Math Reasoning- Solutions to "More Exercises"

April 22, 2024

Problem 1. Compute the following sets, prove your answer:

1. $\{n \in \mathbb{Z} \mid(-5) \cdot n<n\}$. solution \mathbb{N}_{+}
2. $\left\{x \in \mathbb{R} \mid \exists y \in \mathbb{R} . \exists n \in \mathbb{N} . n+y^{2}=x\right\}$ solution $[0, \infty)$
3. $\{X \cup\{0\} \mid X \in P(\mathbb{N})\}$. solution $P(\mathbb{N}) \backslash P\left(\mathbb{N}_{+}\right)$
4. $\{X \in P(\mathbb{Q}) \mid X \cup \mathbb{N} \subseteq \mathbb{Z}\}$ solution $P(\mathbb{Z})$
5. $\{x \in \mathbb{R}||[x, x+1] \cap \mathbb{Z}|<2\}$ solution $\mathbb{R} \backslash \mathbb{Z}$.

Problem 2. Prove or disprove the following statements:

1. If $A=A \backslash B$ then $B=\emptyset$.
solution Disprove, $A=\{1,2\} B=\{3\}$, we have $\{1,2\}=\{1,2\} \backslash\{3\}$ but also $\{3\} \neq \emptyset$
2. If $A=A \backslash B$ then $A \cap B=\emptyset$.
solution Proof, Suppose that $A=A \backslash B$, we want to prove that $A \cap B=\emptyset$. Suppose toward a contradiction that $A \cap B \neq \emptyset$, then there is $x \in A \cap B$. By definition of intersection, $x \in A$ and $x \in B$. It follows that $x \ni n A \backslash B$. Hence x is a member of A which is not a member of $A \backslash B$, contradiction the assumption $A=A \backslash B$.
3. If $A \cup B=A \cup C$ and $A \cap B=A \cap C$ then $B=C$. solution: Prove, auppose that $A \cup B=A \cup C$ and $A \cap B=A \cap C$, we want to prove that $B=C$. Let us prove it by a double inclusion:

- $\underline{B \subseteq C}$ Let $x \in B$, we want to prove that $x \in C$. Let us split into cases:
(a) If $x \in A$ then $x \in A \cap B$ and by the assumption that $A \cap B=$ $A \cap C$ it follows that $x \in A \cap C$ and in particular $x \in C$.
(b) If $x \notin A$, recall that $x \in B$ and therefore $x \in A \cup B$. By the assumption $x \in A \cup C$ and since $x \notin A$ it follows that $x \in C$.
- $C \subseteq B$ Symmetric to the first inclusion.

4. If $A \Delta C \subseteq A \Delta B$ then $A \cap C \subseteq B$.
solution Disprove, Take $A=\{1,2\} C=\{1\} B=\{3\}$ then $A \Delta C=$ $\{2\} \subseteq\{1,2,3\}=A \Delta B$ but $A \cap C=\{1\}$ is not a subset of $B=\{3\}$.
5. $A \cap(B \Delta C)=(A \cap B) \Delta(A \cap C)$.
solution Prove.
Problem 3. Let A, B, C, D be sets. Prove that

$$
(A \times B) \backslash(C \times D)=[(A \backslash C) \times B] \cup[A \times(B \backslash D)]
$$

Problem 4. Prove the for any sets A, B :

$$
A \times B=B \times A \Leftrightarrow[A=B \vee A=\emptyset \vee B=\emptyset]
$$

Proof. We need to prove a double implication.

- \Rightarrow Suppose that $A \times B=B \times A$, and suppose toward a contradiction that $A \neq B$, and $A, B \neq \emptyset$ let us split into cases:
- If there is $x \in A$ such that $x \notin B$, take any $b \in B$, then $\langle x, b\rangle \in$ $A \times B$ but $\langle x, b\rangle \notin B \times A$ since $x \notin B$.
- the case that there is $x \in B$ such that $x \notin A$ is symmetric.
- \Leftarrow Suppose that $A=B \vee A=\emptyset \vee B=\emptyset$ and we want to prove that $\bar{A} \times B=B A$. Let us split into cases:
- If $A=B$ then $A \times B=A \times A=B \times A$.
- If $A=\emptyset$ then $A \times B=\emptyset=B \times A$
- the case $B=\emptyset$ is similar.

Problem 5. Let A and B be any sets. Prove that:

1. $P(A \cap B)=P(A) \cap P(B)$.
2. $P(A \cup B)=P(A) \cup P(B)$ if and only if $A \subseteq B \vee B \subseteq A$.
3. $P(A \backslash B) \subseteq\{\emptyset\} \cup(P(A) \backslash P(B))$
4. If $P(A) \subseteq P(A \backslash B)$ then $A \cap B=\emptyset$.

Problem 6. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be function. Prove or disprove the following statements:

1. If $g \circ f$ is injective the g is injective.

Solution Disprove. For example, take $f:\{1,2\} \rightarrow\{1,2\}, f(x)=x$ (the identity and $g:\{1,2,3\} \rightarrow\{1,2,3\}$ defined by $g(1)=1, g(2)=$ $2, g(3)=2$ clearly g is not injective and $g \circ f:\{1,2\} \rightarrow\{1,2\}$ $g \circ f(1)=1$ and $g \circ f(2)=2$, thus $g \circ f$ is injective.
2. If $g \circ f$ is injective the f is injective.

Solution Prove. Suppose that $g \circ f$ is injective and assume towards a contradiction that f is not injective. Then there are $a_{1}, a_{2} \in A$ distinct such that $f\left(a_{1}\right)=f\left(a_{2}\right)=b$. In particular,

$$
g \circ f\left(a_{1}\right)=g\left(f\left(a_{1}\right)\right)=g(b)=g\left(f\left(a_{2}\right)\right)=g \circ f\left(a_{2}\right)
$$

contradiction the assumption that $g \circ f$ is injective.
3. If $g \circ f$ is surjective then f is surjective.

Solution Disprove.
4. If $g \circ f$ is surjective the g is surjective.

Solution Prove.
5. If f is surjective and g is not injective then $g \circ f$ is not injective. Solution: Suppose that g is not injective and f is surjective. We want to prove that $g \circ f$ is not injective. Let $b_{1}, b_{2} \in B$ be distinct such that $g\left(b_{1}\right)=g\left(b_{2}\right)$. Since f is surjective, then there are a_{1} and a_{2} such that
$f\left(a_{1}\right)=b_{1}$ and $f\left(a_{2}\right)=b_{2}$. Note that $a_{1} \neq a_{2}$ since f is a function (otherwise, $a_{1}=a_{2}=a$ and $f(a)=b_{1}$ and $f(a)=b_{1}$). It follows that

$$
g \circ f\left(a_{1}\right)=g\left(f\left(a_{1}\right)\right)=g\left(b_{1}\right)=g\left(b_{2}\right)=g\left(f\left(a_{2}\right)\right)=g \circ f\left(a_{2}\right)
$$

Hence $g \circ f$ is not injective.
Problem 7. Determine if the following functions are injective/surjective/ bijective. If the function is invertible, compute its inverse.

1. $f: \mathbb{N} \rightarrow \mathbb{N}, f(n)=n^{2}-n+2$.

Solution: Not injective: for example $f(0)=2=f(1)$.
Not surjective: for example $0 \notin \mathbb{N}$, to see this, we have already seen that $f(0), f(1) \neq 0$, for $n \geq 2, f(n)=n^{2}-n+2=n(n-1)+2 \geq 2>0$.
2. $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\left\{\begin{array}{ll}0 & x=1 \\ \frac{1}{x-1} & x \neq 1\end{array}\right.$.
solution Injective: Let $x_{1}, x_{2} \in \mathbb{R}$. Suppose that $f\left(x_{1}\right)=f\left(x_{2}\right)$, we want to prove that $x_{1}=x_{2}$. Note that if $x \neq 1$, the $f(x)=\frac{1}{x-1} \neq \neq 0$. Split into cases:

- If $f\left(x_{1}\right)=f\left(x_{2}\right)=0$, then as we have seen $x_{1}=x_{2}=1$.
- IF $f\left(x_{1}\right)=f\left(x_{2}\right) \neq 0$, then $x_{1}, x_{2} \neq 1$ and therefore $f\left(x_{1}\right)=\frac{1}{x_{1}-1}=$ $\frac{1}{x_{2}-1}=f\left(x_{2}\right)$. From simple algebra we get $x_{1}=x_{2}$.

Surjective: Let $y \in \mathbb{R}$, we want to prove that there is $x \in \mathbb{R}$ such that $f(x)=y$. If $y=0$, define $x=1$, then by definition $f(1)=0$. If $y \neq 0$ define $x=\frac{1}{y}+1$, then $x \neq 1$ and we have

$$
f(x)=\frac{1}{x-1}=\frac{1}{\left(\frac{1}{y}+1\right)-1}=\frac{1}{\frac{1}{y}}=y
$$

By the theorem we have seen in class, f is invertible and the function $f^{-1}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f^{-1}(y)= \begin{cases}1 & y=0 \\ \frac{1}{y}+1 & \text { else }\end{cases}
$$

3. $f: \mathbb{N} \rightarrow P(\mathbb{N}), f(n)=\{k \in \mathbb{N} \mid k<n\}$.

Solution Injective: let $n_{1}, n_{2} \in \mathbb{N}$, we suppose that $n_{1} \neq n_{2}$, we want to prove that $f\left(n_{1}\right) \neq f\left(n_{2}\right)$. Suppose that $n_{1}<n_{2}$ (the case $n_{2}<n_{1}$ is symmetric), we want to prove $\left\{k \in \mathbb{N} \mid k<n_{1}\right\} \neq\left\{k \in \mathbb{N} \mid k<n_{2}\right\}$. Note that $n_{1}<n_{2}$, and by the separation principle, $n_{1} \in\{k \in \mathbb{N} \mid k<$ $\left.n_{2}\right\}$ but $n_{1} \nless n_{1}$ so $n_{1} \notin\left\{k \in \mathbb{N} \mid k<n_{1}\right\}$. So we found an element $n_{1} \in f\left(n_{2}\right)$ such that $n_{1} \notin f\left(n_{1}\right)$, and in particular $f\left(n_{1}\right) \neq f\left(n_{2}\right)$.
Not surjective: For example $\{1\} \in P(\mathbb{N})$, suppose toward a contradiction that there is n such that $f(n)=\{1\}$, then $\{k \in \mathbb{N} \mid k<n\}=\{1\}$. By set equality $1 \in\{k \in \mathbb{N} \mid k<n\}$ and by separation $1<n$. It follows that $0<n$ and therefore $0 \in\{k \in \mathbb{N} \mid k<n\}$. By the list principle, $0 \notin\{1\}$ which contradicts the equality $f(n)=\{1\}$.
4. $f: \mathbb{N} \times \mathbb{N} \rightarrow P(\mathbb{N}), f(\langle n, m\rangle)=\{n, m\}$. Solution Not injective, not surjective.
5. $f: \mathbb{N} \times \mathbb{N} \rightarrow P(\mathbb{N}), f(\langle n, m\rangle)=\{n, n+m\}$ Solution Injective, not surjective.
6. $f: P(\mathbb{N}) \rightarrow P\left(\mathbb{N}_{\text {even }}\right) \times P\left(\mathbb{N}_{\text {odd }}\right), f(X)=\left\langle X \cap \mathbb{N}_{\text {even }}, X \cap \mathbb{N}_{\text {odd }}\right\rangle$. Solution Injective and surjective. The inverse function is $f^{-1}: P\left(\mathbb{N}_{\text {even }}\right) \times$ $P\left(\mathbb{N}_{\text {odd }}\right) \rightarrow P(\mathbb{N})$, defined by $P(\langle X, Y\rangle)=X \cup Y$.

Problem 8. Prove by induction the following claims:

- For every $n \geq 1$,

$$
2+4+6+\cdots+2 n=n(n+1)
$$

Solution

- Induction basis: For $n=1$ we need to prove that $2=1 \cdots 2$ which is clear.
- Induction hypothesis: Suppose that

$$
2+4+6+\cdots+2 n=n(n+1)
$$

for a general n

- Induction step; We want to prove

$$
2+4+6+\cdots+2(n+1=(n+1)(n+2)
$$

Indeed

$$
2+4+6+\cdots+2 n+2(n+1)=n(n+1)+2(n+1)=(n+2)(n+2)
$$

- For any $n \geq 1$,

$$
1 \cdot 2^{1}+2 \cdot 2^{2}+3 \cdot 2^{3}+\ldots+(2 n+1) \cdot 2^{2 n+1}=2+n \cdot 2^{2 n+3}
$$

Solution

- Induction basis: We need to prove that

$$
1 \cdot 2^{1}+2 \cdot 2^{2}+3 \cdot 2^{3}=2+1 \cdot 2^{2+5}
$$

Indeed $2+8+24=34=2+32=2+2^{5}$.

- Induction hypothesis Assume

$$
1 \cdot 2^{1}+2 \cdot 2^{2}+3 \cdot 2^{3}+\ldots+(2 n+1) \cdot 2^{2 n+1}=2+n \cdot 2^{2 n+3}
$$

For a general n.

- Induction step: We want to prove that

$$
1 \cdot 2^{1}+2 \cdot 2^{2}+3 \cdot 2^{3}+\ldots+(2 n+1) \cdot 2^{2 n+1}+(2 n+2) 2^{2 n+2}+(2 n+3) 2^{2 n+3}=2+(n+1) \cdot 2^{2 n+5}
$$

We have

$$
\begin{gathered}
1 \cdot 2^{1}+\ldots+(2 n+1) \cdot 2^{2 n+1}+(2 n+2) 2^{2 n+2}+(2 n+3) 2^{2 n+3}= \\
=2+n 2^{2 n+3}+(2 n+2) 2^{2 n+2}+(2 n+3) 2^{2 n+3}=2+2^{2 n+2}(2 n+2 n+2+2(2 n+3)= \\
=2+2^{2 n+2}(8 n+8)=2+(n+1) \cdot 2^{2 n+5}
\end{gathered}
$$

- For any $n \geq 1$,

$$
\frac{3}{2}+\frac{9}{4}+\frac{33}{8}+\ldots+\frac{2^{2 n-1}+1}{2^{n}}=\frac{2^{2 n}-1}{2^{n}}
$$

Solution

- Induction basis: We need to prove that $\frac{3}{2}=\frac{2^{2}-1}{2^{2}}$ which is true.
- Induction hypothesis Assume

$$
\frac{3}{2}+\frac{9}{4}+\frac{33}{8}+\ldots+\frac{2^{2 n-1}+1}{2^{n}}=\frac{2^{2 n}-1}{2^{n}}
$$

for a general n.

- Induction step; We want to prove

$$
\frac{3}{2}+\frac{9}{4}+\frac{33}{8}+\ldots+\frac{2^{2 n-1}+1}{2^{n}}+\frac{2^{2 n+1}+1}{2^{n+1}}=\frac{2^{2 n+2}-1}{2^{n+1}}
$$

Indeed

$$
\begin{gathered}
\frac{3}{2}+\frac{9}{4}+\frac{33}{8}+\ldots+\frac{2^{2 n-1}+1}{2^{n}}+\frac{2^{2 n+1}+1}{2^{n+1}}= \\
=\frac{2^{2 n}-1}{2^{n}}+\frac{2^{2 n+1}+1}{2^{n+1}}= \\
=\frac{2 \cdot 2^{2 n}-2+2^{2 n+1}+1}{2^{n+1}}=\frac{2^{2 n+2}-1}{2^{n+1}}
\end{gathered}
$$

- For any $n \geq 1$,

$$
\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)}+\ldots+\frac{1}{(2 n-1) 2 n}=\frac{1}{2 n}
$$

Solution

- Induction basis: For $n=1, \frac{1}{1 \cdot(1+1)}=\frac{1}{2 \cdot 1}$.
- Induction hypothesis Assume

$$
\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)}+\ldots+\frac{1}{(2 n-1) 2 n}=\frac{1}{2 n}
$$

for a general n.

- Induction step: We want to prove that

$$
\frac{1}{(n+1)(n+2)}+\ldots+\frac{1}{(2 n+1)(2 n+2)}=\frac{1}{2(n+1)}
$$

We add and subtract $\frac{1}{n(n+1)}$ and we get

$$
\begin{gathered}
\frac{1}{(n+1)(n+2)}+\ldots+\frac{1}{(2 n+1)(2 n+2)}= \\
=\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)}+\ldots+\frac{1}{(2 n+1)(2 n+2)}-\frac{1}{n(n+1)}= \\
=\frac{1}{2 n}+\frac{1}{2 n(2 n+1)}+\frac{1}{(2 n+1)(2 n+2)}-\frac{1}{n(n+1)}= \\
=\frac{2 n+2}{2 n(2 n+1)}+\frac{n-2(2 n+1)}{2 n(n+1)(2 n+1)}=\frac{2(n+1)^{2}-3 n-2}{2 n(n+1)(2 n+1)}= \\
=\frac{2 n^{2}+n}{2 n(n+1)(2 n+1)}=\frac{1}{2(n+1)}
\end{gathered}
$$

Problem 9. 1. Prove that for every n, we have $n,(n+1)^{2}$ are coprime.
Proof. By the Bezout identity, it suffices to prove that 1 is a linear combination of $n,(n+1)^{2}$. Indeed for the integer coefficients $s=1$ and $t=-(n+2)$ we get that

$$
s(n+1)^{2}+t n=1 \cdot(n+1)^{2}-(n+2) \cdot n=n^{2}+2 n+1-n^{2}-2 n=1
$$

Hence $n,(n+1)^{2}$ are coprime.
2. Prove that for every $n, 9^{n}-2^{n}$ is divisible by 7 .

Proof. By induction on n :

- Base: For $n=0$, we get that $9^{0}-2^{0}=1-1=0$ which is divisible by 7 .
- Hypothesis: Suppose that $9^{n}-2^{n}$ is divisible by 7.
- Step: we want to prove that $9^{n+1}-2^{n+1}$ is divisible by 7 .

$$
9^{n+1}-2^{n+1}=9 \cdot 9^{n}-2 \cdot 2^{n}=7 \cdot 9^{n}+2 \cdot 9^{n}-2 \cdot 2^{n}=7 \cdot 9^{n}+2\left(9^{n}-2^{n}\right)
$$

By the induction hypothesis $9^{n}-2^{n}$ is divisible by 7 and thus $2\left(9^{n}-2^{n}\right)$ is divisible by 7. Also, $7 \cdot 9^{n}$ is divisible by 7. Hence $9^{n+1}-2^{n+1}$ is divisible by 7 .
3. Prove that n is divisible by 7 if and only if n^{2} is divisible by 7

Proof. This is an "if and only if" statement do we will prove it by a doucle inclusion.

- \Rightarrow Suppose that n we want to prove that n^{2} is divisible by 7 . Since n is divisible by 7 , there is k such that $n=7 k$ and therefor $n^{2}=(7 k)^{2}=7\left(7 k^{2}\right)$. Since $7 k^{2}$ is an integer then n^{2} is divisible by 7 .
- \Leftarrow Suppose that n^{2} is divisible by 7. By the fundamental theorem of arithmetic there are (unique) q, r such that

$$
n=q 7+r, \quad 0 \leq r<7
$$

In order to prove that n is divisible by 7 , it suffices to prove that $r=0$. Toward a contradiction assume $r>0$, the

$$
n^{2}=(q 7+r)^{2}=47 q^{2}+14 r q+r^{2}
$$

Hence

$$
r^{2}=n^{2}-49 q^{2}-14 q r
$$

and since $n^{2}, 49 q^{2}, 14 q r$ are all divisible by 7 , it follows that r^{2} is divisible by 7. Going over all the possibilities of $r=1,2,3,4,5,6$ one-by-one, we see that non of the numbers $1,4,9,16,25,36$ is divisible by 7 , contradiction r^{2} being divisible by 7 .
4. Prove that if $\sqrt{7}$ and $\sqrt{28}$ are irrational.

Problem 10. For any function $f: \mathbb{R} \rightarrow \mathbb{R}$, denote by $\operatorname{Ker}(f)=\{x \in \mathbb{R} \mid$ $f(x)=0\}$.

1. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be any functions. Prove that if $0 \in \operatorname{Ker}(g)$, then $\operatorname{Ker}(f) \subseteq \operatorname{ker}(g \circ f)$.

Proof. Suppose that $0 \in \operatorname{Ker}(g)$, we want to prove that $\operatorname{Ker}(f) \subseteq$ $\operatorname{Ker}(g \circ f)$. By definition of $\operatorname{Ker}(g), g(0)=0$. To prove the inclusion, let $x \in \operatorname{Ker}(f)$, we want to prove that $x \in \operatorname{Ker}(f \circ g)$. By definition of $\operatorname{Ker}(f), f(x)=0$, hence by definition of composition,

$$
g \circ f(x)=g(f(x))=g(0)=0
$$

It follows by the definition of $\operatorname{Ker}(g \circ f)$ that $x \in \operatorname{Ker}(g \circ f)$.
2. Give an example of such f, g such that $\operatorname{Ker}(f) \neq \operatorname{Ker}(g \circ f)$.

Solution Define the functions $f, g: \mathbb{R} \rightarrow R$ by $f(x)=x$ and $g(x)=$ 0 , then $\operatorname{Ker}(f)=\{0\}$ and $g \circ f(x)=g(f(x))=g(x)=0$, hence $\operatorname{Ker}(g \circ f)=\mathbb{R} \neq\{0\}=\operatorname{Ker}(f)$.
3. For any $f: \mathbb{R} \rightarrow \mathbb{R}$ and $X \subseteq \mathbb{R}$, prove that $\operatorname{Ker}(f \upharpoonright X)=\operatorname{Ker}(f) \cap X$.

Proof. We want to prove htat $\operatorname{Ker}(f \upharpoonright X)=\operatorname{Ker}(f) \cap X$, which is a set equality, so we prove it by a double inclusion:
(a) \subseteq Let $x \in \operatorname{Ker}(f \upharpoonright x)$, then $x \in \operatorname{dom}(f \upharpoonright X)=X$ and $(f \upharpoonright$ $\bar{X})(x)=0$, by definition of restriction, $f(x)=(f \upharpoonright X)(x)=0$, hence $x \in \operatorname{Ker}(f)$. By definition of intersection $x \in \operatorname{Ker}(f) \cap X$.
(b) \supseteq Let $x \in \operatorname{Ker}(f) \cap X$, then $x \in \operatorname{Ker}(f)$ and $x \in X$. It follows that $x \in \operatorname{Dom}(f \upharpoonright X)$ and that $(f \upharpoonright X)(x)=f(x)$. Since $x \in \operatorname{Ker}(f)$, $(f \upharpoonright X)(x)=f(x)=0$, hence $x \in \operatorname{Ker}(f \upharpoonright X)$.
4. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a bijection then $|\operatorname{Ker}(f)|=1$.

Proof. Suppose that f is a bijection and let us prove that $|\operatorname{Ker}(f)|=1$, namely that there is an element $x_{0} \in \mathbb{R}$ such such that $\operatorname{Ker}(f)=\left\{x_{0}\right\}$. Since f is a bijection, it is in particular surjective and therefore there exists x_{0} such that $f\left(x_{0}\right)=0$. it follows that $x_{0} \in \operatorname{Ker}(f)$. To see that $\operatorname{Ker}(f)=\left\{x_{0}\right\}$, suppose toward a contradiction that this is not the case, then there is $a \in \operatorname{Ker}(f)$ such that $a \neq x_{0}$. By definition of $\operatorname{Ker}(f), f(a)=0=f\left(x_{0}\right)$. Since $a \neq x_{0}$, this is a contradiction to f being injective.
5. Prove or disprove, if $|\operatorname{Ker}(f)|=1$, then f is a bijection.

Problem 11. 1. Prove the following logical identities:
(a) $\neg(p \Leftrightarrow p) \equiv p \Leftrightarrow \neg q$.
(b) $(p \wedge q) \Rightarrow r \equiv \neg p \vee(q \Rightarrow r)$
(c) $p \Rightarrow F \equiv \neg p$
(d) $p \Rightarrow T \equiv T$.
2. Decide weather the conclusion follows from the premises:
(a) Pre. 1: $A \Rightarrow(B \Rightarrow C)$
(b) Pre. 2: $\neg B \vee(\neg C)$
(c) Conclusion $\neg B \vee \neg A$.
3. Decide weather the conclusion follows from the premises:
(a) Pre. 1: $A \wedge(\neg B \Rightarrow C)$
(b) Pre. 2:B $\Rightarrow \neg A$
(c) Conclusion: $\neg C \vee \neg A$.

Problem 12. Prove or disprove:

1. $\forall x, y \in \mathbb{R} \cdot x<y \Rightarrow \exists z \in \mathbb{Q} \cdot x<z+1<y$.
2. $\forall A \forall B \exists X . P(A \cap X)=P(B \cap X)$.
3. $\forall x \in \mathbb{Z} \cdot\left(\exists y \cdot 2 y+1=x^{2}\right) \Rightarrow x+1 \bmod 3=0$.

Problem 13. Prove that for every $n \in \mathbb{N}_{\text {even }}, \operatorname{gcd}(n, n+2)=2$.
[Hint: Prove $\operatorname{gcd}(n, n+2) \geq 2$ and proceed towards contradiction].
Proof. Let $n \in \mathbb{N}_{\text {even }}$, then 2 divides n. Also, $n+2$ is even so 2 divides $n+2$. By the definition of $\operatorname{gcd}(n, n+2)$, it follows that $2 \leq \operatorname{gcd}(n, n+2)$. For the other direction, $2=(n+2)-n$ and by definition of $\operatorname{gcd}(n, n+2)$, it divides both $n, n+2$ and thus divides 2 . It follows that $\operatorname{gcd}(n, n+2) \leq 2$. We conclude that $\operatorname{gcd}(n, n+2)=2$.

Problem 14. Define for every set $A \subseteq \mathbb{R}$ and $x \in \mathbb{R}$:

$$
A+r:=\{a+r \mid a \in A\}
$$

1. Compute $\{1,7,-0.12\}+0.5$. No proof required. solution $\{1.5,2.5,0.38\}$
2. Let $r \in \mathbb{R}$ be any number. Compute $\mathbb{R}+r$, prove your answer.

Proof. Prove that $\mathbb{R}+r=\mathbb{R}$ by a double inclusion.
3. Prove the following claim:

$$
\forall r \in \mathbb{R} \cdot \mathbb{Z}+r=\mathbb{Z} \Leftrightarrow r \in \mathbb{Z}
$$

4. Prove or disprove: $\forall r \in \mathbb{R} \mathbb{N}+r=\mathbb{N} \Leftrightarrow r \in \mathbb{N}$.

Solution Disprove, for example $r=1 \in \mathbb{N}$ and but

$$
\mathbb{N}+1=\{n+1 \mid n \in \mathbb{N}\}=\mathbb{N}_{+} \neq \mathbb{N}
$$

