(due April 26)

Problem 1. Prove that for any n, $\mathbb{R}^n \sim \mathbb{R}$. [Hint: by induction on $n \ge 1$, you can use the result from class that $\mathbb{R} \times \mathbb{R} \sim \mathbb{R}$.]

Solution. For n = 1, $\mathbb{R}^1 = \mathbb{R} \sim \mathbb{R}$. Suppose this was true for n and let us prove for n + 1.

 $\mathbb{R}^{n+1} \sim \mathbb{R}^n \times \mathbb{R} \sim^{(*)} \mathbb{R} \times \mathbb{R} \sim^{(**)} \mathbb{R}$

(*)- by the induction hypothesis

(*)- theorem in class.

Problem 2. Prove that for every set A, $A \times A$ is an equivalence relation.

Solution. Reflexive, let $a \in A$, then $\langle a, a \rangle \in A \times A$ by definition.

Symmetric, let $a, b \in A$ and suppose that $\langle a, b \rangle \in A \times A$, then $\langle b, a \rangle \in A \times A$ by definition.

Transitive, let $a, b, c \in A$ and assume that $\langle a, b \rangle, \langle b, c \rangle \in A \times A$, then since $a, c \in A$, by definition of product $\langle a, c \rangle \in A \times A$.

Problem 3. For each of the following relations check whether it is reflexive symmetric or transitive:

1. $\{\langle a, b \rangle \in \mathbb{N}^2 \mid a - b \equiv 0 \pmod{2}\}$

Solution This is an ER which is in fact *E*₂ from class.

2. $\{\langle X, Y \rangle \in P(\mathbb{R}) \times P(\mathbb{R}) \mid X \cap Y \neq \emptyset\}$

Solution. not reflexive $(\emptyset \cap \emptyset = \emptyset)$, symmetric (as $X \cap Y = Y \cap X$) and not transitive $(\{1,2\} \cap \{2,3\} \neq \emptyset$ and $\{2,3\} \cap \{3,4\} \neq \emptyset$ by $\{1,2\} \cap \{3,4\} = \emptyset$)

3. $\{\langle x, y \rangle \in (\mathbb{R} \setminus \{0\})^2 \mid xy > 0\}$

Solution. This relation is he same and sign(x) = sign(y) where sign(x) = +/- according to whether x > 0 and x < 0. from this it is trivial to prove that this is an ER.

4. (*optional) { $\langle f, g \rangle \in \mathbb{N}\mathbb{N} | \exists N \in \mathbb{N} \forall n \ge N, f(n) = g(n)$ }

Problem 4. Prove that if *R* is a reflexive relation on *A* if and only if $id_A \subseteq R$.

Solution. Suppose that *R* is reflexive, and let $\langle a, b \rangle \in Id_A$, then by definition, a = b and since *R* is reflexive $\langle a, a \rangle \in R$. In the other direction, suppose that $Id_A \subseteq R$. To see that *R* is reflexive, let $a \in A$, then $\langle a, a \rangle \in Id_A \subseteq R$ and therefore $\langle a, a \rangle \in R$.