B ∈ [ω1]
ω1 then for a sufficiently large β ∈ B we have

c(α0, β) = fα0(β) 6= fα1(β) = c(α1, β), so we are done.
�3.1

The above claim generalizes, verbatim, to every pair of successor and
double successor cardinals. Thus, if there exists a κ+-Kurepa tree then
(

κ++

κ+

)

9
( 2
κ+

)

κ
. In order to apply a similar idea to a limit cardinal and its

successor one has to slightly modify the statement. Rather than a subset of
the small component of full size, we require a stationary set.

Proposition 3.2. Suppose that S ⊆ Sκ
ℵ0

is stationary and that there is a

slim S-Kurepa tree on κ. Then there is a coloring c : κ+ × S → ω with

no monochromatic product of the form A × S′ for A ∈ [κ+]κ and S′ ⊆ S

stationary.

Proof.
Let T be a slim S-Kurepa tree on κ. For every α ∈ S, |Lα(T )| ≤ α, and
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since cf(α) = ℵ0, we can partition Lα(T ) =
⊎

n∈ω I
α
n such that |Iαn | = θαn <

α. Let {bi : i ∈ κ+} be any collection of κ+-many branches of T (which
exists by the assumption that T is Kurepa).

Define the coloring c : κ+ × S → ω by c(i, α) = n for the unique n such
that bi ↾ α ∈ Iαn . Let us argue that there is no monochromatic product of
the alleged form under c. Suppose otherwise that A ∈ [κ+]κ and S′ ⊆ S is
stationary and c ↾ (A× S′) is constantly n∗. The map α 7→ θαn∗ is regressive
on S′, hence by Fodor’s lemma, there is a stationary T ′ ⊆ S′ such that for

every α, β ∈ T ′, θαn∗ = θ
β
n∗ = θ.

Let A′ ⊆ A be any subset of size θ+ and for every i, j ∈ A′ let li,j ∈ κ be a
level such that bj ↾ li,j 6= bi ↾ li,j . By the regularity of κ, δ = supi,j∈A′ li,j ∈ κ.
Since T ′ is stationary one can find α ∈ T ′ − δ. On the one hand, we know
that |Iαn∗ | = θ. On the other hand {bi ↾ α : i ∈ A′} ⊆ Iαn∗ , a contradiction.

�3.2
The following proposition shows that the violation of this combinatorial

property implies that the Galvin property must fail for a suitable ultrafilter.

Proposition 3.3. Suppose that U is a σ-complete ultrafilter over κ, and

Gal(U , κ, κ+) holds. Then for every coloring c : κ+ ×S → ω where S ∈ U ,

there are A ∈ [κ+]κ and S′ ⊆ S, S′ ∈ U such that c ↾ (A× S′) is constant.

Proof.
For every α ∈ κ+ and every n ∈ ω let Sα

n = {β ∈ S : c(α, β) = n}. Since S =
⋃

n∈ω Sα
n and U is σ-complete, there is nα ∈ ω such that Sα

nα
∈ U . By the

pigeon-hole principle, find X ⊆ κ+, |X| = κ+ such that for every α, β ∈ X,
nα = nβ = m. Apply Gal(U , κ, κ+) to the sequence 〈Sα

m : α ∈ X〉 to find
A ∈ [X]κ, such that S′ =

⋂

α∈A Sα
m ∈ U . It follows that c ↾ (A × S′) = m,

so the proof is accomplished.
�3.3

Let us summarize the above propositions:

Corollary 3.4. Suppose S ⊆ Sκ
ℵ0

is stationary and there is a slim S-Kurepa

tree. Then ¬Gal(U , κ, κ+) holds for every σ-complete ultrafilter U which

extends Dκ ∪ {S}.

�3.4
It remains to prove that there is a model in which one can find a station-

ary subset S ⊆ Sκ
ℵ0
, a slim S-Kurepa tree and a κ-complete ultrafilter which

extends Dκ ∪ {S}. In [14, Page 1033], P. Lücke indicates that under large
cardinal assumptions it is possible to force a weak-Kurepa tree and keep κ

supercompact. The concept of a weak Kurepa tree is parallel to what we
call a slim Kurepa tree. Let us provide a proof for our version of slimness
in stationary sets which consist of ordinals of countable cofinality. We in-
dicate that countable cofinality is not essential. That is, one can force slim
S-Kurepa trees while preserving large cardinal properties for many other
stationary sets S. Likewise, one can prove similar negative combinatorial
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statements from the existence of such a tree, though the number of colors
depends, usually, on the nature of the stationary set.

Theorem 3.5. Let κ be a supercompact cardinal. There is a forcing notion

S such that in V S there is a stationary set S ⊆ Sκ
ℵ0
, there is a slim S-Kurepa

tree and Dκ ∪ {S} can be extended to a κ-complete ultrafilter.

Proof.
Let h : κ → Vκ be a Laver-diamond function, as defined in [13]. The forcing
S is defined as the iteration Pκ ∗R

˜
where Pκ is an Easton support iteration

〈Pβ,Q
˜
α : β ≤ κ, α < κ〉 such that for every α ∈ κ, Q

˜
α is trivial, unless α

is inaccessible and h(α) is a Pα-name for the forcing K(Sα
ℵ0
) in which case

Q
˜
α = h(α).
The forcing R is simply K(Sκ

ℵ0
). Let GPκ ∗ GR be a V -generic set for

Pκ ∗ R
˜
. By proposition 2.6, in V [GPκ ∗ GR] there is a stationary S ⊆ Sκ

ℵ0

and a slim S-Kurepa tree. It remains to show that there is a κ-complete
ultrafilter extending Dκ ∪ {S}.

Since h is a Laver-diamond, there is an embedding embedding j : V → M

such that M2κ ⊆ M , and j(h)(κ) = R
˜
. The iteration j(Pκ) is P

′ = 〈P′
β,Q

˜
α :

β ≤ j(κ), α < j(κ)〉. Since the critical point of j is κ, P′ ↾ κ = Pκ, and since
j(h)(κ) = R

˜
, by definition of the iteration P′

κ+1 = Pκ ∗ R
˜
. In particular one

can form the generic extension M [GPκ ∗GR] in the model V [GPκ ∗GR].
The tail of the iteration P′

(κ+1,j(κ)) is now θ-closed where θ is someM [GPκ∗

GR]-inaccessible above κ. Since (2κ)M = 2κ, it follows that P′

(κ+1,j(κ)) is at

least (2κ)+-closed from the point of view of V . In V , consider the sets
C = {C

˜
: C
˜

is an S − name for a club at κ} and A = {A
˜

: A
˜

is an S −
name for a subset of κ}. By reducing to nice names we conclude that the
cardinality of C and A is at most 2κ. Since M is closed under 2κ sequences,
it follows that {j(C

˜
) : C

˜
∈ C}, {j(A

˜
) : A

˜
∈ A} ∈ M .

We claim that there is a condition p ∈ P′

(κ+1,j(κ)) and δ such that

p 
P′

(κ+1,j(κ))
δ ∈ j(S

˜
) ∩ (

⋂

{j(C
˜
) : C

˜
∈ C}).

Let us prove this claim. Since j(κ) is above 2κ and {j(C
˜
) : C

˜
∈ C} is

a collection 2κ-many names for clubs at j(κ), it is forced by the empty
condition that the intersection of these clubs is a club. Since j(S

˜
) is a name

for a stationary set in j(κ), one can find an ordinal δ and a condition p

which forces that δ ∈ j(S
˜
) ∩ (

⋂

{j(C
˜
) : C

˜
∈ C}). Now using the closure of

the forcing we can find a single condition p ≤ p′ ∈ P′

(κ+1,j(κ)) such that p′

decides the statement δ ∈ j(A
˜
) for every A

˜
∈ A.

In V [GPκ ∗GR] define

U = {A
˜
[GPκ ∗GR] : A

˜
∈ A ∧ p′ 
P′

(κ+1,j(κ))
δ ∈ j(A

˜
)}.

We claim that U is a κ-complete ultrafilter over κ which extends D ∪ {S}.
Indeed, crit(j) = κ and j is an elementary embedding, so it is clear that U

is a κ-complete ultrafilter over κ. Since we have defined the condition p′ so
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that p′ 
 δ ∈ j(S
˜
) and δ ∈ j(C

˜
) for every name of a club C

˜
, it follows by

definition that S = S
˜
[GPκ ∗ GR] ∈ U and for every club C ∈ V [GPκ ∗ GR],

there is a name C
˜

for C, and p′ 
 δ ∈ j(C
˜
).

�3.5
Gathering everything under the same canopy, we can phrase the following:

Corollary 3.6. It is consistent to have a κ-complete ultrafilter over a mea-

surable cardinal κ which extends Dκ and fails to satisfy the Galvin property.

�3.6
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4. Open problems

We conclude the paper with a short list of open problems related to our
study. Let U be a κ-complete filter over κ. In [5], the Galvin property
was used in order to prove that quotients of Prikry-Magidor forcings with
normal ultrafilters are κ+-cc in the generic extension, and therefore do not
add fresh subsets to cardinals of cofinality greater than κ. In this paper we
proved the consistency of the existence of a κ-complete ultrafilter U which
fails to satisfy the Galvin property, and hence the properties of the quotients
of the tree Prikry forcing PT (U ) are unclear:

Question 4.1. Is there a quotient of PT (U ) which in not κ+-cc in the full
generic extension by PT (U )?

One may ask, directly, about fresh sets:

Question 4.2. Is there a fresh subset of κ+ after forcing with PT (U ) with
respect to some intermediate model?

As mentioned in the introduction, a product of p-points satisfies the
Galvin property. By the main result of this paper, it is consistent that there
is a κ-complete ultrafilter over κ which fails to satisfy the Galvin property.
Thus, such an ultrafilter cannot be a p-point or a product of p-points. One
may wonder whether there are more constraints on such ultrafilters.

Question 4.3. Are there more combinatorial properties of ultrafilters which
imply the Galvin property?

The method of this paper fits very well the case of measurable cardinals,
since such cardinals carry κ-complete ultrafilters. It would be interesting to
investigate a parallel problem at successor strongly regular cardinals. The
following is a modification of an open problem from [5].

Question 4.4. Suppose that 2κ = κ+.

(ℵ) Is the statement ¬Gal(F , κ+, κ++) consistent for some κ+-complete
filter F over κ+?

(i) Is the statement ¬Gal(F , κ+, κ++) consistent where F is κ+-complete
and Dκ+ ⊆ F?

A natural model in which κ is measurable and every κ-complete ultrafilter
over κ satisfies the Galvin property is L[U ]. But the tolerance of inner
models with respect to large cardinals is limited.

Question 4.5. Is it consistent that κ is supercompact and Gal(U , κ, κ+)
holds at every κ-complete ultrafilter U over κ?

And a similar problem from a different perspective:

Question 4.6. Is it consistent with the existence of a measurable cardinal
that every measurable cardinal carries a κ-complete ultrafilter which fails
to satisfy the Galvin property? In particular, is it consistent that there
is a proper class of measurable cardinals and each one of them carries a
κ-complete ultrafilter which fails to satisfy the Galvin property?
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