MATH 300: CHAPTER 5- EQUINOUMERABILITY

TOM BENHAMOU RUTGERS UNIVERSITY

Definition 0.1. Let A, B be any sets. We say that:

- (1) $A \sim B$ "A and B are equinumerable" if there is a bijection $f : A \rightarrow B$.
- (2) $A \prec B$ "A is at most the size of B" if there is an injective function $f: A \rightarrow B$.
- (3) $A \not\sim B$ if $\neg (A \sim B)$, namely if there is no bijection $f : A \to B$.
- (4) $A \prec B$ if $A \preceq B$ and $A \not\sim B$.

Example 0.2. (1) $\{1, 2, 3\} \sim \{2, 7, 19\}$ as witnessed by the bijection

$$f(x) = \begin{cases} 2 & x = 1\\ 7 & x = 2\\ 19 & x = 3 \end{cases}$$

- (2) $\mathbb{N} \sim \mathbb{N}_{even}$ as witnessed by the function $f : \mathbb{N} \to \mathbb{N}_{even}, f(n) = 2n$.
- (3) $A \leq P(A)$ for every set A as witnessed by the function $f : A \to P(A)$, $f(a) = \{a\}.$
- (4) $(0,1) \sim (1,3)$ as given by $f: (0,1) \to (1,3), f(x) = 2x + 1$.
- (5) $\{X \in P(\mathbb{N}) \mid 0 \in X\} \sim P(\mathbb{N})$ by $f : P(\mathbb{N}) \to \{X \in P(\mathbb{N}) \mid 0 \in X\}, f(X) = \{0\} \cup \{x+1 \mid x \in X\}.$
- (6) $\mathbb{N} \times \mathbb{N} \preceq P(\mathbb{N})$ witnessed by $f : \mathbb{N} \times \mathbb{N} \to P(\mathbb{N}), f(\langle n, m \rangle) = \{n, n + m\}.$
- (7) $A \subseteq B \to A \preceq B$ as witnessed by the function $f: A \to B, f(a) = a$.
- (8) Clearly $A \sim B$ implies $A \preceq B$.

Claim 0.2.1. for any sets A, B, C:

- (1) $A \sim A$. (2) $A \sim B \rightarrow B \sim A$.
- (3) $A \sim B \wedge B \sim C \rightarrow A \sim C$ and $A \preceq B \preceq C \rightarrow A \preceq C$.

Are there two infinite sets which are not equinumerable?

Proposition 0.3. $\mathbb{N} \sim \mathbb{Z}$

Proof. Define $f : \mathbb{N} \to \mathbb{Z}$ by

$$f(n) = \begin{cases} \frac{n}{2} & n \in \mathbb{N}_{even} \\ -\frac{n+1}{2} & n \in \mathbb{N}_{odd} \end{cases}$$

Date: April 8, 2024.

 $\mathbb Z$ is like "two copies" of $\mathbb N.$ What about infinitely many copies of $\mathbb N?$ $\mathbb N\times\mathbb N.$

Proposition 0.4. $\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$

Proof. Define $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ by $f(\langle n, m \rangle) = 2^n (2m+1) - 1$.

We will have an easier proof later.

Proposition 0.5. Let A, A', B, B' be sets such that $A \sim A'$ and $B \sim B'$. Then:

The above proposition is true upon replacing \sim by \leq everywhere.

Proof. Let us prove for example (1). Let $f : A \to A'$ be a bijection. One should check that $F : P(A) \to P(A')$ defined by F(X) = f''X is a bijection.

Example 0.6. $\mathbb{N} \sim \mathbb{Z} \times \mathbb{Z}$.

What about \mathbb{Q} ? clearly $\mathbb{N} \preceq \mathbb{Q}$

Claim 0.6.1. (AC) Suppose that $A \neq \emptyset$. Then $A \preceq B$ iff there is $f : B \rightarrow A$ onto.

Proof. Suppose that $g: A \to B$ is one-to-one. Let us $a^* \in A$ be some elements. Define $f: B \to A$ by

$$f(b) = \begin{cases} a^* & b \notin Im(g) \\ g^{-1}(b) & b \in Im(g) \end{cases}$$

This is well defined since g is invertible on its image. For the other direction, suppose that $f: B \to A$ is onto. Let us define $g: A \to B$ one-to-one. For

every $a \in A$, since f is onto, there is some (choose!) $b_a \in f^{-1}[\{a\}]$. Define $g(a) = b_a$. Then g is one to one since if $a \neq a'$ then $b_a \in f^{-1}[\{a\}]$ and $b_{a'} \in f^{-1}[\{a'\}]$ which are disjoint sets and therefore $b_a \neq b_{a'}$. Hence g is one-to-one.

Example 0.7. $\mathbb{Q} \preceq \mathbb{Z} \times \mathbb{Z} \sim \mathbb{N}$. The function $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}$ defined by

$$f(\langle z_1, z_2 \rangle) = \begin{cases} \frac{z_1}{z_2} & z_2 \neq 0\\ 0 & else \end{cases}$$

is onto

So we are in the situation where $\mathbb{N} \leq \mathbb{Q}$ and $\mathbb{Q} \leq \mathbb{N}$. Does it mean that $\mathbb{N} \sim \mathbb{Q}$? Yes! but this requires a highly non-trivial theorem which we will prove later. Instead, let us give direct proof:

Theorem 0.8. $\mathbb{N} \sim \mathbb{Q}$

"Proof". We are about to construct a function $f : \mathbb{N}_+ \to \mathbb{Q}_+ = \{q \in \mathbb{Q} \mid q > 0\}$ one-to-one and onto, by recursion on \mathbb{N}_+ . To do so, we think of the \mathbb{Q}_+ as elements in the matrix $\mathbb{N}_+ \times \mathbb{N}_+$

We go by induction on the diagonal rows (namely pair $\langle k_1, k_2 \rangle$ such that $k_1 + k_2 = n$ starting at n - 2). We define f(1) = 1/1 = 1. Suppose we reached the n^{th} row. In row n + 1, we keep defining f on new (finitely many) values only for those pairs which represent a rational number which haven't appeared before (to ensure the function is one-to-one). The resulting function f is a bijection from \mathbb{N}_+ to \mathbb{Q}_+ . Let us now define a function $g: \mathbb{N} \to \mathbb{Q}$ by

$$g(n) = \begin{cases} 0 & n = 0\\ f(\frac{n}{2}) & n \in \mathbb{N}_{even} \setminus \{0\}\\ -f(\frac{n+1}{2}) & n \in \mathbb{N}_{odd} \end{cases}$$

So far we failed to find two infinite sets which are not equinumerable.

Theorem 0.9. (AC) If A is infinite then $\mathbb{N} \leq A$.

Proof. We construct the function $f : \mathbb{N} \to A$ by recursion, there is always a possibility to continue the definition of f and pick a new element since otherwise, A was finite.

Definition 0.10. A set A is countable if $A \sim \mathbb{N}$. A is uncountable if $\mathbb{N} \prec A$.

Theorem 0.11. The following sets are countable: $\mathbb{Z}, \mathbb{N}_{even}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}, \mathbb{N}^n (n \ge 1)$

Proof. It remains to show that \mathbb{N}^n is countable. We prove that by induction on n. For n = 1, this is clear. Suppose that $\mathbb{N}^n \sim \mathbb{N}$, then

$$\mathbb{N}^{n+1} \sim \mathbb{N}^n \times \mathbb{N} \sim \mathbb{N} \times \mathbb{N} \sim \mathbb{N}.$$

Theorem 0.12 (Cantor's Diagonalization Theorem). $\mathbb{N} \prec \mathbb{N}\{0,1\}$

Proof. It is not hard to prove that $\mathbb{N} \leq \mathbb{N}\{0,1\}$. So it remains to prove that $\mathbb{N} \neq \mathbb{N}\{0,1\}$. Assume toward a contradiction that $F : \mathbb{N} \to \mathbb{N}\{0,1\}$ was onto. Let us show how to produce a function $g : \mathbb{N} \to \{0,1\}$ (i.e. an element in the range of F) such that for every $n, F(n) \neq g$ (i.e. g is not in the image of F). This will produce a contradiction to the assumption that F is onto.

For each $n, F(n) : \mathbb{N} \to \{0, 1\}$ so we write it as a binari sequence

$$f_n := F(n) = \langle F(n)(0), F(n)(1), F(n)(2), ... \rangle$$

So the list of functions F(0), F(1), F(2) can be written in a matrix:

Note that each value in this matrix is 0 or 1. We would like to define a function $g: \mathbb{N} \to \{0, 1\}$, namely a binary sequence $\langle g(0), g(1), g(2), ... \rangle$ such that g defers from each row at some n. so we change the values from 0 to 1, Start by setting g(0) = 0 if $f_0(0) = 1$ or g(0) = 1 if $f_0(0) = 0$ ("flip the bit") algebraically we can write that as $1 - f_0(0)$. Moving to f_1 , we flip the value $f_1(1)$ and define $g(1) = 1 - f_1(1)$. In general, we flip the values on the diagonal and define $g(n) = 1 - f_n(n)$. To that g is as wanted, suppose toward a contradiction that $g = f_n$ for some n, then by function equality we get that $1 - f_n(n) = g(n) = f_n(n)$ hence $f_n(n) = \frac{1}{2}$, contradiction.

Corollary 0.13. For every set $A, A \prec {}^{A}\{0,1\}$.

Proof. If $A = \emptyset$ this is straightforward. So assume $A \neq \emptyset$. Toward a contradiction, suppose that $F : A \to {}^{A}\{0,1\}$ is onto and denote by $f_a = F(a)$. Define $g : A \to \{0,1\}$ by

$$g(a) = 1 - f_a(a)$$

The continuation is as before.

Theorem 0.14. $P(A) \sim {}^{A}\{0,1\}$

Proof. For a subset $B \subseteq A$ we define the indicator function $\chi_B^A : A \to \{0, 1\}$ by

$$\chi_B^A(a) = \begin{cases} 1 & a \in B \\ 0 & a \notin B \end{cases}$$

The function $\chi^A : P(A) \to {}^{A}\{0,1\}$ defined by $\chi^A(B) = \chi^A_B$ is a bijection (prove that!).

Theorem 0.15 (Cantor's Theorem). $A \prec P(A)$

Proof. $a \mapsto \{a\}$ is an injection from A to P(A) hence $A \leq P(A)$. Suppose toward a contradiction that $A \sim P(A)$, then by the previous theorem $A \sim {}^{A}\{0,1\}$, contradiction.

Corollary 0.16. $\mathbb{N} \prec P(\mathbb{N}) \prec P(P(\mathbb{N})) \prec \dots$

Theorem 0.17 (Cantor-Schröeder-Bernstein-No proof). Let A, B be sets and suppose that $A \leq B \land B \leq A$ then $A \sim B$.

Example 0.18. Prove that $^{\mathbb{N}}\mathbb{N} \sim P(\mathbb{N})$

Proof. On one hand we have $P(\mathbb{N}) \sim \mathbb{N}\{0,1\} \leq \mathbb{N}\mathbb{N}$ (the last equality is due to inclusion) on the other hand we have $\mathbb{N}\mathbb{N} \subseteq P(\mathbb{N} \times \mathbb{N}) \sim P(\mathbb{N})$. So by Cantor-Schroeder-Berstein $P(\mathbb{N}) \sim \mathbb{N}\mathbb{N}$.

Theorem 0.19. $\mathbb{R} \sim \mathbb{N}\{0,1\}$

""Proof". On one hand we have that every $x \in \mathbb{R}$ is a Dedekind cut so $x \in P(\mathbb{Q})$ and therefore

$$\mathbb{R} \preceq P(\mathbb{Q}) \sim P(\mathbb{N}) \sim \mathbb{N}\{0,1\}$$

For the other direction, we will define a function $F : {}^{\mathbb{N}}\{1,2\} \to \mathbb{R}$ defined by

$$F(f) = 0.f(0)f(1)f(2)..$$

is one-to-one as every decimal representation is not eventually 0. Also it is clear that $\{0,1\} \sim \{1,2\}$ hence

$$\mathbb{N}\{0,1\} = \mathbb{N}\{1,2\} \preceq \mathbb{R}$$

By Cantor- Schroeder-Berstein, $\mathbb{R} \sim \mathbb{N}\{0,1\}$

In particular \mathbb{R} is uncountable.

Problem 1. Prove that ${}^{\mathbb{N}}\{0,1\} \times {}^{\mathbb{N}}\{0,1\} \sim {}^{\mathbb{N}}\{0,1\}$ [Hint: consider the interweaving function that take two binary sequences $\langle a_0, a_1, \ldots \rangle, \langle b_0, b_1, \ldots \rangle$ and outputs $\langle a_0, b_0, a_1, b_1, a_2, b_2, \ldots \rangle$]

About this result, Cantor said: "My eyes can see it but I cannot believe it".

Theorem 0.20. for every $n \ge 1$, $\mathbb{R}^n \sim \mathbb{R}$.

Proof. It suffices to prove that $\mathbb{R} \times \mathbb{R} \sim \mathbb{R}$ and then the same inductive argument as with the case of the natural numbers will work. Indeed,

$$\mathbb{R} \times \mathbb{R} \sim \mathbb{N}\{0,1\} \times \mathbb{N}\{0,1\} \sim \mathbb{N}\{0,1\} \sim \mathbb{R}$$

Theorem 0.21. For every $\alpha < \beta$ reals $[\alpha, \beta] \sim (\alpha, \beta) \sim (\alpha, \infty) \sim \mathbb{R}$

Proof. First we note that $tn: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ is one-to-one and onto hence $(-\frac{\pi}{2}, \frac{\pi}{2}) \sim \mathbb{R}$. Since $(-\frac{\pi}{2}, \frac{\pi}{2}) \subseteq [-\frac{\pi}{2}, \frac{\pi}{2}] \subseteq (\frac{\pi}{2}, \infty) \subseteq \mathbb{R}$ we also have that all those sets are equinumerable. Now it is not hard to find bijections of the from f(x) = ax + b which moves (α, β) to $(-\frac{\pi}{2}, \frac{\pi}{2})$ and $[\alpha, \beta]$ to $[-\frac{\pi}{2}, \frac{\pi}{2}]$ and (α, ∞) to $(-\frac{\pi}{2}, \infty)$.

Definition 0.22. The continuum hypothesis (CH): Every set $A \subseteq \mathbb{R}$ is either finite, countable, or is equinumerable to the reals.

Theorem 0.23 (Godel and Cohen). The continuum hypothesis cannot be proven nor refuted from ZFC.

Theorem 0.24. The countable union of at most countable sets is at most countable

Proof. Let A_n be a sequence of sets such that for each n, A_n is at most countable. Let us define B_n as follows, $B_0 = A_0$ and $B_{n+1} = A_{n+1} \setminus (\bigcup_{k=0}^n A_k)$. Since $B_n \subseteq A_n$, our assumption that A_n is at most countable implies that there is $f_n : B_n \to \mathbb{N}$ which is one-to-one. Note that if $n \neq m$ then $B_n \cap B_m = \emptyset$ and also that $\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} B_n$. Define $g : \bigcup_{n \in \mathbb{N}} A_n \to \mathbb{N} \times \mathbb{N}$ by $g(n) = \langle m_n, f_{m_n}(n) \rangle$, where $m_n \in \mathbb{N}$ is the unique index such that $n \in B_{m_n}$. Then g is one-to-one and therefore $\bigcup_{n \in \mathbb{N}} A_n \preceq \mathbb{N} \times \mathbb{N} \preceq \mathbb{N}$.

Corollary 0.25. The following sets are countable: $\{X \in P(\mathbb{N}) \mid X \text{ is finite }\}$, the set of finite sequence of natural numbers, the set of all algebraic numbers.

- *Proof.* (1) Clearly $A_1 := \{X \in P(\mathbb{N}) \mid X \text{ is finite }\}$ is infinite and therefore $\mathbb{N} \leq A_1$. To see that it is at most uncountable, note that $A_1 = \bigcup_{n \in \mathbb{N}} P(\{0, ..., n\})$ which is a countable union of finite (so at most countable) sets and therefore A_1 is at most countable.
 - (2) We are asked to prove that the set $\bigcup_{n \in \mathbb{N}_+} \mathbb{N}^n$ is countable. It is clearly infinite and is already given to us as a countable union of countable sets which is therefore at most countable.
 - (3) An algebraic number is a real number r which is a root of a nonzero polynomial with integer coefficients. Let $\mathbb{Z}[x]$ denote the set of all polynomials with integer coefficients. Then each non-zero polynomial has some degree $n \in \mathbb{N}$ and has the form $p(x) = z_n x^n + z_{n-1}x^{n-1} + ... z_1 x + z_0$. Let $\mathbb{Z}_n[X]$ be the set of all polynomials of degree at most n. Then clearly, $\mathbb{Z}_n[X] \sim \mathbb{Z}^{n+1}$ and therefore $\mathbb{Z}_n[X]$ is countable. Note that $\mathbb{Z}[X] = \bigcup_{n \in \mathbb{N}} \mathbb{Z}_n[X]$ and therefore is a countable union of countable sets (hence countable). Now the set of algebraic

numbers is just $\bigcup_{p(x)\in\mathbb{Z}[X]} roots(p(x))$ where $roots(p(x)) = \{r \in \mathbb{R} \mid p(r) = 0\}$. Recall that every polynomial has only finitely many roots and therefore the set of algebraic numbers is a countable union of finite sets and therefore at most countable.

Corollary 0.26. The following sets are uncountable: $\{X \in P(\mathbb{N}) \mid X \sim \mathbb{N}\}, \mathbb{R} \setminus \mathbb{Q}, \{r \in \mathbb{R} \mid r \text{ is transendental}\},\$

Proof. Lets just prove one of them. If for example $\mathbb{R} \setminus \mathbb{Q}$ was countable, then $\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q})$ would have been a countable union of countable sets and therefore countable. Contradiction.