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Definition 0.1. Let A,B be any sets. We say that:

(1) A ∼ B “A and B are equinumerable” if there is a bijection f : A →
B.

(2) A ≺ B ”A is at most the size of B” if there is an injective function
f : A → B.

(3) A ̸∼ B if ¬(A ∼ B), namely if there is no bijection f : A → B.
(4) A ≺ B if A ⪯ B and A ̸∼ B.

Example 0.2. (1) {1, 2, 3} ∼ {2, 7, 19} as witnessed by the bijection

f(x) =


2 x = 1

7 x = 2

19 x = 3

(2) N ∼ Neven as witnessed by the function f : N → Neven, f(n) = 2n.
(3) A ⪯ P (A) for every setA as witnessed by the function f : A → P (A),

f(a) = {a}.
(4) (0, 1) ∼ (1, 3) as given by f : (0, 1) → (1, 3), f(x) = 2x+ 1.
(5) {X ∈ P (N) | 0 ∈ X} ∼ P (N) by f : P (N) → {X ∈ P (N) | 0 ∈ X},

f(X) = {0} ∪ {x+ 1 | x ∈ X}.
(6) N×N ⪯ P (N) witnessed by f : N×N → P (N), f(⟨n,m⟩) = {n, n+

m}.
(7) A ⊆ B → A ⪯ B as witnessed by the function f : A → B, f(a) = a.
(8) Clearly A ∼ B implies A ⪯ B.

Claim 0.2.1. for any sets A,B,C:

(1) A ∼ A.
(2) A ∼ B → B ∼ A.
(3) A ∼ B ∧B ∼ C → A ∼ C and A ⪯ B ⪯ C → A ⪯ C.

Are there two infinite sets which are not equinumerable?

Proposition 0.3. N ∼ Z

Proof. Define f : N → Z by

f(n) =

{
n
2 n ∈ Neven

−n+1
2 n ∈ Nodd

Date: April 8, 2024.

1



2 TOM BENHAMOU RUTGERS UNIVERSITY

N Z

0
1
2
3
4
5
6
7
8
9

−5
−4
−3
−2
−1
0
1
2
3
4
5

□

Z is like ”two copies” of N. What about infinitely many copies of N?
N× N.

Proposition 0.4. N ∼ N× N

Proof. Define f : N× N → N by f(⟨n,m⟩) = 2n(2m+ 1)− 1. □

We will have an easier proof later.

Proposition 0.5. Let A,A′, B,B′ be sets such that A ∼ A′ and B ∼ B′.
Then:

(1) P (A) ∼ P (A′).
(2) A×B ∼ A′ ×B′.

(3) BA ∼ B′
A′.

(4) If A,B are disjoint and A′, B′ are disjoint then A ⊎B ∼ A′ ⊎B′.

The above proposition is true upon replacing ∼ by ⪯ everywhere.

Proof. Let us prove for example (1). Let f : A → A′ be a bijection. One
should check that F : P (A) → P (A′) defined by F (X) = f ′′X is a bijection.

□

Example 0.6. N ∼ Z× Z.

What about Q? clearly N ⪯ Q

Claim 0.6.1. (AC) Suppose that A ̸= ∅. Then A ⪯ B iff there is f : B → A
onto.

Proof. Suppose that g : A → B is one-to-one. Let us a∗ ∈ A be some
elements. Define f : B → A by

f(b) =

{
a∗ b /∈ Im(g)

g−1(b) b ∈ Im(g)

This is well defined since g is invertible on its image. For the other direction,
suppose that f : B → A is onto. Let us define g : A → B one-to-one. For
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every a ∈ A, since f is onto, there is some (choose!) ba ∈ f−1[{a}]. Define
g(a) = ba. Then g is one to one since if a ̸= a′ then ba ∈ f−1[{a}] and
ba′ ∈ f−1[{a′}] which are disjoint sets and therefore ba ̸= ba′ . Hence g is
one-to-one. □

Example 0.7. Q ⪯ Z× Z ∼ N. The function f : Z× Z → Q defined by

f(⟨z1, z2⟩) =

{
z1
z2

z2 ̸= 0

0 else

is onto

So we are in the situation where N ⪯ Q and Q ⪯ N. Does it mean that
N ∼ Q? Yes! but this requires a highly non-trivial theorem which we will
prove later. Instead, let us give direct proof:

Theorem 0.8. N ∼ Q

“Proof”. We are about to construct a function f : N+ → Q+ = {q ∈ Q |
q > 0} one-to-one and onto, by recursion on N+. To do so, we think of the
Q+ as elements in the matrix N+ × N+

We go by induction on the diagonal rows (namely pair ⟨k1, k2⟩ such that
k1 + k2 = n starting at n − 2). We define f(1) = 1/1 = 1. Suppose we
reached the nth row. In row n + 1, we keep defining f on new (finitely
many) values only for those pairs which represent a rational number which
haven’t appeared before (to ensure the function is one-to-one). The resulting
function f is a bijection from N+ to Q+. Let us now define a function
g : N → Q by

g(n) =


0 n = 0

f(n2 ) n ∈ Neven \ {0}
−f(n+1

2 ) n ∈ Nodd

□

So far we failed to find two infinite sets which are not equinumerable.

Theorem 0.9. (AC) If A is infinite then N ⪯ A.

Proof. We construct the function f : N → A by recursion, there is always
a possibility to continue the definition of f and pick a new element since
otherwise, A was finite. □

Definition 0.10. A set A is countable if A ∼ N. A is uncountable if N ≺ A.
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Theorem 0.11. The following sets are countable: Z,Neven,Q,N×N,Nn(n ≥
1)

Proof. It remains to show that Nn is countable. We prove that by induction
on n. For n = 1, this is clear. Suppose that Nn ∼ N, then

Nn+1 ∼ Nn × N ∼ N× N ∼ N.
□

Theorem 0.12 (Cantor’s Diagonalization Theorem). N ≺ N{0, 1}

Proof. It is not hard to prove that N ⪯ N{0, 1}. So it remains to prove that
N ̸∼ N{0, 1}. Assume toward a contradiction that F : N → N{0, 1} was onto.
Let us show how to produce a function g : N → {0, 1} (i.e. an element in
the range of F ) such that for every n, F (n) ̸= g (i.e. g is not in the image
of F ). This will produce a contradiction to the assumption that F is onto.

For each n, F (n) : N → {0, 1} so we write it as a binari sequence

fn := F (n) = ⟨F (n)(0), F (n)(1), F (n)(2), ...⟩
So the list of functions F (0), F (1), F (2) can be written in a matrix:

f0(0) f0(1) f0(2) f0(3) . . . f0(n) . . .

f1(0) f1(1) f1(2) f1(3) . . . f1(n) . . .

f2(0) f2(1) f2(2) f2(3) . . . f2(n) . . .

f3(0) f3(1) f3(2) f3(3) . . . f3(n) . . .
...

...
...

...
. . . . . .

. . .

fn(0) fn(1) fn(2) fn(3) . . . fn(n) . . .
...

...
...

...
. . .

...
. . .

Note that each value in this matrix is 0 or 1. We would like to define a
function g : N → {0, 1}, namely a binary sequence ⟨g(0), g(1), g(2), ...⟩ such
that g defers from each row at some n. so we change the values from 0 to
1, Start by setting g(0) = 0 if f0(0) = 1 or g(0) = 1 if f0(0) = 0 (”flip the
bit”) algebraically we can write that as 1− f0(0). Moving to f1, we flip the
value f1(1) and define g(1) = 1 − f1(1). In general, we flip the values on
the diagonal and define g(n) = 1 − fn(n). To that g is as wanted, suppose
toward a contradiction that g = fn for some n, then by function equality we
get that 1− fn(n) = g(n) = fn(n) hence fn(n) =

1
2 , contradiction. □

Corollary 0.13. For every set A, A ≺ A{0, 1}.

Proof. If A = ∅ this is straightforward. So assume A ̸= ∅. Toward a
contradiction, suppose that F : A → A{0, 1} is onto and denote by fa =
F (a). Define g : A → {0, 1} by

g(a) = 1− fa(a)

The continuation is as before. □

Theorem 0.14. P (A) ∼ A{0, 1}
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Proof. For a subset B ⊆ A we define the indicator function χA
B : A → {0, 1}

by

χA
B(a) =

{
1 a ∈ B

0 a /∈ B

The function χA : P (A) → A{0, 1} defined by χA(B) = χA
B is a bijection

(prove that!). □

Theorem 0.15 (Cantor’s Theorem). A ≺ P (A)

Proof. a 7→ {a} is an injection from A to P (A) hence A ⪯ P (A). Suppose
toward a contradiction that A ∼ P (A), then by the previous theorem A ∼
A{0, 1}, contradiction. □

Corollary 0.16. N ≺ P (N) ≺ P (P (N)) ≺ ...

Theorem 0.17 (Cantor-Schröeder-Bernstein-No proof). Let A,B be sets
and supose that A ⪯ B ∧B ⪯ A then A ∼ B.

Example 0.18. Prove that NN ∼ P (N)

Proof. On one hand we have P (N) ∼ N{0, 1} ⪯ NN (the last equality is due
to inclusion) on the other hand we have NN ⊆ P (N × N) ∼ P (N). So by
Cantor-Schroeder-Berstein P (N) ∼ NN. □

Theorem 0.19. R ∼ N{0, 1}

”“Proof”. On one hand we have that every x ∈ R is a Dedekind cut so
x ∈ P (Q) and therefore

R ⪯ P (Q) ∼ P (N) ∼ N{0, 1}

For the other direction, we will define a function F : N{1, 2} → R defined by

F (f) = 0.f(0)f(1)f(2)...

is one-to-one as every decimal representation is not eventually 0. Also it is
clear that {0, 1} ∼ {1, 2} hence

N{0, 1} = N{1, 2} ⪯ R

By Cantor- Schroeder-Berstein, R ∼ N{0, 1} □

In particular R is uncountable.

Problem 1. Prove that N{0, 1} × N{0, 1} ∼ N{0, 1} [Hint: consider the
interweaving function that take two binary sequences ⟨a0, a1, ...⟩, ⟨b0, b1, ...⟩
and outputs ⟨a0, b0, a1, b1, a2, b2, ...⟩]

About this result, Cantor said: “My eyes can see it but I cannot believe
it”.

Theorem 0.20. for every n ≥ 1, Rn ∼ R.
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Proof. It suffices to prove that R × R ∼ R and then the same inductive
argument as with the case of the natural numbers will work. Indeed,

R× R ∼ N{0, 1} × N{0, 1} ∼ N{0, 1} ∼ R

□

Theorem 0.21. For every α < β reals [α, β] ∼ (α, β) ∼ (α,∞) ∼ R

Proof. First we note that tn : (−π
2 ,

π
2 ) → R is one-to-one and onto hence

(−π
2 ,

π
2 ) ∼ R. Since (−π

2 ,
π
2 ) ⊆ [−π

2 ,
π
2 ] ⊆ (π2 ,∞) ⊆ R we also have that all

those sets are equinumerable. Now it is not hard to find bijections of the
from f(x) = ax+ b which moves (α, β) to (−π

2 ,
π
2 ) and [α, β] to [−π

2 ,
π
2 ] and

(α,∞) to (−π
2 ,∞). □

Definition 0.22. The continuum hypothesis (CH): Every set A ⊆ R is
either finite, countable, or is equinumerable to the reals.

Theorem 0.23 (Godel and Cohen). The continuum hypothesis cannot be
proven nor refuted from ZFC.

Theorem 0.24. The countable union of at most countable sets is at most
countable

Proof. Let An be a sequence of sets such that for each n, An is at most
countable. Let us define Bn as follows, B0 = A0 and Bn+1 = An+1 \
(∪n

k=0Ak). Since Bn ⊆ An, our assumption that An is at most countable
implies that there is fn : Bn → N which is one-to-one. Note that if n ̸= m
then Bn∩Bm = ∅ and also that

⋃
n∈NAn =

⋃
n∈NBn. Define g :

⋃
n∈NAn →

N×N by g(n) = ⟨mn, fmn(n)⟩, where mn ∈ N is the unique index such that
n ∈ Bmn . Then g is one-to-one and therefore

⋃
n∈NAn ⪯ N× N ⪯ N. □

Corollary 0.25. The following sets are countable: {X ∈ P (N) | X is finite },
the set of finite sequence of natural numbers, the set of all algebraic numbers.

Proof. (1) Clearly A1 := {X ∈ P (N) | X is finite } is infinite and there-
fore N ⪯ A1. To see that it is at most uncountable, note that
A1 = ∪n∈NP ({0, ..., n}) which is a countable union of finite (so at
most countable) sets and therefore A1 is at most countable.

(2) We are asked to prove that the set ∪n∈N+Nn is countable. It is clearly
infinite and is already given to us as a countable union of countable
sets which is therefore at most countable.

(3) An algebraic number is a real number r which is a root of a non-
zero polynomial with integer coefficients. Let Z[x] denote the set of
all polynomials with integer coefficients. Then each non-zero poly-
nomial has some degree n ∈ N and has the form p(x) = znx

n +
zn−1x

n−1+ ...z1x+z0. Let Zn[X] be the set of all polynomials of de-
gree at most n. Then clearly, Zn[X] ∼ Zn+1 and therefore Zn[X] is
countable. Note that Z[X] = ∪n∈NZn[X] and therefore is a countable
union of countable sets (hence countable). Now the set of algebraic
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numbers is just ∪p(x)∈Z[X]roots(p(x)) where roots(p(x)) = {r ∈ R |
p(r) = 0}. Recall that every polynomial has only finitely many roots
and therefore the set of algebraic numbers is a countable union of
finite sets and therefore at most countable.

□

Corollary 0.26. The following sets are uncountable: {X ∈ P (N) | X ∼ N},
R \Q, {r ∈ R | r is transendental},

Proof. Lets just prove one of them. If for example R\Q was countable, then
R = Q ∪ (R \ Q) would have been a countable union of countable sets and
therefore countable. Contradiction. □


