Homework 11

MATH 300

Problem 1. Prove that for any $n, \mathbb{R}^{n} \sim \mathbb{R}$. [Hint: by induction on $n \geq 1$, you can use the result from class that $\mathbb{R} \times \mathbb{R} \sim \mathbb{R}$.]

Solution. For $n=1, \mathbb{R}^{1}=\mathbb{R} \sim \mathbb{R}$. Suppose this was true for n and let us prove for $n+1$.
$\mathbb{R}^{n+1} \sim \mathbb{R}^{n} \times \mathbb{R} \sim^{(*)} \mathbb{R} \times \mathbb{R} \sim^{(* *)} \mathbb{R}$
$(*)$ - by the induction hypothesis
(*)- theorem in class.

Homework 11

MATH 300

Problem 2. Prove that for every set $A, A \times A$ is an equivalence relation.
Solution. Reflexive, let $a \in A$, then $\langle a, a\rangle \in A \times A$ by definition.
Symmetric, let $a, b \in A$ and suppose that $\langle a, b\rangle \in A \times A$, then $\langle b, a\rangle \in$ $A \times A$ by definition.

Transitive, let $a, b, c \in A$ and assume that $\langle a, b\rangle,\langle b, c\rangle \in A \times A$, then since $a, c \in A$, by definition of product $\langle a, c\rangle \in A \times A$.

Homework 11

MATH 300

Problem 3. For each of the following relations check whether it is reflexive symmetric or transitive:

1. $\left\{\langle a, b\rangle \in \mathbb{N}^{2} \mid a-b \equiv 0(\bmod 2)\right\}$

Solution This is an ER which is in fact E_{2} from class.
2. $\{\langle X, Y\rangle \in P(\mathbb{R}) \times P(\mathbb{R}) \mid X \cap Y \neq \emptyset\}$

Solution. not reflexive ($\emptyset \cap \emptyset=\emptyset$), symmetric (as $X \cap Y=Y \cap X$) and not transitive $(\{1,2\} \cap\{2,3\} \neq \emptyset$ and $\{2,3\} \cap\{3,4\} \neq \emptyset$ by $\{1,2\} \cap\{3,4\}=\emptyset)$
3. $\left\{\langle x, y\rangle \in(\mathbb{R} \backslash\{0\})^{2} \mid x y>0\right\}$

Solution. This relation is he same and $\operatorname{sign}(x)=\operatorname{sign}(y)$ where $\operatorname{sign}(x)=+/-\operatorname{according}$ to whether $x>0$ and $x<0$. from this it is trivial to prove that this is an ER.
4. (* ${ }^{*}$ optional) $\{\langle f, g\rangle \in \mathbb{N} \mathbb{N} \mid \exists N \in \mathbb{N} \forall n \geq N, f(n)=g(n)\}$

Homework 11

MATH 300

Problem 4. Prove that if R is a reflexive relation on A if and only if $i d_{A} \subseteq R$.

Solution. Suppose that R is reflexive, and let $\langle a, b\rangle \in I d_{A}$, then by definition, $a=b$ and since R is reflexive $\langle a, a\rangle \in R$. In the other direction, suppose that $I d_{A} \subseteq R$. To see that R is reflexive, let $a \in A$, then $\langle a, a\rangle \in$ $I d_{A} \subseteq R$ and therefore $\langle a, a\rangle \in R$.

