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Set theory is the basic mathematical theory which is commonly accepted
as the language to describe the mathematical universe.

1. sets

We will focus on the so-called “näive” set theory (rather than axiomatic
set theory) where the notion of a set is not explicitly defined. Instead we
will give rules of thumb to describe sets and how to imagine and handle
them.

Definition 1.1. A set is a collection of mathematical objects without rep-
etitions and without ordering.

To understand this definition better, let us jump directly to the descrip-
tion of sets and through the example we will understand it better. In general,
there are exactly three ways to define a set.

1.1. The list principle.

{a, b, c, ..., z}, {1, 5, 17}, {{1, 2}, {2, 3}}
A set is always denoted with curly brackets {, }. Between the brackets we
specify the members or elements of the set separated by commas.

Let us denote the set of natural numbers by:

N = {0, 1, 2, ...}
Definition 1.2. The membership relation a ∈ A is the statement that the
object a is a member of the set A

Example 1.3. 1 ∈ {1}, {2, 2} ∈ {{1}, {2}}, {3} /∈ {3, 4, 5}, {1, 10, 100} ∋
1, 12 /∈ N

Formally, we can define the ”List Principle” by

a ∈ {a1, ..., an} ≡ a = a1 ∨ a = a2... ∨ a = an

Remark 1.4. (1) To explain the fact that sets have no order, we note
that the sets {1, 2, 3}, {2, 3, 1} represent the same set.

(2) To explain the fact that sets have no repetitions, we note that
{1, 1, 2, 3}, {1, 2, 3} represent the same set.
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(3) Bounded quantifiers: it will be convenient to use the notion of quan-
tifiers which are bounded in a given set A:

∀x ∈ A.p(x) ≡ ∀x.x ∈ A → p(x)

∃x ∈ A.p(x) ≡ ∃x.x ∈ A ∧ p(x)

We think of these quantifiers as quatifiters which range over a given
set.

Remember: The membership relation is always between a member of a
set and a set

1.2. The separation principle. Given a set A an a predicate p(x) where
x is a free variable in the set A, we can separate from A the elements a ∈ A
which satisfy p(a) into a new set. This separated set is denoted by:

{x ∈ A | p(x)}
This reads as “the set of all x in A such that p(x) holds true”.

Example 1.5. (1) {x ∈ {1, 2, 6, 7} | x > 3} = {6, 7}
(2) p(x) is the predicate ∃k ∈ N(3 · k = x). Then we can separate from

N the following set:

{x ∈ N | ∃k ∈ N(3 · k = x)} = {0, 3, 6, 9, ....}
(3) A = {1, 3, 6, 11, 21, 17}, {x ∈ A | x+ 1 is prime} = {1, 6}
(4) B = {{1}, {2},N, {N}, {x ∈ N | x · x = x}}

{x ∈ B | 1 /∈ x} = {{2}, {N}}

Define a ∈ {x ∈ A | p(x)} ≡ a ∈ A ∧ p(a)

1.3. The replacement principle. Let A be a set and f(x) some opera-
tion/ function on the elements of A. We can replace every memeber a of
the set A by the outcome of the operation f(a) and collect all the outcomes
into a new set. This new collection is denoted by:

{f(x) | x ∈ A}
This reads as “the set of all outcomes f(x) where the parameter x runs in
the set A”.

Example 1.6. • f(x) = 2x, {2x | x ∈ N} = {20, 21, 22, ....} = {1, 2, 4, 8, 16, ....}
• {{x} | x ∈ {1, 4, 3}} = {{1}, {3}, {4}}. Sets of the form {a} are
called singletons.

• {x+ 1 | x ∈ N} = {x ∈ N | x > 0}

Define a ∈ {f(x) | x ∈ A} ≡ ∃x ∈ A.f(x) = a

Important: a formula of the form a ∈ A is a statement and should be
proven by the definitions given above for each of the three principles.

Exercise 1. Prove the following membership statements:

(1) 2 + 5 ∈ {1, 2, ..., 10}.



MATH 300: CHAPTER 3- BASIC SET THEORY 3

Proof. By the list principle, we need to prove that

(2 + 5 = 1) ∨ (2 + 5 = 2) ∨ ... ∨ (2 + 5 = 10)

Indeed, 2 + 5 = 7 hence the ∨-statement holds. □

(2) 5 ∈ {x ∈ N | ∃y ∈ Z.y + x = 5}.
Proof. By the separation principle, we need to prove that 5 ∈ N ∧
∃y ∈ Z.y + 5 = 5. This is a ∧-statement, so we need to prove two
parts:
(a) 5 ∈ N, this is clear by the definition of the natural numbers.
(b) We need to prove that ∃y ∈ Z.y + 5 = 5. Define y = 0, then

y ∈ Z and y + 5 = 0 + 5 = 5.
□

(3) {1} ∈ {{n, 1} | n ∈ N}.
Proof. By the replacement principle, we need to prove that ∃n ∈
N.{1} = {1, n}. Define n = 1, indeed 1 ∈ N and since there are no
repetitions in sets we have that

{1, n} = {1, 1} = {1}.

□

2. Famous sets

(1) N = {0, 1, 2, 3, ....} you will not need to explain basic properties of the
natural numbers which relates to addition, multiplication and power
of natural numbers. Here are some other properties we assume about
the natural numbers:

• Every natural number has an immediate successor.
• The natural numbers are well-ordered, which simply says that
every set of natural numbers (finite or infinite) has a minimal
element.

• Every finite set of natural numbers has a maximal element.
(2) The set of positive natural numbers is: N+ = {x ∈ N | x > 0} =

{1, 2, 3, 4, ....}
(3) The set of integers is: Z = {...,−2,−1, 0, 1, 2, ...}
(4) The set of fractions/ rational numbers is: Q = {m

n | m,n ∈ Z∧n ̸= 0}
(5) The set of real numbers is denoted by R. We wont formally define the

reals. We will simply describe them as numbers which have a (possi-
bly infinite) decimal representation such as: 15.6755897847566372.......
Among the real numbers, one can find

√
2, π, e. One of the most im-

portant properties of the reals is that the rational numbers are dense
inside them:

∀r1, r2 ∈ R.r1 < r2 ⇒ (∃q ∈ Q.r1 < q < r2)

R+ = {x ∈ R | x > 0}.
(6) The intervals:
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• (a, b) = {x ∈ R | a < x < b} denotes the open interval between
a and b.

• [a, b] = {x ∈ R | a ≤ x ≤ b} the closed interval.
• [a, b) = {x ∈ R | a ≤ x < b}. Define similarly (a, b].
• (a,∞) = {x ∈ R | a < x} is the infinite ray. Similarly define
[a,∞), (−∞, a), (−∞, a]. Note that (a,∞] is not defined since
∞ is not a natural number.

(7) ∅ denoted the empty set, which is characterized by the following
property: ∀x.x /∈ ∅. Namely, the empty set is a set with no element.
It is sometimes convenient to think of ∅ = {}.

3. Inclusion and the extensionality principle

Definition 3.1. Let A,B be any sets. We say that A is included in B and
denote it by A ⊆ B if

∀x.x ∈ A ⇒ x ∈ B

In other words, if every element of A is an element of B. Using bounded
quantifiers we can say that A ⊆ B is the statement ∀x ∈ A.x ∈ B.

Example 3.2. {1, 5} ⊆ Nodd ⊆ N+ ⊆ N ⊆ Z ⊆ Q ⊆ R.

3.1. Proving sets inclusion. Since A ⊆ B is a universal implication, we
have the following format:

(1) The proof starts with “Let a ∈ A”.
(2) Then we should deduce from the assumption of that a ∈ A usually

that requires to interpret that assumption that a ∈ A. that a ∈ B
and the proof should terminate by “a ∈ B”.

Of course, in special cases we can use the other methods of proving universal
statements (such as proving a ∈ B going over a ∈ A one-by-one)

Example 3.3. Prove the following inclusions:

(1) {2,−1} ⊆ {x ∈ Z | x2 > x}.
Proof. Let a ∈ {2,−1}. Since {2,−1} includes only two elements,
let us prove that a ∈ B by going over the elements of {2,−1} one-
by-one:
(a) For a = 2, we need to prove that 2 ∈ {x ∈ Z | x2 > x}. By

the separation principle we need to prove that 2 ∈ Z ∧ 22 > 2.
Indeed 2 is an integer and 22 = 4 > 2.

(b) For a = −1, we need to prove that −1 ∈ Z ∧ (−1)2 > −1.
Indeed, −1 is an integer and (−1)2 = 1 > −1.

□

(2) {n2 + n | n ∈ N} ⊆ Neven.

Proof. Let x ∈ {n2 + n | n ∈ N}. We need to prove that x ∈ Neven.
By the replacement principle, there exist n ∈ N such that x = n2+n,
so let n0 ∈ N be such that x = n2

0 + n0. In is an easy exercise to
deduce now that x is even, namely that x ∈ Neven. □
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(3) For every a, b, c ∈ R. If a < b < c, then there is ϵ > 0 such that
(a, b+ ϵ] ⊆ (a, c).

Proof. Let a, b, c ∈ R such that a < b < c. We need to prove that
there is ϵ > 0 such that (a, b + ϵ] ⊆ (a, c)A moment of reflection
reviles that we only need to find 0 < ϵ such that b + ϵ < c, hence
0 < ϵ < c − b. The following definition of ϵ is tailored to satisfy
exactly these inequalities.. Define ϵ = c−b

2 . Since c > b, we have that

c− b > 0 and also ϵ = c−b
2 > 0. Let us prove that1 (a, b+ ϵ] ⊆ (a, c).

This is an inclusion, let x ∈ (a, b+ ϵ]. By definition of intervals, this
means that x ∈ R∧(a < x ≤ b+ϵ). We need to prove that x ∈ (a, c),
namely, that x ∈ R∧ (a < x < c). Indeed by the assumption, x ∈ R,
and a < x. To see that x < c, we use the definition of ϵ:

x ≤ b+ ϵ = b+
c− b

2
< b+ (c− b) = c

Hence a < x < c and we conclude that x ∈ (a, c). □

Problem 1. Prove that if A ⊆ B ∧B ⊆ C, then A ⊆ C.

Theorem 3.4. For every set A, ∅ ⊆ A.

Proof. 2 Let A be a set. We need to prove that ∅ ⊆ A. Note here the
assumption “Let a ∈ ∅” is impossible. Instead, we recall that in order to
prove that ∅ ⊆ A we need to prove that ∀x.x ∈ ∅ ⇒ x ∈ A. Let x be
any element, then x ∈ ∅ is false by the definition of ∅ and therefore the
implication x ∈ ∅ ⇒ x ∈ A is vacuously true. □

Definition 3.5. We denote by A ⊈ B if ¬(A ⊆ B), namely, if ∃x ∈ A.x /∈ B.

Example 3.6. Prove that {n ∈ N | n2 − 7n+ 12 = 0} ̸⊆ Nodd

Proof. For example3 4 /∈ Nodd and also 4 ∈ {n ∈ N | n2 − 7n + 12}, since
4 ∈ N and 42 − 7 · 4 + 12 = 0. □

3.2. Set equality. The extensionality principle is a basic principle (axiom)
in set theory which expresses the fact the a set is determined by its elements.

Definition 3.7. The extesionality principle is the fact that for any two sets
A,B:

A = B ⇔ (A ⊆ B) ∧ (B ⊆ A)

This means that when we wish to prove set equality A = B, we do so by
proving a double inclusion:

(1) Prove A ⊆ B.
(2) Prove B ⊆ A.

1Recall that to prove an existential statement we give the example and prove it satisfy
the desired property.

2Here is and example for the 0.1% of the cases where we prove that an implication is
vacuously true.

3We need to prove an existential statement so we provide an example.
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Example 3.8. Prove that N+ = {x ∈ Z | ∃y ∈ N.y + 1 = x}.

Proof. Let us denote the set of the right-hand side by A. We want to prove
N+ = A. This is sets equality and we prove it by a double inclusion:

(1) N+ ⊆ A: Let n0 ∈ N+, then n0 ≥ 1 is an integer. We want to prove
that n0 ∈ A, by the separation principle, we want to prove that
n0 ∈ Z ∧ ∃y ∈ N.y + 1 = n0. Clearly, n0 ∈ Z. Define y = n0 − 1.
Note that y ≥ 0 is an integer, hence y ∈ N and clearly y + 1 = n0,
hence n0 ∈ A.

(2) A ⊆ N+: Let a0 ∈ A. We want to show that a0 ∈ N+. By the
separation principle, we know that a0 ∈ Z and that ∃y ∈ N.y + 1 =
a0. Let y0 ∈ N witness that y0 + 1 = a0. Since y0 ∈ N, we have that
y0 ≥ 0 and therefore a0 = y0 + 1 ≥ 1. It follows that a0 ∈ N+.

□

4. Venn Diagram and set operations

The graphical way to imagine sets and elements it to think of a set A as
an area and a member of it x ∈ A as a point in that area:

xA

A Venn diagram of two or more sets, is graphial representation of general
sets.

A B

Three sets:
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A

B

C

We can also add extra assumption to the diagram, for example if B ⊊ C we
can express it as follows:

A B C

x

Note that x is a witness for a member of B which is not in C. A vigilant
reader will notice that the picture is not fully accurate as we do not know
if the witness x belongs to A.

Definition 4.1. Let A,B be sets

(1) The intersection of the sets is defined by A∩B = {x | x ∈ A∧x ∈ B}.
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A B
A ∩B

(2) The union of the two sets is denoted by A∪B = {x | x ∈ A∨x ∈ B}

A B

A ∪ B

(3) The difference of the sets is defined by A \B = {x ∈ A | x /∈ B}

A B
A \B

In the literature, difference of sets is sometimes denoted by A−B.
(4) The complement of A inside a supset U of A is denoted by Ac = U\A.

This is conceptually different from difference since we assume that
U is some framework set and then Ac is an operation on a single set.
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A

Ac

(5) The symmetric difference of the sets is denoted by A∆B = (A\B)∪
(B \A)

A B
A \B B \ A

Example 4.2. (1) {1, 2}∪{2, 3} = {1, 2, 3}, {1, 4, 5}∩{2, 4, 4} = {4}, [0,∞)∩
(−∞, 1) = [0, 1)

(2) {1, 2, 6} \ {2, 7, 8} = {1, 6}, A∩A = A∪A = A, the set of irrational
numbers is the set R \Q

Proposition 4.3. Sets operations identities:

(1) Associativity:
(a) A ∩ (B ∩ C) = (A ∩B) ∩ C.
(b) A ∪ (B ∪ C) = (A ∪B) ∪ C.
(c) A∆(B∆C) = (A∆B)∆C.

(2) Commutativity:
(a) A ∩B = B ∩A.
(b) A ∪B = B ∪A.
(c) A∆B = B∆A.

(3) Distributivity:
(a) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
(b) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(4) Identities of difference and De-Morgan low’s for sets:
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(a) A \B = A ∩Bc.
(b) (A ∪B)c = Ac ∩Bc.
(c) (A ∩B)c = Ac ∪Bc.
(d) A \ (B ∩ C) = (A \B) ∪ (A \ C)
(e) A \ (B ∪ C) = (A \B) ∩ (A \ C).

(5) Identities of the empty set:
(a) A ∩ ∅ = ∅.
(b) A ∪ ∅ = A.
(c) A \ ∅ = A.
(d) ∅ \A = ∅.
(e) A∆∅ = A.

(6) Identities of a set and itself:
(a) A ∩A = A.
(b) A ∪A = A.
(c) A \A = ∅.
(d) A∆A = ∅.

As examples, we will prove some of the items. We encourage the readers to
write the proof for the other items.

Proof of 3.(b). We need to prove sets equality. We do so by proving a double
inclusion.

(A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C): Let x ∈ (A∩B)∪(A∩C). By definition
of ∪, we can split into cases:

(1) If x ∈ A∩B, then by definition of ∩, x ∈ A∧x ∈ B. Hence x ∈ B∪C
and x ∈ A ∩ (B ∪ C).

(2) If x ∈ A ∩ C then x ∈ A ∧ x ∈ C. Once again, x ∈ B ∪ C, thus
x ∈ A ∩ (B ∪ C).

In both cases we conclude that x ∈ A ∩ (B ∪ C).
(A ∩B) ∪ (A ∩ C) ⊇ A ∩ (B ∪ C): Exercise.

□

Proof of 4.(e). Let us prove it using the other items.

A \ (B ∪C)
4.(a)
= A ∩ (B ∪C)c

4.(b)
= A ∩ (Bc ∩Cc)

6.(a)
= (A ∩A) ∩ (Bc ∩Cc) =

2.(a)+1.(a)
= (A ∩Bc) ∩ (A ∩ Cc)

4.(a)
= (A \B) ∩ (A \ C)

□

Proposition 4.4. The following are equivalent:

(1) A ⊆ B
(2) A ∩B = A
(3) A \B = ∅
(4) A ∪B = B
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Proof. We shall prove: (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1).4

(1) ⇒ (2): Suppose A ⊆ B. We need to prove that A ∩B = A. We need
to prove a double inclusion: Clearly, A∩B ⊆ A. As for the other inclusion,
let x ∈ A, since A ⊆ B we conclude x ∈ B and therefore x ∈ A ∩ B thus
A = A ∩B.

(2) ⇒ (3): Suppose that A ∩ B = A and suppose toward a contradiction

that AB ̸= ∅. By the definition of ∅, we conclude that there is x ∈ A\B. By
definition of sets difference, x ∈ A ∧ x /∈ B. By definition of ∩, x /∈ A ∩ B.
Thus x ∈ A and x /∈ A ∩ B. By extensionality, A ̸= A ∩ B, contradicting
the assumption.

(3) ⇒ (4) and (4) ⇒ (1) are left as exercises.
□

5. The power set

Definition 5.1. Let A be any set. define the power set of A as the set f all
possible subsets of A. We denote it by

P (A) = {x | x ⊆ A}
Example 5.2. (1) P ({0, 1}) = {∅, {0}, {1}, {0, 1}}

(2) P ({{1}, 2}) = {∅, {{1}}.{2}, {{1}, 2}}
(3) ∅, A ∈ P (A)

Problem 2. A ⊆ B If and only if P (A) ⊆ P (B).

Proof. ⇒: Suppose that A ⊆ B. We want to prove that P (A) ⊆ P (B). To
prove the inclusion, let X ∈ P (A), we want to prove that X ∈ P (B). By
definition of power set, X ∈ P (A) implies that X ⊆ A. By the assumption
A ⊆ B and by a transitivity of inclusion we conclude that X ⊆ B. Again
by definition of the power set, we have that X ∈ P (B).

⇐: Suppose that P (A) ⊆ P (B). We want to prove that A ⊆ B. Usually,
we would take an element a ∈ A and try to prove that a ∈ B. However,
there is a “trick” here which simplifies the proof. We have that A ∈ P (A)
and by the assumption, P (A) ⊆ P (B), hence A ∈ P (B). By definition of
power set this means that A ⊆ B, as wanted. □

Definition 5.3. For a finite set A, we denote be |A| the number of elements
in the set A. For example |{1, 2, 3, 18,−3}| = 5 and |(−5, 5) ∩ Z| = 9.

Theorem 5.4. Let A be a finite set then |P (A)| = 2|A|.

“Proof”. Suppose that A = {a1, ..., an}.
Every subset X ⊆ A, defines a sequence of n yes/no answers in the follow-

ing way: for each i = 1, ..., n, we ask the question, is ai ∈ X? For example
suppose that:

4This is a standard trick to prove equivalence between several statements. The order
is not important as long as we close a circle of implications.
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• a1 yes
• a2 no
• a3 no
• a4, ..., an yes

Then the sequence of answers would be

yes, no, no, yes, yes, yes, ..., yes

Note that from this sequence of answers we can reproduce the subset X =
{a1, a4, ..., an}. This means that we are left to count the number of possible
sequences of answers. Since typically there are n answers, with 2 possibilities
for each answer we conclude that there are

2 · 2....2︸ ︷︷ ︸
ntimes

= 2n

many subsets of A. □

Problem 3. What is the sequence of answers which corresponds to ∅, A?

5.1. Ordered pairs and Cartesian product. Many mathematical ob-
jects involve order and repetitions. For example, the coordinates of a point
in the plane is an object for which the order is important (since the point
P = (1, 2) is not the same point as Q = (2, 1)) and repetition is allowed
(there is the point (1, 1)). Let us define using sets, objects which allow
order and repetition:

Definition 5.5. Let x, y be two objects, the ordered pair of x and y is
defined by ⟨x, y⟩ = {{x}, {x, y}}.

Example 5.6.

The basic property of pairs is the following property for which we omit
the proof:

Claim 5.6.1. For every a, b, c, d

⟨a, b⟩ = ⟨c, d⟩ ⇔ a = c ∧ b = d

Definition 5.7. Let A,B be two sets. The Cartesian product of the sets
(named after René Descartes) is defined by A×B = {⟨a, b⟩ | a ∈ A,B ∈ B}

Also define the square of a set A is to be A×A.

Example 5.8. (1) {1, 2} × {3, 4} = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 3⟩, ⟨2, 4⟩}
(2) {2, 3}2 = {⟨2, 2⟩, ⟨2, 3⟩, ⟨3, 2⟩, ⟨3, 3⟩}
(3) The Real plane is defined to be the set R2.

6. Induction and Recursion

Induction and recursion and extremely related techniques, however, they
have totally different purposes:

Important Induction is a proof technique while Recursion is a
definition technique.
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6.1. Recursion. As we said, recursion is a definition technique, but what
does it define? sequences:

Definition 6.1. A sequence of elements of a set A is an list of elements of
A enumerated by the natural numbers.5

Example 6.2. The following are examples of sequences:

(1) The sequence an = n is the sequence 0, 1, 2, 3, 4, ...
(2) The sequence bn = 1

n+1 is the sequence 1, 12 ,
1
3 , ...

(3) The sequence cn = (−1)n is the sequence 1,−1, 1,−1, 1, ...
(4) The sequence dn of the sum of angles in degrees of a polygon with

n+3 vertexes, is the sequence 180o, 360o, 540o, ... and actually dn =
(n+ 1) · 180o.

Definition 6.3. A recursive definition of a sequence has two parts:

(1) Initial values of the sequence: A definition of the first few values of
the sequence.

(2) The recursive condition: A formula to compute the next element in
the sequence from the previous elements.

Remark 6.4. The number of previous elements required to define the next
element is called the depth of the recursion. The depth of the recursion
determined how many initial values should we specify.

(1) a0 = 0, an+1 = an + 1, the depth is 1.
(2) An arithmetic sequence is a sequence of the form a0 = a and an+1 =

an + d, for some given a, d. For example: a0 = 5 and an+1 = an − 7.
(3) A geometric sequence is a sequence of the form a0 = a and an+1 =

an · q for some given a, q for example a0 = 5 and an+1 = an · (−7).
(4) a0 = a1 = 1 and an+1 = an + an−1. Here the depth is 2. This is

called the Fibonacci sequence.
(5) 0! = 1 and (n+ 1)! = n! · (n+ 1).
(6) a1 = ∅ and an+1 = {an}. We are allowed to start the enumeration

from a natural number grater than 0.

Definition 6.5. Let us define by recursion an n-tuple. A 1-tuple is defined
by ⟨a⟩ = a. Given we have defined an n-tuple, we define n+ 1-tuples using
n-tuples and ordered pairs we have already defined.:

⟨a1, ..., an, an+1⟩ = ⟨⟨a1, ...an⟩, an+1⟩

Example 6.6. (1) ⟨a0⟩ = a0.
(2) Note that a 2-tuple is the same as an ordered pairs. Indeed, let us

denote momentarily the 2-tuple by ⟨a0, a1⟩∗, then we have

⟨a0, a1⟩∗ = ⟨⟨a0⟩, a1⟩ = ⟨a0, a1⟩
.

5The real definition of a sequence involves the concept of functions which we will study
later.
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(3) ⟨a0, a1, a2⟩ = ⟨⟨a0, a1⟩, a2⟩ =

{{⟨a0, a1⟩}, {⟨a0, a1⟩, a2}} = {{{{a0}, {a0, a1}}}, {{{a0}, {a0, a1}}, a2}}

(4) ⟨a0, a1, a2, a3⟩ = ⟨⟨⟨a0, a1⟩, a2⟩, a3⟩

6.2. induction. One of the most common techniques for proving Univer-
sal statements of the form ∀n ∈ N... is a proof by induction. Let us explain
our goal and the idea behind induction.

Suppose we would like to prove a claim of the form

“For every natural number n, q(n) (some property of n)”

This is extremely important that the statement speaks about natural num-
bers. In order to prove such statement, we can use a proof by induction.
The point is to prove an infinite chain of implications:

q(0) ⇒ q(1) ⇒ q(2) ⇒ ...q(n) ⇒ q(n+ 1) ⇒ ...

This is done by proving for a general n that q(n) ⇒ q(n + 1), this is
called the inductive step. Then the final step is to prove q(0) which is called
the base of the induction. If we proved both the base of the induction and
the induction step then we can now derive the property for every natural
number since:

• q(0) is true by the base.
• q(0) ⇒ q(1), then q(1) is true.
• q(1) ⇒ q(2), then q(2) is true, and so on.

Practically, since q(n) ⇒ q(n + 1) is a universal implication, a proof by
induction for the claim ∀n ∈ N.q(n) has the following structure:

(1) The base of the induction: Proof for q(0).
(2) Induction hypothesis: “Suppose that q(n) holds”, here n is a general

variable.
(3) Induction step: We need to prove that q(n + 1) holds, under the

given induction assumption that q(n) holds.

Example 6.7. Prove by induction the following claims:

(1) ∀n ∈ N.n2 ≥ n.

Proof. The induction base: We need to prove that for n = 0,
02 ≥ 0, this is indeed true since 02 = 0.

The induction hypothesis(Abbreviated I.H.): Let n be any
natural number, and suppose that n2 ≥ n.

The induction step: We need to prove that (n + 1)2 ≥ n + 1.
Indeed,

(n+ 1)2 = n2 + 2n+ 1 ≥
Since n≥0

n2 + 1 ≥
I.H.

n+ 1

□

(2) ∀n ≥ 1(n + 1 ≤ 2n). We can start the induction from a natural
number greater than 0, this only changes the base of the induction.
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Proof. The induction base: We need to prove the claim for n = 1.
Indeed,

1 + 1 = 2 ≤ 2 = 2 · 1

The induction Hypothesis: Suppose that for a general n ≥ 1,
n+ 1 ≤ 2n.

The induction step: We need to prove that (n+1)+1 ≤ 2(n+1).
Indeed,

(n+ 1) + 1 ≤
I.H

2n+ 1 ≤ 2n+ 2 = 2 · (n+ 1)

□

(3) ∀n > 3.2n < n!.

Proof. The induction base: We need to prove the claim for n = 4,
indeed 24 = 16 ≤ 24 = 4!.

The induction hypothesis: Suppose that for a general n > 3,
2n < n!.

The induction step: We need to prove that 2n+1 < (n + 1)!.
Indeed,

2n+1 = 2n · 2 ≤
I.H.

n! · 2 ≤
Since n>3

n! · (n+ 1) =
Recursive def

(n+ 1)!

□

(4) A general term for an arithmetic sequence. Suppose that an =
an−1 + d is an arithmetic sequence. Then for every n ∈ N, an =
a0 + d · n. (homework: geometric sequence and sum of squares)

Proof. The induction base: For n = 0, we need to prove that
a0 = a0 + d · 0. This is clearly true.

The induction hypothesis: Suppose that for a general n, an =
a0 + dn.

The induction step: We need to prove that an+1 = a0+d(n+1).
Using the recursive definition of an, we have that:

an+1 = an + d =
I.H.

a0 + dn+ d = a0 + d(n+ 1)

□

(5) The partial sum of a arithmetic sequence. Suppose that an = an−1+
d is an arithmetic sequence. Then for every N ∈ N,

N∑
i=0

ai = a0 + a1 + ...+ aN = (N + 1)(a0 + dN/2)

Proof. The induction base: We need to prove the formula for
N = 0, a0 = (0 + 1)(a0 + d · 0/2). This is clear.



16 TOM BENHAMOU RUTGERS UNIVERSITY

The induction hypothesis: Suppose that the formula is true
for a general N , namely, we assume that truth of the equality

N∑
i=0

ai = a0 + a1 + ...+ aN = (N + 1)(a0 + dN/2)

The induction step:

N+1∑
i=0

ai = a0 + ...+ aN︸ ︷︷ ︸∑N
i=0 ai

+ aN+1 =
I.H.

(N +1)(a0+ dN/2)+ aN+1 =
Previous exercise

= (N +1)(a0 + dN/2) + a0 + d(N +1) = (N +2)an + (N +1)d(N/2+ 1) =

(N + 2)a0 + (N + 2)d(N + 1)/2 = (N + 2)(a0 + d(N + 1)/2)

□

For example, consider the arithmetic sequence an = n (here a0 = 0
and d = 1) then we can apply the formula to conclude that

0 + 1 + 2 + ...+ 1000 = 1001(0 + 1 · 1000/2) = 1001 · 500 = 500, 500

(6) Prove that for any given n lines in the plane, no two are parallel,

and no three intersect at a single point6, have exactly n(n−1)
2 points

of intersection. (homework: the sum of angles of a polygon)

Proof. Let dn denote the number of intersection points of n non-
concurrent lines. We firs construct a recursive formula for dn. Clearly,
d1 = 0 (and d2 = 1, d3 = 3). Given n non-concurrent lines, they
have dn intersection points. Adjoining a new line to them, it inter-
sect each of the lines exactly once (since it is not parallel to any of
them) and the points of intersection are different since no three lines
intersect at a point. Hence

dn+1 = dn︸︷︷︸
The intesection points of the old lines

+ n︸︷︷︸
the intersections with the new line

Now let us prove by induction that dn = n(n−1)
2 .

The induction base: Indeed d1 = 0 = 0·(−1)
2 .

The induction hypothesis: Suppose that for a general n, dn =
n(n−1)

2 .

The induction step: We need to prove that dn = (n+1)n
2 . We

use the recursive description of dn+1,

dn+1 = dn + n =
n(n− 1)

2
+ n = n(

n− 1

2
+ 1) = n

n− 1 + 2

2
=

n(n+ 1)

2
□

(7) Define the recursive sequence a0 = ∅, an+1 = P (an). Then for every
n ∈ N, an ⊆ an+1.

6Such lines are called non-concurrent lines.
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Proof. The induction base: For n = 0 we need to prove that
a0 ⊆ a1. By definition a0 = ∅, and we have already prove that the
empty set is included in every set. In particular a0 = ∅ ⊆ a1.

The induction hypothesis: Suppose that for a general n, an ⊆
an+1.

The induction step: We need to prove that an+1 ⊆ an+2. This
is an inclusion proof, so let X ∈ an+1. We need to prove that
X ∈ an+2. By definition, an+1 = P (an), and by the assumption, X ∈
P (an). By definition of the power set, X ⊆ an. By the induction
hypothesis, an ⊆ an+1. We already saw that if a ⊆ b ∧ b ⊆ c then
a ⊆ c. It our case, we conclude that X ⊆ an+1. Again by the
definition of the power set, X ∈ P (an+1) = an+2, as wanted.

□

(8) For all n ∈ N+ and a1, .., an, b1, .., bn,

⟨a1, .., an⟩ = ⟨b1, ..., bn⟩ ⇐⇒ ∀1 ≤ i ≤ n.ai = bi

Proof. We will use Claim 5.6.1, that for every a1, a2, b1, b2

⟨a1, a2⟩ = ⟨b1, b2⟩ ⇔ a1 = b1 ∧ a2 = b2

The induction is of the variable n, which is the length of the n-tuple.
The induction base: For n = 1, we need to prove that for every

a1, b1
(⋆) ⟨a1⟩ = ⟨b1⟩ ⇐⇒ a1 = b1

Recall that by definition of 1-tuple, ⟨a⟩ = a, hence the equivalence
(⋆) is clear.

The induction hypothesis: Suppose that for a general n, for
every a1, .., an, b1, ..., bn,

⟨a1, .., an⟩ = ⟨b1, ..., bn⟩ ⇐⇒ ∀1 ≤ i ≤ n.ai = bi

The induction step: We need to prove that for every a1, .., an+1, b1, ..., bn+1,

⟨a1, .., an+1⟩ = ⟨b1, ..., bn+1⟩ ⇐⇒ ∀1 ≤ i ≤ n+ 1.ai = bi

Let a1, ..., an+1, b1, ..., bn+1. We need t prove that

⟨a1, .., an+1⟩ = ⟨b1, ..., bn+1⟩ ⇐⇒ ∀1 ≤ i ≤ n+ 1.ai = bi

We will prove this equivalences with a chain of equivalences which
we already know.

⟨a1, .., an+1⟩ = ⟨b1, ..., bn+1⟩ ⇐⇒
Recursive definition of n-tuples

⟨⟨a1, .., an⟩, an+1⟩ = ⟨⟨b1, ..., bn⟩, bn+1⟩

⇐⇒
Pairs equality

⟨a1, .., an⟩ = ⟨b1, ..., bn⟩ ∧ an+1 = bn+1 ⇐⇒
I.H.

∀1 ≤ i ≤ n.ai = bi ∧ an+1 = bn+1 ⇐⇒ ∀1 ≤ i ≤ n+ 1.ai = bi
□


