- **Problem 1.** (1) Prove that for every rational number $q \in \mathbb{Q}$, $\sqrt{2} \cdot q$ is irrational.
- (2) Prove or disprove: the sum or irrational numbers is irrational.
- (3) Prove that $\sqrt{5}$ is irrational.
- (4) (optional) Formulate a conjecture for the rationality and irrationality of real numbers of the form \sqrt{n} .

	Homework 4	
MATH 300	(due Feb 23)	Feb 16, 2022

Problem 2. Determine which of the following statements are true. Prove your answer:

- 1. $\{1, -1\} \in \{1, -1, \{1\}, \{-1\}\}.$
- 2. $7 \in \{n \in \mathbb{N} \mid |n^2 n 3| \le 5\}.$
- 3. $1 \in \{\mathbb{N}, \mathbb{Z}, \mathbb{N}_{even}\}.$
- 4. 16 $\in \{x \in \mathbb{N} \mid \forall y \in \mathbb{N}. y < 4 \Longrightarrow y^2 + 2y < x\}.$

	Homework 4	
MATH 300	(due Feb 23)	Feb 16, 2022

Problem 3. Compute the following sets using the list principle and global symbols \mathbb{N} , \mathbb{N}_{even} , \mathbb{N}_{odd} and \mathbb{Z} . No proof in needed.

- 1. $\{x \in \mathbb{N} \mid \exists k \in \mathbb{N}. k + x \in \mathbb{N}_{even}\}.$
- 2. $\{x \in \mathbb{N} \mid x^2 + 2x 3 = 0\}.$
- 3. $\{x \in \mathbb{Z} \mid \forall y \in \mathbb{N}. y < x \Rightarrow y^2 < x^2\}$

Problem 4. Find a formal expression for the following sets:

- 1. The set of all integers below 100 which are are divisible by 3.
- 2. The set of all integers which are the successor of a power of 2.
- 3. The set of all (exactly) two element sets of real numbers.