Problem 1. Prove that for any n, $\mathbb{R}^n \sim \mathbb{R}$. [Hint: by induction on n, you can use the result from class that $\mathbb{R} \times \mathbb{R} \sim \mathbb{R}$.]

Problem 2. Prove that for every set A, $A \times A$ is an equivalence relation.

	Homework 11	
MATH 300	(due April 26)	April 19, 2024

Problem 3. For each of the following relations check whether it is reflexive symmetric or transitive:

- 1. $\{\langle a, b \rangle \in \mathbb{N}^2 \mid a b \equiv 0 \pmod{2}\}$
- 2. $\{\langle X, Y \rangle \in P(\mathbb{R}) \times P(\mathbb{R}) \mid X \cap Y \neq \emptyset\}$
- 3. $\{\langle x, y \rangle \in (\mathbb{R} \setminus \{0\})^2 \mid xy > 0\}$
- 4. (*optional) { $\langle f, g \rangle \in \mathbb{N}\mathbb{N} \mid \exists N \in \mathbb{N} \forall n \ge N, f(n) = g(n)$ }

Problem 4. Prove that if *R* is a reflexive relation on *A* if and only if $id_A \subseteq R$.