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1. Functions

Relations are a wide class of important mathematical objects such as
functions, orders and equivalence relation.

1.1. Non-formal functions. Functions are among the most common math-
ematical objects and appear in almost every mathematical theory. Intu-
itively speaking, a function is just a machine which assigns to every element
a (the input) in a given set A (the domain of the function) a unique element
f(a) (the output/ the image of a) in a set B (the range of the function). To
illustrate these ideas, here are some day-to-day examples:

(1) The function which attaches to every person its height. The domain
of the function is the set of humans and the range of the functions
is the set of real numbers (theoretically, a person can be 5 feet and√
2 inches tall).

(2) If we attach to every person, its siblings, the result is not a function
and there are two reasons for that. The first is that there are people
with no siblings (and therefore the function is not defined for every
person), also there are people with more than one sibling and for
those people, we do not attach a unique person).

We will formally define function only later and steak with a non-formal
definition for now. We will later have to justify this non-formal definition.

Definition 1.1 (Non formal). Let A,B be any sets. A function from A to
B is an object f , such that:

(1) f is total on A: for every a ∈ A, f(a) is defined.
(2) f is univalent: for every a ∈ A, f(a) is a unique element of B.

We denote it we f : A → B. The set A is the domain f the function f which
is denoted by dom(f) and B is the range of the function f which we denote
by rng(f).

1.1.1. How to define functions? Usually, we declare what A and B are in
advance by saying we are about to define a function f : A → B. Then we
provide some formula with a free variable a which we think of as a general
element in the set A. This formula prescribes what element f(a) ∈ B is
assigned to a.
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Example 1.2. (1) Define f : {1, 2, 3} → {1, 2, 3, 4} by f(x) = x + 1.
Then f(1) = 1 + 1 = 2, f(3) = 3 + 1 = 4.

(2) Define f : R → R by f(x) = x2.
(3) define f : R → R by f(r) = 2, this is the constant function which

for every real r returns the value 2.
(4) f :

{
{1, 2, 3}, {1, 3, 5}

}
→ N, f(X) = max(X).

(5) f : R2 → R2 defined by f(lx, ẙ) = lx2 + y2, x − y + 1.f:N→ P (Z)
f(n) = {n} ∪ {1,−1}.

(6)(7) Here are some non-examples:
(a) f : R → R, f(x) = 1

x .
(b) f : P (N) → N, f(X) = min(X).
(c) f : [0,∞) → [0,∞), f(x) = x− 1.
(d) f : [0,∞) → R f(x) = y for y such that y2 = x.

(8) Definition of a function by cases: Suppose we which to define a
function on a set A, and for some of the elements of A we want one
formula and for the another part of A we want to use a different
formula. We can do that the following way: “Define f : A → B by

f(a) =


(first formula) (first condition on a)

(second formula) (second condition on a)

...

where the conditions on a describe the element for which you would
like to use the formula. When we check that a function defined by
cases is well defined, we also have to check the condition on a covers
all possible a and that they are “disjoint” in the sense that no a
satisfy two of the condition.
(a) Define f : R → R by

f(a) =


√
a a > 0

a+ 1 −1 < a ≤ 0

|a|3 − 15 a ≤ −1

We can also use “otherwise” if we would like to take care of the
remaining cases.

(b) If we have a ”small” number of elements in the domain we can
use the definition by cases above to explicitly assign to every
element a value, without worrying about a formula which de-
scribes that assignment. For example f : {1, 2, 3} → {a, b, c, d}

f(x) =


b x = 3

a x = 2

c x = 1

Important: If we define f : A → B by a formula f(a) =(some formula)
we must always make sure that the functions we define are well defined in
the sense that:
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(1) The function is total. Practically, this means that we should make
sure that the formula for f(a) is defined for every a ∈ A.

(2) The function is univalent. This means that for every a ∈ A, the
formula for f(a) points to a single element. (This is trivial in most
cases)

(3) for every a ∈ A the formula for f(a) describes an element of B. So
the range we declared when we wrote f : A → B is indeed correct.

Here are further examples:

(1) f : N → N defined by f(x) = x2 satisfies f(4) = 16.
(2) g : N → P (N) defined by g(x) = {x, x+ 1} satisfies g(5) = {5, 6}.

(3) t : N → N defined by t(n) =

{
0 n ∈ Neven

1 n ∈ Nodd
.

satisfies that t(1) = 1, t(14) = 0. s(f)(3) = {−2}.

(4) F : P (N)2 → N defined by F (⟨A,B⟩) =

{
0 A ∩B = ∅
min(A ∩B) else

satisfies that F (⟨{1, 2, 3, 4},Neven⟩) = 2.
(5) f : N2 → P (N) defined by f(⟨x, y⟩) = {n ∈ N | x < n < y} satisfies

f(⟨1, 4⟩) = {2, 3} and f(⟨4, 1⟩) = ∅.
When formally working with functions we will only need the following

criterion for equality of functions. This is exactly what we will have to
justify once we will give the formal definition of a function:

Theorem 1.3. Let f, g : A → B be two function. Then the following are
equivalent:

(1) ∀x ∈ A.f(x) = g(x).
(2) f = g.

The theorem says that two functions with the same domain and range are
equal if and only if for every x in this domain, the functions assign the same
value to x. From this point, our proofs will be completely formal relaying
in this theorem.

Remark 1.4. The function equality theorem indicated that a function is not
the same as a formula defining it.

For example the functions: f1, f2 : {−1, 0, 1} → R defined by f1(x) = |x|
and f2(x) = x2 have different formulas but they define the same function
since f1(−1) = f2(−1), f1(0) = f2(0), f1(1) = f2(1).

Remember! Different formulas can define the same function.

1.1.2. Operations on functions.

Definition 1.5. Let f : A → B be a function and X ⊆ A. We define the
restriction of f to X, denoted by f ↾X : X → B, to be the function with
domain dom(f ↾X) = X and for every x ∈ X, (f ↾X)(x) = f(x).
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Intuitively, the restriction of a function acts the same way that the original
function did, the only difference is that the domain restricts to the new set
X.

Definition 1.6. Let A be any set. We define the Identity function on A as
the function IdA : A → A defined by IdA(a) = a.

Example 1.7. Let f : Z → Z be defined as f(z) = |z|. Prove that f ↾ N =
IdN

Proof. We want to prove equality of functions. First we want to prove that
dom(f ↾N) = dom(IdN). Indeed by definition of restriction and the identity
function, both of the functions have domain N. Next we want to prove that
∀x ∈ N.(f ↾N)(x) = IdN(x). Let x ∈ N, then by definition of restriction and
since n ≥ 0 we have

(f ↾ N)(x) = f(x) = |x| = x

and by definition of the identity function we have

IdN(x) = x

Hence

(f ↾ N)(x) = x = IdN(x)

as wanted □

Definition 1.8. Let f : A → B and g : B → C be two functions. We define
the composition of g in f as g ◦ f : A → C, to be the function with domain
f and range C such that for each a ∈ A, (g ◦ f)(a) = g(f(a)).

Example 1.9. (1) f(x) = x2 and g(x) = x+ 1, then g ◦ f(x) = x2 + 1
and f ◦ g(x) = (x+ 1)2.

(2) f : P (N) \ {∅} → N × N, f(X) = ⟨min(X),min(X) + 1⟩ and g :
P (N) → P (N)\{∅}, g(X) = X∪{0}. Then f ◦g(X) = f(X∪{0}) =
⟨min(X ∪ {0}),min(X ∪ {0}) + 1⟩ = ⟨0, 1⟩.

Proposition 1.10. Suppose that f : A → B, g : B → C and h : C → D.
Then:

(1) f ◦ IdA = f , IdB ◦ f = f .
(2) h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Proof. Let us prove for example that f ◦IdA = f . We need to prove function
equality, the domain of both functions is A. Let a ∈ A, then (f ◦ IdA)(a) =
f(IdA(a)) = f(a) hence f ◦ IdA = f . □

1.1.3. Properties of functions.

Definition 1.11. Let f : A → B be a function we sat that f is:

(1) One to one/ injective: if for every a1, a2 ∈ A, if f(a1) = f(a2) then
a1 = a2.

(2) Onto/ surjective: if for every b ∈ B there is a ∈ A such that f(a) = b.
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Example 1.12. (1) f : R → R defined by f(x) = x2 is not injective as
1 ̸= −1 and f(−1) = (−1)2 = 1 = 12 = f(1).

(2) f : N → Z defined by f(n) = n− 1 is injective.

Proof. Let n1, n2 ∈ N. Suppose that f(n1) = f(n2), we want to
prove that n1 = n2. By definition of f , n1 − 1 = n2 − 1, adding 1 to
both sides of the equation we conclude that n1 = n2. □

(3) g : N×N → N×N defined by g(⟨n,m⟩) = ⟨2n+m,n+m⟩ is injective.
Proof. Let ⟨n1,m1⟩, ⟨n2,m2⟩ ∈ N×N and assume that g(⟨n1,m1⟩) =
g(⟨n2,m2⟩) we want to prove that ⟨n1,m1⟩ = ⟨n2,m2⟩. By the
assumption we know that ⟨2n1+m1, n1+m1⟩ = ⟨2n2+m2, n2+m2⟩
and by equality of pair we get that

2n1 +m1 = 2n2 +m2 and n1 +m1 = n2 +m2

Subtracting the second equation from the first we get:

2n1 +m1 − (n1 +m1) = 2n2 +m2 − (n2 −m2)

n1 = n2

Hence by the equality n1 + m1 = n2 + m2, we have that n1 =
n2 cancels so m1 = m2. By equality of pairs we conclude that
⟨n1,m1⟩ = ⟨n2,m2⟩. □

(4) F : P (N) → P (N) defined by F (X) = {x+ 1 | x ∈ X} is injective.

Proof. Let X1, X2 ∈ P (N), suppose that F (X1) = F (X2) we want
to prove that X1 = X2. By definition of F ,

)∗) {x+ 1 | x ∈ X1} = {x+ 1 | x ∈ X2}
Let us prove X1 = X2 by a double inclusion:
(a) X1 ⊆ X2: Let x0 ∈ X1 we want to prove that x0 ∈ X2. By

definition x0+1 ∈ {x+1 | x ∈ X1} and by (∗), x0+1 ∈ {x+1 |
x ∈ X2}. By the replacement principle, there exists y ∈ X2

such that x0+1 = y+1, hence x0 = y ∈ X2, which implies that
x0 ∈ X2 as wanted.

(b) X2 ⊆ X1: Symmetric to the first inclusion.
□

(5) F1 : N× N → N defined by F (⟨n,m⟩) = 2n · 3m is injective.

Proof. Let ⟨n1,m1⟩, ⟨n2,m2⟩ ∈ N × N. Suppose that F1(n1,m1) =
F1(n2,m2) we want to prove that ⟨n1,m1⟩ = ⟨n2,m2⟩. By definition
of F2 we have that (∗) 2n13m1 = 2n23m2 . By the fundamental
theorem of arithmentics, each positive natural number has a unique
factorization into primes. The equality (∗) provides two factorization
into primes of the same numbers, hence it must be the same, namely
n1 = n2 and m1 = m2. By the basic property of pairs, ⟨n1,m1⟩ =
⟨n2,m2⟩. □

Definition 1.13. Let f : A → B be a function. The image of f , denoted
by Im(f) = {f(x) | x ∈ A}.
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Exercise. For the function f : R → R, defined by f(x) = x2 Prove that
dom(f) = Rng(f) = R while Im(f) = [0,∞).

Since the last equality if a set equality, we should prove it by a double
implication:

(1) ⊆: Let r ∈ Im(f), we need to prove that r ∈ [0,∞). By definition

of Im(f), there is x ∈ R such that f(x) = r. Those r = x2 ≥ 0 and
by definition of [0,∞), r ∈ [0,∞).

(2) ⊇: Let r ∈ [0,∞). we need to prove that r ∈ Im(f). By definition,
r ≥ 0 and therefore we have

√
r defined. Define (This is an existential

proof) x =
√
r, then f(x) = x2 = r.

Remark 1.14. f is surjective if and only if Im(f) = Range(f).

Example 1.15. (1) The function f : N → N defined by f(n) = 2n is
not surjective.

Proof. For example 1 ∈ N and for every n ∈ N, f(n) ̸= 1. Otherwise,
there exists n ∈ N such that f(n) = 1 then by definition of f , 2n = 1
which implies that 1 is even, contradiction. □

Note also that Im(f) = Neven and that f is injective.
(2) The function g : P (Z) → P (N) defined by g(X) = X∩N is surjective.

Proof. Let Y ∈ P (N) we want to prove that there is X ∈ P (Z) such
that f(X) = Y . Define X = Y , then since Y ∈ P (N), Y ∈ P (Z).
Also, to see that g(Y ) = Y , we need to prove that Y ∩N = Y . This
is equivalent (by a proposition we have seen previously) to the fact
that Y ⊆ N. This follows since Y ⊆ N. □

Also note that Im(g) = P (N), (since we just proved that g is
surjective) and it is not injective since for example g({−1, 1}) =
{1} = g({1}).

(3) The function h : (0,∞) → (0,∞) defined by h(x) = 1
x is surjective.

Proof. Let y ∈ (0,∞), we want to prove that there is x ∈ (0,∞) such
that h(x) = y. Namely, we want that 1

x = y. Then define x = 1
y .

Since 0 < y, also 0 < x and therefore x ∈ (0,∞) and we have that
h(x) = 1

1
y

= y as wanted. □

(4) G : P (N)×P (N) → P (N×N) defined by G(⟨X,Y ⟩) = X × Y is not
onto.

Proof. For example {⟨1, 1⟩, ⟨2, 2⟩} ∈ Range(G) \ Im(G). Suppose
toward a contradiction that G(⟨X,Y ⟩) = {⟨1, 1⟩, ⟨2, 2⟩}. Then by
definition of G, X × Y = {⟨1, 1⟩, ⟨2, 2⟩}. By set equality, this means
that ⟨1, 1⟩, ⟨2, 2⟩ ∈ X × Y . which by the definition of Cartesian
product implies that 1, 2 ∈ X and 1, 2 ∈ Y . But then ⟨1, 2⟩ ∈ X×Y
but ⟨1, 2⟩ /∈ {⟨1, 1⟩, ⟨2, 2⟩}, contradiction. □

Proposition 1.16. Let f : A → B and g : B → C be any functions.

(1) If f, g are injective then so is g ◦ f .
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(2) If f, g are surjective then so is g ◦ f

Definition 1.17. A function f : A → B is invertible if there is a function
g : B → A such that:

g ◦ f = idA and f ◦ g = idB

Example 1.18. (1) f : {a, b, c} → {1, 2, 3} defined by

f(x) =


1 x = a

2 x = b

3 x = c

is invertible as witnessed by the function g : {1, 2, 3} → {a, b, c},

g(x) =


a x = 1

b x = 2

c x = 3

(2) f : R → R, f(x) = x + 1 is invertible since the function g : R → R
defined by g(x) = x− 1 satisfy that g ◦ f = f ◦ g = IdR.

(3) The function f : N → N defined by f(n) = n + 1 is not invertible.
The function g(n) = n−1 is not a function from N to N as g(0) = −1.
To formal way to prove it is to use the next theorem (and the fact
the g is not onto). If we restrict the range of f to N+ then g above
from N+ to N witnesses that f is invertible.

(4) There is no f : {a, b, c} → {1, 2, 3, 4} which is invertible.
(5) f : P (N) → P (N) defined by f(X) = N \X is invertible as f ◦ f =

IdP (N).

Theorem 1.19. If g1, g2 are two inverse functions of f then g1 = g2. We
denote the inverse function of f by f−1.

Proof. Suppose the g1, g2 are two inverse function of f , then

g1 ◦ f = idA and f ◦ g1 = idB

g2 ◦ f = idA and f ◦ g2 = idB

It follows that

g1 = g1 ◦ IdB = g1 ◦ (f ◦ g2) = (g1 ◦ f) ◦ g2 = IdA ◦ g2 = g2

□

Theorem 1.20. A function f : A → B is invertible if and only if it is one
to one and onto.

Proof. Suppose that f is invertible and let f−1 : B → A be the inverse
function. Let us prove that f is one to one and onto:
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• one to one: Let a1, a2 ∈ A, suppose that f(a1) = f(a2), we want
to prove that a1 = a2. Then f−1(f(a1)) = f−1(f(a2)) and since
f−1 ◦ f = IdA we get that

a1 = f−1(f(a1)) = f−1(f(a2)) = a2

• onto: Let b ∈ B, we want to prove that there is a ∈ A such that
f(a) = b. Let a = f−1(b) ∈ A. Then f(a) = f(f−1(b)) and since
f ◦ f−1 = IdB, we have that f(a) = f(f−1(b)) = b as wanted.

For the other direction, suppose that f is one to one and onto B. We want
to prove that f is invertible, namely that there is a function g : B → A
such that f ◦ g = IdB and g ◦ f = IdA. Here is the definition of g: For any
element of b, there is (since f is onto B) a unique (since f is one to one)
element ab ∈ A such that f(ab) = b. Define g(b) = ab. Let us prove that g
is inverse to f :

• g ◦ f = IdA: Let a ∈ A, then denote f(a) = b ∈ B. By definition
g(b) = ab is the unique element in A such that f(ab) = b and since
f(a) = b it follows that a = ab. Hence g(f(a)) = g(b) = ab = a. It
follows that g ◦ f = IdA.

• f ◦ g = IdB: Let b ∈ B, by definition, g(b) = ab and ab has the
property that it is (the unique which is) mapped to b, namely f(ab) =
b. Hence f(g(b)) = f(ab) = b. Again it follows that f ◦ g = IdB.

□

1.2. General relations. Toward a formal definition of a function, we would
like to describe that certain objects relate to other objects. To turn relations
into a formal mathematical object, we need to define them as sets. First, how
would we code that an object a relates to an object b? we can use the ordered
pair la, b.Asinglerelationdescribesmanysuchconnections, henceitisasetoforderedpairs :

Definition 1.21. A relation from the set A to the set B is set R ⊆ A×B.

Example 1.22. (1) R = {⟨1, 2⟩, ⟨1, 3⟩} is a relation from {1, 2} tp {1, 2, 3}
since

R ⊆ {1, 2} × {1, 2, 3}
. R is also a relation from R to N.

(2) {⟨1,
√
2⟩, ⟨2, 4⟩} is not a relation from N to N.

(3)
idN = {⟨n, n⟩ | n ∈ N}

≤N= {⟨n,m⟩ ∈ N2 | ∃k ∈ N.n+k = m}, <N= {⟨n,m⟩ ∈ N2 | ∃k ∈ N+.n+k = m}
are three relations from N to N. Note that

≤=< ∪idN
(4) A = {⟨x, y⟩ ∈ R2 | x − y ∈ Q} for example ⟨3 +

√
2,
√
2⟩ ∈ A,

⟨1, π⟩ /∈ A.
(5) R = {⟨X,Y ⟩ ∈ P (N) × P (Z) | X ⊆ Y }. R is a relation from P (N)

to P (Z).
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(6) It is sometimes convinient to imagine a relation as two potato’s rep-
resenting the sets A and B, and then and arrows from A to B. For
example, if R = {⟨1, 2⟩, ⟨2, a⟩, ⟨2, b⟩} From {1, 2, 3}, to {2, a, b}:

relation.png

(7) S = {lx, y

Remark 1.23. In most cases a relation (i.e. a set of pairs) has a “meaning”,
which is some notion we already familiar with, just not in terms of sets of
pairs. In the previous examples, ≤N is just a formal representation for the
usual ≤ where we only consider natural numbers. The relation D is just the
divisibility relation on between integers, and idA is just the equality relation
where we only consider elements of the set A. However, a general relation
R, is just an abstract object. It does not necessarily have a meaning as in
the previous examples. Examples (1), (2), (6) do not arise from a natural
notion. We can always artificially force a meaning to it, but this would be
of no use.

Definition 1.24. Let R be a relation from A to B. Define:

Definition 1.25. (1) dom(R) = {a ∈ A | ∃b ∈ B, la, b

Important: When handling general relations, do not try to find a “mean-
ing” for it. Instead, you should simply think of a set of pairs. When handling
a specific relation, it is important to understand the idea behind it (by find-
ing examples pairs of elements which belongs to the relation).

Problem 1. Let R be a relation from A to B, S be a relation from B to C.
Define

S ◦R = {la, c

1.3. abstract functions. The formal way to define a function is as rela-
tions:

Definition 1.26. Let A,B be two sets. A function from A to B is a relation
from A to B such that:

(1) f is total Total on A: ∀a ∈ A.∃b ∈ B.la, b

Notation 1.27. If f is a function from A to B we denote it by f : A → B.
Also if f : A → B is a function, we denote f(a) = b if and only if la, b

Example 1.28. (1) Let f = {⟨1, a⟩, ⟨3, b⟩, ⟨2, a⟩}. To see that f is a
function from {1, 2, 3} to {a, b, c}, we need to prove that for every
x ∈ {1, 2, 3} the is a unique y ∈ {a, b, c} such that lx, y

(2)(3)(4)Proof. We need to prove that fb is total on A and univalent.
Total: We need to prove that for every x ∈ A there is y ∈ B such that lx, y
Hence fb : A → B is a function satisfying ∀a ∈ A.fb(a) = b.
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π1 : A × B → A π1 = {⟨⟨a, b⟩, c⟩ ∈ (A × B) × A | a = c} Is called the

projection to the left coordinate, it satisfies that π(la, b̊) = a. Similarly, the
projection to the right coordinate is denoted π2 : (A×B) → B and it satisfies
π2(⟨a, b⟩) = b.
To summation operation on the rational number (or on the natural num-
bers/integers/reals) is a function + : R × R → R. We are used to write

3 + 5 = 8 instead of +(l3, 5̊) = 8.
Let g : P (A)×P (B) → P (A) defined by g = {⟨⟨X,Y ⟩, Z⟩ ∈ (P (A)×P (B))×
P (A) | Z = X ∩ Y } we have that g(X,Y ) = X ∩ Y
Given a set of pairs R in A × B we can represent R as a collection of
arrows from he set A to the set B. This is very convenient when considering
functions. For example, to verify the R is a function from A to B we should
simply verify(not prove!) that there is exactly one arrow attached to every
element of A. For example, consider

f : {1, 2, 3, 4} → {−1, 0, 1, 2, 3, 4, 5} f = {⟨1, 1⟩, ⟨2, 1⟩, ⟨3, 3⟩⟨4, 5⟩}

drawisland.png

Definition 1.29. A sequence of elements in the set A is a function f : N →
A. In calculus we sometime denote an = f(n) and (an)

∞
n=0 = f .

Example 1.30. The sequence 1, 12 ,
1
3 , ... is formally the function f : N → Q,

f = {ln, 1
n+1

Definition 1.31. Let f : A → B be a function. The domain of f is simply
A, we denote dom(f) = A. The range of f is B and we denote rng(f) = B.
The image of f is the set Im(f) = {f(a) | a ∈ A}.

Definition 1.32. Let A,B be two sets. We denote the set of all functions
from A to B by

AB = {f ∈ P (A×B) | f is a function from A to B}

Example 1.33. Let F2 be the relation from RR to R defined by

F2 = {⟨f, r⟩ ∈ RR× R | ⟨2, r⟩ ∈ f}.
Prove that F is a function.

Proof. Total: We nee to probe that for every f ∈ RR (here the domain of
F2 is itself a set of functions!) there is r ∈ R such that lf, r Note that we
have F2(f) = f(2) for every function f ∈ RR.

In order to discard the need to formulate functions as sets of pair we
simply need to understand when two functions are equal2.

Theorem 1.34. Let f, g be any function. Then the following are equivalent:

2As we did with tuples.
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(1) f = g (equality of sets of pairs!).
(2) dom(f) = dom(g) and for every x ∈ dom(f), f(x) = g(x).

Proof. ⇒: Suppose that f = g, then clearly dom(f) = dom(g). Let
x ∈ dom(f), and denote by f(x) = y. Then lx, y

⇐: ⊆: Let lx, y

□

Problem 2. Let f : A → B be a function.

(1) Prove that if X ⊆ A, then f ∩X ×B is a function and equals f ↾X.
(2) Show that if f : A → B, g : B → C are functions then g ◦ f (the

composition of the relations) is a function from A to C and that for
every a ∈ A, g ◦ f(a) = g(f(a)).

(3) Prove that if f is one-to-one and onto B then f−1 (the inverse rela-
tion) is a function and moreover that f−1 ◦ f = IdA and f ◦ f−1 =
IdB.


