Homework 10

MATH 300
(due April 19)
April 12, 2024

Problem 1. Show that $P(\mathbb{N}) \times P(\mathbb{N}) \approx P(\mathbb{N})$.
[Hint: Use the interleaving function exercise from the previous HW.]
Solution. $P(\mathbb{N}) \times P(\mathbb{N}) \sim^{(*)+(* * *)} \mathbb{N}\{0,1\} \times^{\mathbb{N}}\{0,1\} \sim^{(* *)} \mathbb{N}\{0,1\} \sim^{(* * *)} P(\mathbb{N})$.
(*)- we saw in class that $A \sim A^{\prime}$ and $B \sim B^{\prime}$ then $A \times B \sim A^{\prime} \times B^{\prime}$.
(**) - the previous homework.
$(* * *)$ - we saw in class that ${ }^{\mathbb{N}}\{0,1\} \sim P(\mathbb{N})$.

Homework 10

MATH 300

Problem 2. Prove that $P(\mathbb{Z} \times \mathbb{Z}) \times P(\mathbb{Z}) \sim P(\mathbb{N})$.
Solution. $P(\mathbb{Z} \times \mathbb{Z}) \times P(\mathbb{Z}) \sim^{(*)} P(\mathbb{N}) \times P(\mathbb{Z}) \sim^{(* *)} P(\mathbb{N}) \times P(\mathbb{N}) \sim^{(* * *)} P(\mathbb{N})$.
$(*)-\mathbb{Z} \times \mathbb{Z} \sim \mathbb{N} \times \mathbb{N} \sim \mathbb{N}$ and if $A \sim A^{\prime}$ then $P(A) \sim P\left(A^{\prime}\right)$.
$(* *)-\mathbb{N} \sim \mathbb{Z}$ and if $A \sim A^{\prime}$ then $P(A) \sim P\left(A^{\prime}\right)$.
$(* * *)$ - the previous exersice.

Homework 10

MATH 300

Problem 3. Prove that if $A \sim A^{\prime}$ and $B \sim B^{\prime}$ are sets such that $A \cap B=$ $A^{\prime} \cap B^{\prime}=\emptyset$ then $A \cup B \sim A^{\prime} \cup B^{\prime}$.

Solution. Let $f: A \rightarrow A^{\prime}$ be a bijection and $g: B \rightarrow B^{\prime}$ be a bijection. Define $h: A \cup B \rightarrow A^{\prime} \cup B^{\prime}$ by

$$
h(x)= \begin{cases}f(x) & x \in A \\ g(x) & x \in B\end{cases}
$$

Note that h is well defined since $A \cap B=\emptyset$. To see that h is one-to-one let $x, y \in A \cup B$ be such that $h(x)=h(y)$. Let us split into cases:
(1) if $h(x) \in A^{\prime}$, then since $A^{\prime} \cap B^{\prime}=\emptyset$, we have that $x, y \in A$ and therefore $f(x)=h(x)=h(y)=f(y)$, and since f is one-to-one, $x=y$.
(2) if $h(x) \in B^{\prime}$, this is similar using he fact that g is one-to-one.

To see that h is onto, let $c \in A^{\prime} \cup B^{\prime}$. If $c \in A^{\prime}$, since f is onto, there is $a \in A$ such that $h(a)=f(a)=c$. Similarly, if $c \in B^{\prime}$ there is $a \in B$ such that $h(a)=g(a)=c$. in any case there is $x \in A \cup B$ such that $h(x)=c$ and therefore h is onto.

Homework 10

MATH 300
(due April 19)
April 12, 2024

Problem 4. Prove that for any function $f: A \rightarrow B,|f|=|A|$. [Remark: recall that a function is a set of ordered pairs.]

Solution. Define $F: A \rightarrow f$ by $F(a)=\langle a, f(a)\rangle$. Let us show that F is a bijection. Let a, a^{\prime} be such that $F(a)=F\left(a^{\prime}\right)$, then $\langle a, f(a)\rangle\left\langle a^{\prime}, f\left(a^{\prime}\right)\right\rangle$ and in particular $a=a^{\prime}$. to see that F is onto, any element in f is of the form $\langle a, f(a)\rangle$ for some a and therefore $F(a)=\langle a, f(a)\rangle$.

