
MATH 300: CHAPTER 2- FORMAL PROOFS
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The purpose of this lecture is to learn how to write formal proofs. We
will also develop basic number theory, mostly to demonstrate formal proofs.

1. Formal Proofs

1.1. Why do we need proofs? Unlike day-to-day information, when a
mathematical statement is being claimed, there must be some calculation/
argument establishing it. This is the true power of mathematics which makes
it so convincing. It gives us the sensation that the truth of mathematical
statements is absolute, and there is no room for interpretations.

What grants mathematics this ability is its high standard of precision
and accuracy. This accuracy is well understood when considering calcula-
tions which we are already accustomed to. But what shall we do if the
mathematical statement does not involve only calculations?

Proofs are designated exactly for that. They serve all mathematicians as
a convincing tool, and as such a tool, proofs have a rigid structure, specific
words which are used, which are all determined by the logical structure of
the statement we intend to proof.

Given a statement which you believe (conjecture) to be true, the only
acceptable way to establish your conjecture as a theorem (mathematical
truth) is to provide a proof for it.

Remember! If you claim something, it is your responsibility to back up
your claim with a formal proof.

1.2. How to write a proof? It takes some practice to understand how
to write proofs, the students are encouraged to write down on their own
as much proofs as possible, starting from proving trivial statements and
gradually amplify the logical complexity of the statements.

Let us try and explain how to form proofs.
Rule 1: you should prove everything you claim in this course which is

not a statement learned in the average American education system up to
8th grade.

Example 1.1. The statements

“the sum of two even numbers is even” or “for every x, x < x+ 1”
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do not require proofs. While “There are infinitely many prime numbers”,
“for every n > 2, 2n < nn” do require one.

Every statement you will encounter in this course can be formalized using
the propositional and predicate calculus. There is no actual need to formal-
ize each and every statement, instead, we should only focus on the logical
structure of the statement.

Rule 2: The logical structure of a statement determines the structure of
the proof.

For logical connectives, we use the truth table:

Example 1.2. Prove that: Either 2 > 17 or Paris is the capital of France.

Proof. This is a disjunction A∨B, where A is 2 > 17 and B is ”Paris is the
capital of France” (By rule 1 this is ok). Indeed B is true and therefore (by
the truth table of ∨) A ∨B is true. □

The structure of a proof for A ∧ B and ∼ A is very similar. However,
implications A ⇒ B are a bit more involved, and we will discuss them in a
separate section.

One part which is not mathematical but improves the readability of proofs
is the declaration of what you are about to do. There are several commonly
used such declarations which we will gather along the way.

Rule 3: Declare what you are about to do.

Example 1.3. Let us re-write the previous proof with some guiding decla-
rations. Among the most common declarations is ”WTP” (want to prove).
This is more of a psychological trick that helps us distill what we should do
in the proof.

Proof. WTP A ∨ B where A is 2 > 17 and B is ”Paris is the capital of
France”. We will prove it by referring to the truth table (this is also a
declaration), indeed B is true and therefore A ∨B is true. □

Any given mathematical statement has two parts:

(1) The assumptions:
(a) Assumptions stated in the theorem.
(b) Assumptions inffered from the logical structure of the state-

ment.
(c) Assumptions that arise from some previous definition.
(d) Previously proven statements under the same assumptions.
(e) An equivalent statement to another assumption.
(f) Axiom (will be discussed in the future).

(2) The conclusion: the new information that the statement introduces.

Rule 4: Assumptions can appear in a proof at any time.

Example 1.4. Prove the following statement: Suppose that n ∈ N is a
number greater than 2, prove that n2 ≥ 9.
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Proof. We assume that n ∈ N and n > 2 and WTP n2 ≥ 9. By the
assumption that n ∈ N, and by definition of N, since n > 2 then n ≥ 3.
Then n2 = n · n ≥ 3 · 3 = 9. □

As we will see, not all statements have assumptions1.
The last general rule we consider is called ”modus ponens”
Rule 4: If P and P ⇒ Q appeared in the proof then we can deduce Q.

2. Proving existential statements and Imprications

As we have seen in the previous section, the general structure of a proof
of a logical connective is simple, one should prove that one of the truth
assignments that turns the logical connective T holds (namely one of the
rows in the truth table). For implications, this is more involved and requires
clarification. Let us just focus on proving implication, as this is a very
common proof structure. Recall that P ⇒ Q is true if either P is false or P
is true and Q is true. Hence there are two ways to proof an implication:

(1) (99.9% of the cases) assume that the antecedent P holds true and
deduce that the consequent Q follows.

(2) (0.1% of the cases) Prove that the implication is vacuous, namely
that the antecedent P is false.

Proof structure of implication P ⇒ Q:
Assume P .
...
Therefore, Q.
Thus P ⇒ Q.

In 99.9% of the cases, to prove an existential statement of the form ∃x(p(x)),
one should:

(1) provide a specific witness x0.
(2) Prove that p(x0) holds.

Proof structure for ∃x(p(x)):
Define/Let/Consider x0 = ....
WTP p(x0)
(proof of p(x0))
Thus ∃x(p(x0)).

2.1. Some basic definitions in Number Theory.

Definition 2.1. An integer n ∈ Z is said to be divisible by m if there exists
an integer k ∈ Z such that n = k ·m.

Definition 2.2. An even integer is any integer n which is divisible by 2.
An odd integer is any integer which is not even.

1Except for the axioms.
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Remark 2.3. An even number is of the from 2k where k is an integer. An
odd number is of the form 2k + 1.

Example 2.4. Prove the following implications:

(1) Let x be an integer. if x is odd, then x+ 1 is even.

Proof. Suppose that x is odd (this is step 1). WTP x + 1 is even.
Since x is odd, x = 2k + 1 where k is some integer 2. Therefore,

x+ 1 = (2k + 1) + 1 = 2k + 2 = 2(k + 1).

It follows that x + 1 is 2 times the integer3 k + 1 and hence, by
definition, x+ 1 is even. Thus if x is odd then x+ 1 is even. □

(2) Let x, y be real numbers. Show that if x < −1 and y > 2 then the
distance of the point (x, y) from the points (1, 0) is greater than 7.

Proof. Suppose that x < −1 and y > 2. WTP the distance between
(x, y) and (1,−1) is greater than 4. The distance is defined by

d =
√

(x− 1)2 + (y − (−1))2 =
√

(x− 1)2 + (y + 2)2

Since x < −1, x − 1 < −1 − 1 = −2 and therefore (x − 1)2 >
(−2)2 = 4. Also since y > 2, y + 2 > 2 + 2 = 4 and therefore
(y + 2)2 > 42 = 16. Hence

d >
√
4 + 16 =

√
20 >

√
16 = 4

□

(3) If n is an even integer then n2 is also even.

Proof. Suppose that4 n is even. We want to prove that n2 is even.
By our assumption that n is even there is an integer k such that
n = 2k. Substituting n by 2k we get,

n2 = (2k)2 = 4k2 = 2(2k2)

Since 2k2 is an integer, we conclude that5 n2 is divisible by 2 and
therefor an even number. □

(4) If n,m are odd integers then n ·m is also odd.

Proof. Suppose that n,m are odd integers, then there are integers
l, k such that

n = 2k + 1, m = 2l + 1

Hence

nm = (2k + 1)(2l + 1) = 4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1

Since z = 2kl + k + l is an integer, nm = 2z + 1 and therefore an
odd number. □

2This is equivalent by the previous remark.
3Here we use the basic fact that if k is an integer then k + 1 is an integer.
4The structure of an implication is to first assume the antecedent and to prove the

consequent.
5By the definition of divisibility.
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Example 2.5. Prove the following statements:

(1) There is a natural number n such that n2 + 2n+ 1 is divisible by 4.
(2) There is x such that x2 < 0 ∨ 6 > 5.
(3) ∃x(x+ 1 = 0)
(4) (∃x(x2 < 0)) ∨ (∃x(x2 > 0)).
(5) ∃x(x > 0 ⇒ 0 = 1).
(6) ∼ [(∃x(x > 0)) ⇒ 0 = 1].

To provide the witness inside a proof (the first step of an existential proof)
one should use the word “define” or “set” to declare his intention.

(1) Claim: There is a natural number n such that n2 +2n+1 is divisible
by 4.

Proof. Define6 n = 3 , then7 32 + 2 · 3 + 1 = 16 which is divisible by 4 8

□

(2) Claim: There is x such that x2 < 0 ∨ 1 + x > 5.

Proof. Set x = 7. We need to prove that (72 < 0) ∨ (1 + 7 > 5). This is
true9 since 1 + 7 = 8 > 5 □

(3) Claim: ∃x(x+ 1 = 0).

Proof. Define x = −1, then −1 + 1 = 0. □

(4) Claim: (∃x(x2 − 1 < 0)) ∧ (∃x(x2 − 1 > 0)).

Proof. We prove separately that 10:

a. Claim: ∃x(x2 − 1 < 0).

Proof. Define x = 0, then 02 − 1 = −1 < 0. □

b. Claim: ∃x(x2 − 1 > 0).

Proof. Define x = 2 then 22 − 1 = 3 > 0. □

Hence we proved the ∧-statement. □

(5) Claim: ∃x(x > 0 ⇒ 0 = 1).

Proof. Define x = −1, we want to prove that −1 > 0 ⇒ 0 = 1 holds, but
−1 > 0 is false, hence the implication is true vacuously. □

(6) Claim: ∼ [(∃x(x > 0)) ⇒ 0 = 1].

6We use the same variable letter “n” as in the claim, this is the first step in an existential
proof

7This is the second step of the proof of an existential statement.
8the fact that 16 is divisible by 4 does not require a proof, but as a practice, one should

prove it using the previous definition.
9By the truth table of the logical connective ∨, to prove α∨β it suffices to prove either

α or to prove β. In our case it did not matter that 72 < 0 is false since we proved the
other.

10Note here that before it is an existential statement, it is a ∧-statement. By the truth
table, in order to prove α ∧ β, we should prove both α and β.
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Remark 2.6. Notice the difference between the previous example which can
also be written as ∃x(x > 0 ⇒ 0 = 1) and the current on (∃x(x > 0)) ⇒
0 = 1.

Proof. To disprove the claim we want to prove that ∼ ((∃x(x > 0)) ⇒ 0 = 1)
By the low of negation of implication ∼ (P ⇒ Q) ≡ P∧ ∼ Q. Hence we
want to prove that (∃x(x > 0))∧ ∼ (0 = 1). To prove this ∧-statement, we
prove each statement separately. ∼ (0 = 1) is clear.

Claim: ∃x(x > 0).

Proof. Define x = 1, then x > 0. □

□

Theorem 2.7. Let a, b, c be integers. If a divides b and b divides c, then a
divides c.

Proof. Let a, b, c be integers.
Suppose that a divided b and b divides c. WTP a divides c.
By the assumption, there are integers k, l such that

b = al and c = bk.

Substituting b we get c = bk = (al)k = a(lk). Since the multiplication of
integers is an integer, then lk is an integer. Hence there is an integer m
(namely m = lk) such that c = am and therefore a divides c. Thus, if a
divides b and b divides c then a divides c.

□

2.2. Applying theorems. Usually theorems are formulated in the most
general form. However, when we would like to apply a theorem, we will do
it for a specific case which falls under the assumptions of the theorem.

Example 2.8. Claim: If n = 10k + 5 where k is an integer, namely that
the units digit of n is 5, then n2 = k(k + 1) · 100 + 25.

Before proving the claim, let us see how to apply it. Pick your favorite
integer with unit digit 5, say n = 95. Then, by the claim, since 95 = 10·9+5,
we have k = 9 and 952 = 9 · 10 · 100 + 25 = 9025.

Proof. Suppose that n = 10k+5. We want to prove that n2 = k(k+1)100+
25. Substituting n, we have

n2 = (10k+5)2 = (10k)2+10k·5·2+52 = 100k2+100k+25 = 100k(k+1)+25

□

3. Logical equivalence

One other thing we can use in proofs is to switch the statement with an
logically equivalent one.



MATH 300: CHAPTER 2- FORMAL PROOFS 7

3.1. Splitting into cases. Since P∨ ∼ P is a tautology, for every statemnt
Q we have that Q ≡ (P∨ ∼ P ) ⇒ Q. In parctice, this means that if we
wish to prove Q we can prove it by splliting into cases, which have have the
following structure:

(1) Case 1: Assume P . We want to prove Q.
(2) Case 2: Assume ∼ P . We want to prove Q.

Note that we can split into more cases as long as we cover all the possible
cases.

Example 3.1. Claim: Let n be any integer. Then n2 + n is even.

Proof. Let n0 be any integer. We want to prove that n2
0 + n0 is even. Let

us split into cases:

(1) Case 1: Assume n0 is even. We want to prove that n2
0 + n0 is even.

Indeed, n2
0 + n0 = n0(n0 + 1). A even integer times any integer is

even, hence n2
0 + n0 is even.

(2) Case 2: Assume n0 is odd. We want to prove that n2
0 + n0 is even.

Since n0 is odd, n0 + 1 is even, and as in the previous case we see
that n2

0 + n0 is a product of odd times even which is even.

□

3.2. Contrapositive. As we said earlier, we are allowed to prove logically
equivalent statement. One of the most common logical equivalences which
are used is the contapositive P ⇒ Q ≡ (∼ Q) ⇒ (∼ P ).

Example 3.2. Claim: Prove that if n2 − 1 is odd then n is even.

Proof. This is an implication, let us state its contrapositive: if n is odd then
n2 − 1 is even.

Suppose that n is odd. We want to prove that n2 − 1 is even. By our
assumption, there is an integer l such that n = 2l + 1. It follows that,

n2 − 1 = (2l + 1)2 − 1 = (4l2 + 4l + 1)− 1 = 4l2 + 4l = 2(2l2 + 2l)

Since 2l2 + 2l is an integer, n2 − 1 is even. □

3.3. If and only if statements. Another useful logical equivalence is P ⇔
Q ≡ (P ⇒ Q)∧ (Q ⇒ P ). Hence the structure of a proof of an “if and only
if” statements is a double implications:

(1) Prove P ⇒ Q.
(2) Prove Q ⇒ P .

Example 3.3. Claim: Let n be an integer of the form n = 10 · k+ d where
k, d are integers. Then,

k + d · 5 is divisible by 7 ⇔ n is divisible by 7

Proof. Let us prove this biconditional statement by a double implications:
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(1) k + d · 5 is divisible by 7 ⇒ n is divisible by 7 : Suppose that k+ d ·
5 is divisible by 7. We want to prove that n is divisible by 7. By
the assumption there is an integer l such that k + 5d = 7l hence
k = 7l − 5d. Substituting k, we see that:

n = 10k + d = 10(7l − 5d) + d = 70l − 49d = 7(10l − 7d)

Since 10l − 7d is an integer, we conclude that n is divisible by 7.
(2) k + d · 5 is divisible by 7 ⇐ n is divisible by 7 : Suppose that n is di-

visible by 6. We want to prove that k + d · 5 is divisible by 7. By
the assumption, there is an integer l such that n = 7l. Substituting
n we get 10k + d = 7l hence d = 7l − 10k. Substituting d we get,

k + d5 = k + (7l − 10k)5 = 35l − 49k = 7(5l − 7k)

since 5l − 7k is an integer, k + 5d is divisible by 7.

□

Let us apply the previous claim to a specific case: is n = 2450 divisible
by 7? for k = 245, d = 0 we have that n = 10k+ d. By the claim, it suffices
to see if k + 5d = 245 is divisible by 7. Indeed 245 = 7 · 35 is divisible by 7
hence 2450 is divisible by 7.

3.4. Proof by contradiction. Proof by contradiction is perhaps the most
common proof method among the logical equivalences. The idea is to prove
that the falsity of Q leads to an absurd (a contradiction). This implies the
falsity of the falsity of Q which is logically equivalent to Q. Formally, if
α ≡ F is any contradiction (for example α is P∧ ∼ P is usually used) then
we can use the following logical equivalence:

Problem 1. Q ≡ (∼ Q) ⇒ α.

Hence a proof by contradiction to the statement Q has the following
structure:

(1) Assume toward a contradiction that ∼ Q.
(2) Deduce a contradiction.

There are no rules for when should one use a proof by contradiction, instead,
one should always formulate the negation of the statement he wishes to prove
and try to reach a contradiction. Before the examples, let us recall the lows
of negation of the different logical connectives and quantifiers.

(1) ∼ (∼ Q)) ≡ Q.
(2) ∼ (P ∧Q) ≡ (∼ P ) ∨ (∼ Q).
(3) ∼ (P ∨Q) ≡ (∼ P ) ∧ (∼ Q).
(4) ∼ (P ⇒ Q) ≡ P ∧ (∼ Q).
(5) ∼ (∀x(p(x))) ≡ ∃x(∼ p(x)).
(6) ∼ (∃x(p(x))) ≡ ∀x(∼ p(x)).

Problem 2. Simplify ∼ (P ⇔ Q).
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Example 3.4. (1) Claim: There are no integers n,m such that 12n +
15m = 2.

Proof. Assume toward a contradiction that there are n,m such that
12n + 15m = 2. Then 3(4n + 5m) = 2, and since 4n + 5m is an
integer, it follows that 3 divides 2 which is a contradiction. □

(2) Claim: If n is divisible by 3 then n2 − 1 is not divisible by 3.

Proof. Suppose toward a contradiction that n is divisible by 3 and
also11 n2 − 1 is divisible by 3. By the assumption, there are integers
l,m such that n = 3l and n2 − 1 = 3m. Substituting n, we get

3m = n2 − 1 = (3l)2 − 1 = 9l2 − 1

hence

1 = 9l2 − 3m = 3(3l2 −m)

Since 3l2−m is an integer, we conclude that 1 is divisible by 3 which
is a contradiction.

□

(3) Claim: Let x, y be real numbers such that x < 2y. If 7xy ≤ 3x2+2y2,
then 3x ≤ y.

Proof. Assume toward a contradiction that 3x > y. By the assump-
tions of the claim 2y > x and therefore

3x− y > 0 and 2y − x > 0

Hence

0 < (3x− y)(2y − x) = −2y2 − 3x2 + 7xy

. It follows that 7xy > 3x2 + 2y2 This is a contradiction to the
assumptions of the claim that 7xy ≤ 3x2 + 2y2. □

(4) Prove that the lines y = x2 + x+ 2 and y = x− 2 do not intersect.

Proof. Suppose toward a contradiction that (a, b) is a point of inter-
section. Then b = a2+a+2 and b = a−2. Hence a−2 = a2+a+2.
It follows that a2 = −4. However, for any real number r, r2 ≥ 0.
This is a contradiction. □

The following theorem relies on the fact that every rational number a
b has a

reduced form. Namely a
b = a′

b′ , where a
′, b′ have no common divisors. This is

easy to believe, since if a, b would have a common divisor we can just cancel
it from the numerator and denominator. We will prove this fact formally by
induction in the next chapter.

Theorem 3.5.
√
2 is an irrational number.

11The claim we are proving is an implication P ⇒ Q, hence if we assume toward a
contradiction that ∼ (P ⇒ Q), we assume that P∧ ∼ Q.
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Proof. Suppose toward a contradiction that
√
2 is rational. Then there are

coprime integers n,m such that
√
2 = m

n . It follows that 2 = m2

n2 and

n22 = m2, hence m2 is even. It follows that m is even (why? prove it!) so
there is k such that m = 2k and n22 = (2k)2 = 4k2. dividing the equation
by 2 we have that n2 = 2k2, and by the same reasoning n should also be
even. However, this is a contradiction to the choice of n,m being coprime
on one hand and both even on the other hand. □

3.5. Disproving statements. Disproving a statement is to prove the nega-
tion of the statement.

Example 3.6. (1) To disprove a universal statement we should simply
give a counterexample. For example, let us disprove the claim:

For every integer n, n3 + 2n+ 1 is even

The witness n = 2 satisfy that 23+2 ·2+1 = 13 is a counterexample
for the universal statement and therefore we have disproved it.

(2) Disproving an existential statements requires to prove a universal
statement. For example, disprove the following statement:

There is a number x such that for every natural number n, x > n.

4. Proving universal statements

Proving universal statements is not an easy task and requires mathemat-
ical matureness. Let us review some of the most common ways. The first,
is to go over all the possibilities “one-by-one” and to prove the statement
for each individual.

Example 4.1. Claim: For every integer 0 ≤ n ≤ 2, n2 − n ≤ n.

Proof. We shall go over all possibilities one-by-one 12:

• If n = 0, then 02 − 0 = 0 ≤ 0.
• If n = 1, then 12 − 2 = 0 ≤ 1.
• If n = 2, then 22 − 2 = 4− 2 = 2 ≤ 2.

□

This method is quit simple but not very useful as this only applies for
universal statement regarding a small enough number of individuals to con-
sider. What does it mean small enough? well, this depends. If we were at
home with a few hours to waste, then perhaps 100 cases to check would be
considered small enough. During the final exams, this would be too much.
On the other hand, if we can run a computer program to check all the
possibilities then a billion cases is probably doable for modern computers.

12Here we declare which is the method we are using to prove the universal statement.
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Remark 4.2. The Four Color Theorem in is simplest form states that no
more then 4 colors are required to color a regional map such that any two ad-
jacent regions have different colors. This was a long standing open problem
in graph theory which was resolve in 1976 by Kenneth Appel and Wolfgang
Haken from the University of Illinois.

The four color theorem is a theorem of the form “for every regional
map...”, hence it is a universal statement with potentially infinitely many
individual maps to consider. The proof of Appel and Haken, reduced the
problem to checking 1,834 maps, then they used a computer to check all the
possibilities which took 1200 hours for the computer to check. Eventually,
the computer announced that each one of the 1,834 many possibilities can
be colored with 4 colors. A sceptical person can argue against this kind of
proofs by computers claiming that we can never be sure that the computer
did not miss a case.

What should we do then if we have too many cases to go over one-by-one
or even infinitely many cases to consider? The most common method is a
proof for a “general object”. The structure of the proof is to work with a
variable x0 which represent a general/random object, but is considered used
as if it was a fixed object. But as a wise uncle once said:

“With great power comes great responsibility”

The status of this variable x0 is tricky and one should be extra careful with
this kind of variable. On one hand, we cannot assume any property of x0,
as it is supposed to range over all the cases, and if we were to make any
assumption/restriction on x0 it might fail to represent all the possibilities.
On the other hand, we treat x0 as if it was a specific object and therefore
it can be used in formulas, and in the definition of other objects. Here the
choice of words is crucial, to emphasize that x0 has this special status in the
proof we use the dramatic opening line “Let x0 be...”, whenever a math-
ematician encounter such an opening line, the status of x0 is as described
above. In general, the structure of a proof for a universal statement which
uses a general object is:

(1) Declare you general object “Let x0/n0/a0... be a (object type)”,
where the object type is either explicit in the claim or understood
from the context of the claim.

(2) Formulate a simplified statement which is what we need to prove
about the general variable.

(3) Prove the simplified statement about the general variable according
to the logical structure of it.

Example 4.3. Prove the following universal statements:

(1) Claim: ∀x(x+ 1 > 0 ∨ x2 ≥ 1)
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Proof. Let x0 be any number13. Our goal is to prove that14: x0+1 >
0 ∨ x20 ≥ 1.

Let us split into cases15:
• If x0 > −1, then x0+1 > 0 and in particular x0+1 > 0∨x20 ≥ 1.
• If x0 ≤ −1, then x20 ≥ 1 and in particular x0 + 1 > 0 ∨ x20 ≥ 1.

At any rate, we conclude that x0 + 1 > 0 ∨ x20 ≥ 1. □

(2) Claim: ∀x((∀y(x · y = 0)) ⇒ x = 0)

Proof. Let x0 be any number. We want to prove that: (∀y(x0 · y =
0)) → x0 = 0, Suppose that16 ∀y(x0 · y = 0), we want to prove that
x0 = 0. In particular, for y = 1 we conclude that17 x0 · 1 = 0 and
therefore x0 = 0. □

(3) Claim: ∀x((∃y(y + x = y)) ⇒ x = 0).

Proof. Let x0 be any number. We want to prove that (∃y(y + x0 =
y)) ⇒ x0 = 0. Suppose that ∃y(y + x0 = y), we want to show that
x0 = 0. Let y0 be a witness18, namely y0 + x0 = y0. Reduce from
both side of the equation y0, to conclude that x0 = 0. □

13This is the declaration of the general variable, it is clear from the context that the
claim is about numbers.

14This is the second step, where we formulate what there is to prove about the general
number x0.

15In the third step we prove the simplified claim according to the its logical structure, it
this case it is a ∨-statement. It is common to split into cases when we prove ∨-statements,
this is allowed even when we dill with a general object as long as we cover all the possible
cases.

16Recall that when we prove an implication we assume that the antecedent holds and
we want to prove the consequent.

17Note here that we assume a universal statement and therefore we have in hand a
very powerful assumption, that for every y we choose, we know for a fact that x0 · y = 0,
so we might as well pick our favorite y, and apply the assumption to it.

18Here the antecedent if an existential statement, namely we are given that there some
y, x + y = y. This is a very weak assumption, since this y can be any y and we cannot
assume that y is any specific number. But still, this y exists. Therefore y has a similar
status to that of a general variable and we use “Let y0...” to fix an object y0 which witness
the statement without restricting y0 to be specific.


