MATH 300: CHAPTER 5- EQUINOUMERABILITY

TOM BENHAMOU
RUTGERS UNIVERSITY

Definition 0.1. Let A, B be any sets. We say that:
(1) $A \sim B$ " A and B are equinumerable" if there is a bijection $f: A \rightarrow$ B.
(2) $A \prec B " A$ is at most the size of B " if there is an injective function $f: A \rightarrow B$.
(3) $A \nsim B$ if $\neg(A \sim B)$, namely if there is no bijection $f: A \rightarrow B$.
(4) $A \prec B$ if $A \preceq B$ and $A \nsim B$.

Example 0.2. (1) $\{1,2,3\} \sim\{2,7,19\}$ as witnessed by the bijection

$$
f(x)= \begin{cases}2 & x=1 \\ 7 & x=2 \\ 19 & x=3\end{cases}
$$

(2) $\mathbb{N} \sim \mathbb{N}_{\text {even }}$ as witnessed by the function $f: \mathbb{N} \rightarrow \mathbb{N}_{\text {even }}, f(n)=2 n$.
(3) $A \preceq P(A)$ for every set A as witnessed by the function $f: A \rightarrow P(A)$, $f(a)=\{a\}$.
(4) $(0,1) \sim(1,3)$ as given by $f:(0,1) \rightarrow(1,3), f(x)=2 x+1$.
(5) $\{X \in P(\mathbb{N}) \mid 0 \in X\} \sim P(\mathbb{N})$ by $f: P(\mathbb{N}) \rightarrow\{X \in P(\mathbb{N}) \mid 0 \in X\}$, $f(X)=\{0\} \cup\{x+1 \mid x \in X\}$.
(6) $\mathbb{N} \times \mathbb{N} \preceq P(\mathbb{N})$ witnessed by $f: \mathbb{N} \times \mathbb{N} \rightarrow P(\mathbb{N}), f(\langle n, m\rangle)=\{n, n+$ $m\}$.
(7) $A \subseteq B \rightarrow A \preceq B$ as witnessed by the function $f: A \rightarrow B, f(a)=a$.
(8) Clearly $A \sim B$ implies $A \preceq B$.

Claim 0.2.1. for any sets A, B, C :
(1) $A \sim A$.
(2) $A \sim B \rightarrow B \sim A$.
(3) $A \sim B \wedge B \sim C \rightarrow A \sim C$ and $A \preceq B \preceq C \rightarrow A \preceq C$.

Are there two infinite sets which are not equinumerable?
Proposition 0.3. $\mathbb{N} \sim \mathbb{Z}$
Proof. Define $f: \mathbb{N} \rightarrow \mathbb{Z}$ by

$$
f(n)= \begin{cases}\frac{n}{2} & n \in \mathbb{N}_{\text {even }} \\ -\frac{n+1}{2} & n \in \mathbb{N}_{\text {odd }}\end{cases}
$$

Date: April 8, 2024.

\mathbb{Z} is like "two copies" of \mathbb{N}. What about infinitely many copies of \mathbb{N} ? $\mathbb{N} \times \mathbb{N}$.

Proposition 0.4. $\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$
Proof. Define $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by $f(\langle n, m\rangle)=2^{n}(2 m+1)-1$.
We will have an easier proof later.
Proposition 0.5. Let $A, A^{\prime}, B, B^{\prime}$ be sets such that $A \sim A^{\prime}$ and $B \sim B^{\prime}$. Then:
(1) $P(A) \sim P\left(A^{\prime}\right)$.
(2) $A \times B \sim A^{\prime} \times B^{\prime}$.
(3) ${ }^{B} A \sim{ }^{B^{\prime}} A^{\prime}$.
(4) If A, B are disjoint and A^{\prime}, B^{\prime} are disjoint then $A \uplus B \sim A^{\prime} \uplus B^{\prime}$. The above proposition is true upon replacing \sim by \preceq everywhere.
Proof. Let us prove for example (1). Let $f: A \rightarrow A^{\prime}$ be a bijection. One should check that $F: P(A) \rightarrow P\left(A^{\prime}\right)$ defined by $F(X)=f^{\prime \prime} X$ is a bijection.

Example 0.6. $\mathbb{N} \sim \mathbb{Z} \times \mathbb{Z}$.
What about \mathbb{Q} ? clearly $\mathbb{N} \preceq \mathbb{Q}$
Claim 0.6.1. $(A C)$ Suppose that $A \neq \emptyset$. Then $A \preceq B$ iff there is $f: B \rightarrow A$ onto.

Proof. Suppose that $g: A \rightarrow B$ is one-to-one. Let us $a^{*} \in A$ be some elements. Define $f: B \rightarrow A$ by

$$
f(b)= \begin{cases}a^{*} & b \notin \operatorname{Im}(g) \\ g^{-1}(b) & b \in \operatorname{Im}(g)\end{cases}
$$

This is well defined since g is invertible on its image. For the other direction, suppose that $f: B \rightarrow A$ is onto. Let us define $g: A \rightarrow B$ one-to-one. For
every $a \in A$, since f is onto, there is some (choose!) $b_{a} \in f^{-1}[\{a\}]$. Define $g(a)=b_{a}$. Then g is one to one since if $a \neq a^{\prime}$ then $b_{a} \in f^{-1}[\{a\}]$ and $b_{a^{\prime}} \in f^{-1}\left[\left\{a^{\prime}\right\}\right]$ which are disjoint sets and therefore $b_{a} \neq b_{a^{\prime}}$. Hence g is one-to-one.

Example 0.7. $\mathbb{Q} \preceq \mathbb{Z} \times \mathbb{Z} \sim \mathbb{N}$. The function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Q}$ defined by

$$
f\left(\left\langle z_{1}, z_{2}\right\rangle\right)= \begin{cases}\frac{z_{1}}{z_{2}} & z_{2} \neq 0 \\ 0 & \text { else }\end{cases}
$$

is onto
So we are in the situation where $\mathbb{N} \preceq \mathbb{Q}$ and $\mathbb{Q} \preceq \mathbb{N}$. Does it mean that $\mathbb{N} \sim \mathbb{Q}$? Yes! but this requires a highly non-trivial theorem which we will prove later. Instead, let us give direct proof:

Theorem 0.8. $\mathbb{N} \sim \mathbb{Q}$
"Proof". We are about to construct a function $f: \mathbb{N}_{+} \rightarrow \mathbb{Q}_{+}=\{q \in \mathbb{Q} \mid$ $q>0\}$ one-to-one and onto, by recursion on \mathbb{N}_{+}. To do so, we think of the \mathbb{Q}_{+}as elements in the matrix $\mathbb{N}_{+} \times \mathbb{N}_{+}$

We go by induction on the diagonal rows (namely pair $\left\langle k_{1}, k_{2}\right\rangle$ such that $k_{1}+k_{2}=n$ starting at $\left.n-2\right)$. We define $f(1)=1 / 1=1$. Suppose we reached the $n^{\text {th }}$ row. In row $n+1$, we keep defining f on new (finitely many) values only for those pairs which represent a rational number which haven't appeared before (to ensure the function is one-to-one). The resulting function f is a bijection from \mathbb{N}_{+}to \mathbb{Q}_{+}. Let us now define a function $g: \mathbb{N} \rightarrow \mathbb{Q}$ by

$$
g(n)= \begin{cases}0 & n=0 \\ f\left(\frac{n}{2}\right) & n \in \mathbb{N}_{\text {even }} \backslash\{0\} \\ -f\left(\frac{n+1}{2}\right) & n \in \mathbb{N}_{\text {odd }}\end{cases}
$$

So far we failed to find two infinite sets which are not equinumerable.
Theorem 0.9. (AC) If A is infinite then $\mathbb{N} \preceq A$.
Proof. We construct the function $f: \mathbb{N} \rightarrow A$ by recursion, there is always a possibility to continue the definition of f and pick a new element since otherwise, A was finite.

Definition 0.10. A set A is countable if $A \sim \mathbb{N}$. A is uncountable if $\mathbb{N} \prec A$.

Theorem 0.11. The following sets are countable: $\mathbb{Z}, \mathbb{N}_{\text {even }}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}, \mathbb{N}^{n}(n \geq$ 1)

Proof. It remains to show that \mathbb{N}^{n} is countable. We prove that by induction on n. For $n=1$, this is clear. Suppose that $\mathbb{N}^{n} \sim \mathbb{N}$, then

$$
\mathbb{N}^{n+1} \sim \mathbb{N}^{n} \times \mathbb{N} \sim \mathbb{N} \times \mathbb{N} \sim \mathbb{N}
$$

Theorem 0.12 (Cantor's Diagonalization Theorem). $\mathbb{N} \prec{ }^{\mathbb{N}}\{0,1\}$
Proof. It is not hard to prove that $\mathbb{N} \preceq \mathbb{N}\{0,1\}$. So it remains to prove that $\mathbb{N} \not \chi^{\mathbb{N}}\{0,1\}$. Assume toward a contradiction that $F: \mathbb{N} \rightarrow{ }^{\mathbb{N}}\{0,1\}$ was onto. Let us show how to produce a function $g: \mathbb{N} \rightarrow\{0,1\}$ (i.e. an element in the range of F) such that for every $n, F(n) \neq g$ (i.e. g is not in the image of F). This will produce a contradiction to the assumption that F is onto.

For each $n, F(n): \mathbb{N} \rightarrow\{0,1\}$ so we write it as a binari sequence

$$
f_{n}:=F(n)=\langle F(n)(0), F(n)(1), F(n)(2), \ldots\rangle
$$

So the list of functions $F(0), F(1), F(2)$ can be written in a matrix:

$\frac{f_{0}(0)}{}$	$f_{0}(1)$	$f_{0}(2)$	$f_{0}(3)$	\ldots	$f_{0}(n)$	\ldots
$\frac{f_{1}(0)}{}$	$\frac{f_{1}(1)}{f_{1}(2)}$	$f_{1}(3)$	\ldots	$f_{1}(n)$	\ldots	
$f_{2}(0)$	$\overline{f_{2}(1)}$	$\frac{f_{2}(2)}{f_{2}(3)}$	\ldots	$f_{2}(n)$	\ldots	
$f_{3}(0)$	$f_{3}(1)$	$f_{3}(2)$	$\underline{f_{3}(3)}$	\ldots	$f_{3}(n)$	\ldots
\vdots	\vdots	\vdots	\vdots	\ddots	\ldots	\ddots
$f_{n}(0)$	$f_{n}(1)$	$f_{n}(2)$	$f_{n}(3)$	\ldots	$\underline{f_{n}(n)}$	\ldots
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\ddots

Note that each value in this matrix is 0 or 1 . We would like to define a function $g: \mathbb{N} \rightarrow\{0,1\}$, namely a binary sequence $\langle g(0), g(1), g(2), \ldots\rangle$ such that g defers from each row at some n. so we change the values from 0 to 1 , Start by setting $g(0)=0$ if $f_{0}(0)=1$ or $g(0)=1$ if $f_{0}(0)=0$ ("flip the bit") algebraically we can write that as $1-f_{0}(0)$. Moving to f_{1}, we flip the value $f_{1}(1)$ and define $g(1)=1-f_{1}(1)$. In general, we flip the values on the diagonal and define $g(n)=1-f_{n}(n)$. To that g is as wanted, suppose toward a contradiction that $g=f_{n}$ for some n, then by function equality we get that $1-f_{n}(n)=g(n)=f_{n}(n)$ hence $f_{n}(n)=\frac{1}{2}$, contradiction.

Corollary 0.13. For every set $A, A \prec{ }^{A}\{0,1\}$.
Proof. If $A=\emptyset$ this is straightforward. So assume $A \neq \emptyset$. Toward a contradiction, suppose that $F: A \rightarrow{ }^{A}\{0,1\}$ is onto and denote by $f_{a}=$ $F(a)$. Define $g: A \rightarrow\{0,1\}$ by

$$
g(a)=1-f_{a}(a)
$$

The continuation is as before.
Theorem 0.14. $P(A) \sim{ }^{A}\{0,1\}$

Proof. For a subset $B \subseteq A$ we define the indicator function $\chi_{B}^{A}: A \rightarrow\{0,1\}$ by

$$
\chi_{B}^{A}(a)= \begin{cases}1 & a \in B \\ 0 & a \notin B\end{cases}
$$

The function $\chi^{A}: P(A) \rightarrow{ }^{A}\{0,1\}$ defined by $\chi^{A}(B)=\chi_{B}^{A}$ is a bijection (prove that!).
Theorem 0.15 (Cantor's Theorem). $A \prec P(A)$
Proof. $a \mapsto\{a\}$ is an injection from A to $P(A)$ hence $A \preceq P(A)$. Suppose toward a contradiction that $A \sim P(A)$, then by the previous theorem $A \sim$ ${ }^{A}\{0,1\}$, contradiction.

Corollary 0.16. $\mathbb{N} \prec P(\mathbb{N}) \prec P(P(\mathbb{N})) \prec \ldots$
Theorem 0.17 (Cantor-Schröeder-Bernstein-No proof). Let A, B be sets and supose that $A \preceq B \wedge B \preceq A$ then $A \sim B$.
Example 0.18. Prove that ${ }^{N} \mathbb{N} \sim P(\mathbb{N})$
Proof. On one hand we have $P(\mathbb{N}) \sim{ }^{\mathbb{N}}\{0,1\} \preceq{ }^{\mathbb{N}} \mathbb{N}$ (the last equality is due to inclusion) on the other hand we have $\mathbb{N}_{\mathbb{N}} \subseteq P(\mathbb{N} \times \mathbb{N}) \sim P(\mathbb{N})$. So by Cantor-Schroeder-Berstein $P(\mathbb{N}) \sim{ }^{\mathbb{N}} \mathbb{N}$.
Theorem 0.19. $\mathbb{R} \sim{ }^{\mathbb{N}}\{0,1\}$
" "Proof". On one hand we have that every $x \in \mathbb{R}$ is a Dedekind cut so $x \in P(\mathbb{Q})$ and therefore

$$
\mathbb{R} \preceq P(\mathbb{Q}) \sim P(\mathbb{N}) \sim^{\mathbb{N}}\{0,1\}
$$

For the other direction, we will define a function $F: \mathbb{N}\{1,2\} \rightarrow \mathbb{R}$ defined by

$$
F(f)=0 . f(0) f(1) f(2) \ldots
$$

is one-to-one as every decimal representation is not eventually 0 . Also it is clear that $\{0,1\} \sim\{1,2\}$ hence

$$
{ }^{\mathbb{N}}\{0,1\}={ }^{\mathbb{N}}\{1,2\} \preceq \mathbb{R}
$$

By Cantor- Schroeder-Berstein, $\mathbb{R} \sim{ }^{\mathbb{N}}\{0,1\}$
In particular \mathbb{R} is uncountable.
Problem 1. Prove that ${ }^{\mathbb{N}}\{0,1\} \times{ }^{\mathbb{N}}\{0,1\} \sim{ }^{\mathbb{N}}\{0,1\}$ [Hint: consider the interweaving function that take two binary sequences $\left\langle a_{0}, a_{1}, \ldots\right\rangle,\left\langle b_{0}, b_{1}, \ldots\right\rangle$ and outputs $\left\langle a_{0}, b_{0}, a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right\rangle$]

About this result, Cantor said: "My eyes can see it but I cannot believe it".

Theorem 0.20. for every $n \geq 1, \mathbb{R}^{n} \sim \mathbb{R}$.

Proof. It suffices to prove that $\mathbb{R} \times \mathbb{R} \sim \mathbb{R}$ and then the same inductive argument as with the case of the natural numbers will work. Indeed,

$$
\mathbb{R} \times \mathbb{R} \sim^{\mathbb{N}}\{0,1\} \times{ }^{\mathbb{N}}\{0,1\} \sim \sim^{\mathbb{N}}\{0,1\} \sim \mathbb{R}
$$

Theorem 0.21. For every $\alpha<\beta$ reals $[\alpha, \beta] \sim(\alpha, \beta) \sim(\alpha, \infty) \sim \mathbb{R}$
Proof. First we note that $t n:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ is one-to-one and onto hence $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \sim \mathbb{R}$. Since $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \subseteq\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \subseteq\left(\frac{\pi}{2}, \infty\right) \subseteq \mathbb{R}$ we also have that all those sets are equinumerable. Now it is not hard to find bijections of the from $f(x)=a x+b$ which moves (α, β) to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $[\alpha, \beta]$ to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and (α, ∞) to $\left(-\frac{\pi}{2}, \infty\right)$.
Definition 0.22. The continuum hypothesis (CH): Every set $A \subseteq \mathbb{R}$ is either finite, countable, or is equinumerable to the reals.

Theorem 0.23 (Godel and Cohen). The continuum hypothesis cannot be proven nor refuted from $Z F C$.

Theorem 0.24. The countable union of at most countable sets is at most countable

Proof. Let A_{n} be a sequence of sets such that for each n, A_{n} is at most countable. Let us define B_{n} as follows, $B_{0}=A_{0}$ and $B_{n+1}=A_{n+1} \backslash$ $\left(\cup_{k=0}^{n} A_{k}\right)$. Since $B_{n} \subseteq A_{n}$, our assumption that A_{n} is at most countable implies that there is $f_{n}: B_{n} \rightarrow \mathbb{N}$ which is one-to-one. Note that if $n \neq m$ then $B_{n} \cap B_{m}=\emptyset$ and also that $\bigcup_{n \in \mathbb{N}} A_{n}=\bigcup_{n \in \mathbb{N}} B_{n}$. Define $g: \bigcup_{n \in \mathbb{N}} A_{n} \rightarrow$ $\mathbb{N} \times \mathbb{N}$ by $g(n)=\left\langle m_{n}, f_{m_{n}}(n)\right\rangle$, where $m_{n} \in \mathbb{N}$ is the unique index such that $n \in B_{m_{n}}$. Then g is one-to-one and therefore $\bigcup_{n \in \mathbb{N}} A n \preceq \mathbb{N} \times \mathbb{N} \preceq \mathbb{N}$.

Corollary 0.25. The following sets are countable: $\{X \in P(\mathbb{N}) \mid X$ is finite $\}$, the set of finite sequence of natural numbers, the set of all algebraic numbers.

Proof. (1) Clearly $A_{1}:=\{X \in P(\mathbb{N}) \mid X$ is finite $\}$ is infinite and therefore $\mathbb{N} \preceq A_{1}$. To see that it is at most uncountable, note that $A_{1}=\cup_{n \in \mathbb{N}} P(\{0, \ldots, n\})$ which is a countable union of finite (so at most countable) sets and therefore A_{1} is at most countable.
(2) We are asked to prove that the set $\cup_{n \in \mathbb{N}_{+}} \mathbb{N}^{n}$ is countable. It is clearly infinite and is already given to us as a countable union of countable sets which is therefore at most countable.
(3) An algebraic number is a real number r which is a root of a nonzero polynomial with integer coefficients. Let $\mathbb{Z}[x]$ denote the set of all polynomials with integer coefficients. Then each non-zero polynomial has some degree $n \in \mathbb{N}$ and has the form $p(x)=z_{n} x^{n}+$ $z_{n-1} x^{n-1}+\ldots z_{1} x+z_{0}$. Let $\mathbb{Z}_{n}[X]$ be the set of all polynomials of degree at most n. Then clearly, $\mathbb{Z}_{n}[X] \sim \mathbb{Z}^{n+1}$ and therefore $\mathbb{Z}_{n}[X]$ is countable. Note that $\mathbb{Z}[X]=\cup_{n \in \mathbb{N}} \mathbb{Z}_{n}[X]$ and therefore is a countable union of countable sets (hence countable). Now the set of algebraic
numbers is just $\cup_{p(x) \in \mathbb{Z}[X]} \operatorname{roots}(p(x))$ where $\operatorname{roots}(p(x))=\{r \in \mathbb{R} \mid$ $p(r)=0\}$. Recall that every polynomial has only finitely many roots and therefore the set of algebraic numbers is a countable union of finite sets and therefore at most countable.

Corollary 0.26. The following sets are uncountable: $\{X \in P(\mathbb{N}) \mid X \sim \mathbb{N}\}$, $\mathbb{R} \backslash \mathbb{Q},\{r \in \mathbb{R} \mid r$ is transendental $\}$,
Proof. Lets just prove one of them. If for example $\mathbb{R} \backslash \mathbb{Q}$ was countable, then $\mathbb{R}=\mathbb{Q} \cup(\mathbb{R} \backslash \mathbb{Q})$ would have been a countable union of countable sets and therefore countable. Contradiction.

