Homework 7

MATH 300
(due March 29)
March 22, 2021

Problem 1. 1. $f_{1}: \mathbb{R} \rightarrow \operatorname{codom}\left(f_{1}\right)$, defined by $f_{1}(x)=\left\{x^{2}\right\}$.
Compute $f_{1}(5)$.
2. $f_{2}: P(\mathbb{N}) \rightarrow \operatorname{codom}\left(f_{2}\right)$, defined by $f_{2}(x)=\left\{\begin{array}{ll}\min (x) & 4 \in x \\ x & \text { else }\end{array}\right.$.

Compute $f_{2}\left(\mathbb{N}_{\text {even }}\right)$ and $f_{2}\left(\left\{n \in \mathbb{N} \mid n^{2}-2 n+1 \leq 9\right\}\right)$.
3. $f_{3}: \mathbb{N} \times \mathbb{Z} \rightarrow \operatorname{codom}\left(f_{3}\right)$, defined by $f_{3}(\langle n, m\rangle)=\{x \in \mathbb{N} \mid n<x<m\}$.

Compute $f_{3}(\langle 1,5\rangle)$ and $f_{3}(\langle 1,-1\rangle)$.

Solution.

1. $f_{1}(5)=\left\{5^{2}\right\}=\{25\}$
2. $f_{2}\left(\mathbb{N}_{\text {even }}\right)=0$

$$
f_{2}\left(\left\{n \in \mathbb{N} \mid n^{2}-2 n+1 \leq 9\right\}\right)=0
$$

3. $f_{3}(\langle 1,5\rangle)=\{2,3,4\}$
$f_{3}(\langle 1,-1\rangle)=\emptyset$

Problem 2. For each of the functions from the previous exercise, find their domain and codomain.

Solution.

1. $\operatorname{dom}\left(f_{1}\right)=\mathbb{R}, \operatorname{codom}\left(f_{1}\right)=P(\mathbb{R})$
2. $\operatorname{dom}\left(f_{2}\right)=P(\mathbb{N}), \operatorname{codom}\left(f_{2}\right)=\mathbb{N} \cup P(\mathbb{N})$
3. $\operatorname{dom}\left(f_{3}\right)=\mathbb{N} \times \mathbb{Z}, \operatorname{codom}\left(f_{3}\right)=P(\mathbb{N})$

Homework 7

Problem 3. Define

$$
\begin{gathered}
f_{1}: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}, \quad f_{1}(n)=\langle n+1, n+2\rangle \\
f_{2}: \mathbb{N} \rightarrow \mathbb{N}, \quad f_{2}(n)=n^{2} \\
f_{3}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}, \quad f_{3}(\langle n, m\rangle)=n-m \\
f_{4}: \mathbb{N} \rightarrow \mathbb{N}, \quad f_{4}(n)=n+1
\end{gathered}
$$

Determine if the following compositions are defined and compute them:

1. $f_{1} \circ f_{2}$ and $f_{2} \circ f_{1}$.
2. $f_{2} \circ f_{2}$. and $f_{3} \circ f_{3}$
3. $f_{4} \circ f_{2}$ and $f_{2} \circ f_{4}$.
4. $f_{3} \circ f_{1} \circ f_{2}$ and $f_{4} \circ f_{3} \circ f_{2}$.

Solution.

1. $f_{1} \circ f_{2}: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N},\left(f_{1} \circ f_{2}\right)(n)=<n^{2}+1, n^{2}+2>$ $f_{2} \circ f_{1}$ is undefined.
2. $f_{2} \circ f_{2}: \mathbb{N} \rightarrow \mathbb{N},\left(f_{2} \circ f_{2}\right)(n)=n^{4}$
$f_{3} \circ f_{3}$ is undefined.
3. $f_{4} \circ f_{2}: \mathbb{N} \rightarrow \mathbb{N},\left(f_{4} \circ f_{2}\right)(n)=n^{2}+1$
$f_{2} \circ f_{4}: \mathbb{N} \rightarrow \mathbb{N},\left(f_{2} \circ f_{4}\right)(n)=(n+1)^{2}$
4. $f_{3} \circ f_{1} \circ f_{2}: \mathbb{N} \rightarrow \mathbb{Z},\left(f_{3} \circ f_{1} \circ f_{2}\right)(n)=-1$
$\left(f_{4} \circ f_{3} \circ f_{2}\right)(n)$ is undefined

Problem 4. For a function $f: A \rightarrow B$ and $C \subseteq A$ define the pointwise image of C by f as

$$
f^{\prime \prime} C=\{f(c) \mid c \in C\}
$$

(a) Prove that if $f: A \rightarrow B$ is a function and $C \subseteq A$, then

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right) \subseteq f^{\prime \prime}[A \backslash C]
$$

(b) Give an example of sets A, B and a function $f: A \rightarrow B$ and a subset $C \subseteq A$ such that

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right) \neq f^{\prime \prime}[A \backslash C]
$$

(c) Prove that if $f: A \rightarrow B$ is an injection and $C \subseteq A$, then

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right)=f^{\prime \prime}[A \backslash C]
$$

Solution.

(a) Let $b \in f^{\prime \prime} A \backslash f^{\prime \prime} C$. Since $b \in f^{\prime \prime} A$, there is $a \in A$ such that $b=f(a)$. Since $b \notin f^{\prime \prime} C, a \notin C$. It follows that $a \in A \backslash C$. We conclude that $b=f(a) \in f^{\prime \prime}[A \backslash C]$.
(b) Let $f:\{1,2\} \rightarrow\{1,2\}$ defined by $f(1)=f(2)=1$. Let $A=\{1,2\}$, and $C=\{1\}$. Then

$$
f^{\prime \prime}\{1,2\}=\{1\}, f^{\prime \prime}\{1\}=\{1\} \Rightarrow f^{\prime \prime}\{1,2\} \backslash f^{\prime \prime}\{1\}=\emptyset
$$

Also

$$
\{1,2\} \backslash\{1\}=\{2\} \Rightarrow f^{\prime \prime}[\{1,2\} \backslash\{1\}]=\{1\}
$$

Hence

$$
f^{\prime \prime}\{1,2\} \backslash f^{\prime \prime}\{1\}=\neq\{1\}=f^{\prime \prime}[\{1,2\} \backslash\{1\}] .
$$

Homework 7

MATH 300
(c) Suppose that f is injective and we would like to prove that

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right)=f^{\prime \prime}[A \backslash C] .
$$

By a double inclusion. In section (a) we proved \subseteq. For the other direction, let $x \in f^{\prime \prime}[A \backslash C]$. Then there is $a \in A \backslash C$ such that $f(a)=x$. By the definition of difference, we would like to prove that $x \in f^{\prime \prime} A$ and $x \notin f^{\prime \prime} C$. Since $a \in A$, it follows that $x=f(a) \in f^{\prime \prime} A$. Suppose towards a contradiction that there is $c \in C$ such that $f(c)=x$. Then $f(c)=f(a)$. Since f is injective, $c=a$. However $c \in C$ and $a \notin C$, contradiction. Hence $x \in f^{\prime \prime} C$.

