Homework 3

(due Feb 16)

Problem 1. Apply each of the following claims to two specific examples of your choice or find a counterexample. In your solution, you should provide the examples and what you have concluded from the statements:
a. Suppose that n is a integer, such that 6 divides $n(n+1)(n+2)$ then 24 divides $n(n+1)(n+2)(n+3)$.
b. Suppose that x, y, z are three integers such that $x^{2}+y^{2}=z^{2}$, then either 3 divides x or 3 divides y.

Homework 3

MATH 300
(due Feb 16) Feb 9, 2022

Problem 2. Prove the following equivalences (using a double implication): An integer is divisible by 4 if and only if its last two digits form a number divisible by 4.
[Hint: Decompose $n=100 l+d$ where k, l is some integers and $0 \leq d \leq$ 99. Then the number d is the last two digits.]

Homework 3

MATH 300
(due Feb 16)
Feb 9, 2022

Problem 3. Prove that if a and b are odd integers, then $a^{2}-b^{2}$ is a multiple of 8 .

Homework 3

MATH 300
(due Feb 16)
Feb 9, 2022

Problem 4. Let a, b, c be integers. Prove that if $a^{2}+b^{2}=c^{2}$, then $a b c$ is even.

