Homework 7

MATH 300
(due March 29)
March 22, 2021

Problem 1. 1. $f_{1}: \mathbb{R} \rightarrow \operatorname{codom}\left(f_{1}\right)$, defined by $f_{1}(x)=\left\{x^{2}\right\}$.
Compute $f_{1}(5)$.
2. $f_{2}: P(\mathbb{N}) \rightarrow \operatorname{codom}\left(f_{2}\right)$, defined by $f_{2}(x)=\left\{\begin{array}{ll}\min (x) & 4 \in x \\ x & \text { else }\end{array}\right.$. Compute $f_{2}\left(\mathbb{N}_{\text {even }}\right)$ and $f_{2}\left(\left\{n \in \mathbb{N} \mid n^{2}-2 n+1 \leq 9\right\}\right)$.
3. $f_{3}: \mathbb{N} \times \mathbb{Z} \rightarrow \operatorname{codom}\left(f_{3}\right)$, defined by $f_{3}(\langle n, m\rangle)=\{x \in \mathbb{N} \mid n<x<m\}$. Compute $f_{3}(\langle 1,5\rangle)$ and $f_{3}(\langle 1,-1\rangle)$.

Problem 2. For each of the functions from the previous exercise, find their domain and codomain.

Homework 7

MATH 300
(due March 29)
March 22, 2021

Problem 3. Define

$$
\begin{gathered}
f_{1}: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}, \quad f_{1}(n)=\langle n+1, n+2\rangle \\
f_{2}: \mathbb{N} \rightarrow \mathbb{N}, \quad f_{2}(n)=n^{2} \\
f_{3}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}, \quad f_{3}(\langle n, m\rangle)=n-m \\
f_{4}: \mathbb{N} \rightarrow \mathbb{N}, \quad f_{4}(n)=n+1
\end{gathered}
$$

Determine if the following compositions are defined and compute them:

1. $f_{1} \circ f_{2}$ and $f_{2} \circ f_{1}$.
2. $f_{2} \circ f_{2}$. and $f_{3} \circ f_{3}$
3. $f_{4} \circ f_{2}$ and $f_{2} \circ f_{4}$.
4. $f_{3} \circ f_{1} \circ f_{2}$ and $f_{4} \circ f_{3} \circ f_{2}$.

Homework 7

MATH 300

Problem 4. For a function $f: A \rightarrow B$ and $C \subseteq A$ define the pointwise image of Cby f as

$$
f^{\prime \prime} C=\{f(c) \mid c \in C\}
$$

(a) Prove that if $f: A \rightarrow B$ is a function and $C \subseteq A$, then

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right) \subseteq f^{\prime \prime}[A \backslash C] .
$$

(b) Give an example of sets A, B and a function $f: A \rightarrow B$ and a subset $C \subseteq A$ such that

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right) \neq f^{\prime \prime}[A \backslash C] .
$$

(c) Prove that if $f: A \rightarrow B$ is an injection and $C \subseteq A$, then
$\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right)=f^{\prime \prime}[A \backslash C]$.

