Homework 8

MATH 300

Problem 1. Prove that if $f: A \rightarrow B, g: B \rightarrow C$ are surjections then $g \circ f$ is a surjection.

Solution. Suppose that f, g are surjective WTP $g \circ f$ is subjective. Let $c \in C$, since g is subjective there is $b \in B$ such that $g(b)=c$ and since f is subjective there is $a \in A$ such that $f(a)=b$. Hence $c=g(b)=g(f(a))=$ $g \circ f(a)$.

Homework 8

MATH 300

Problem 2. Prove or disprove the following items:

1. If $f: A \rightarrow B$ is injective, then for every $X \subseteq A, f \upharpoonright X$ is injective.
2. If $f: A \rightarrow B$ is surjective, then for every $X \subseteq A, f \upharpoonright X$ is surjective.

Solution.

1. The statement is true. Proof: Let $f: A \rightarrow B$ be an injective function, and $X \subseteq A$. We want to prove that $f \upharpoonright X$ is injective. So, let $x_{1}, x_{2} \in X$ such that $(f \upharpoonright X)\left(x_{1}\right)=(f \upharpoonright X)\left(x_{2}\right)$ WTP $x_{1}=x_{2}$. As $\forall x \in X,(f \upharpoonright X)(x)=f(x)$, it follows that $f\left(x_{1}\right)=f\left(x_{2}\right)$. By our assumption, f is injective, so $f\left(x_{1}\right)=f\left(x_{2}\right)$, implies that $x_{1}=x_{2}$. Therefore, $(f \upharpoonright X)$ is injective.
2. The statement is false. Proof: Let $A=\{1,2\} B=\{1,2\} f=i d_{\{1,2\}}$ now let $X=\{1\}$, then $f \upharpoonright\{1\}$ is not onto B since 2 is not the image of 1.

Problem 3. Prove that if $f: A \rightarrow B$ is a function such that for some $X \subsetneq A$, $f \upharpoonright X: X \rightarrow B$ is onto B, then f is not injective.

Solution. Let $f: A \rightarrow B$ be a function and $X \subsetneq A$ such that $f \upharpoonright X$: $X \rightarrow B$ is surjective. We want to prove that f is not injective. Towards a contradiction, suppose f is injective. Because X is a proper subset of A, there exists some element $a_{0} \in A$ such that $a_{0} \notin X$. Let $b_{0}=f\left(a_{0}\right)$. As $f \upharpoonright X$ is surjective, then for all $b \in B$, there exists some $x \in X$ such that $x=(f \upharpoonright X)(b)$. So let $x_{0} \in X$ such that $b_{0}=(f \upharpoonright X)\left(x_{0}\right)$. Then $b_{0}=f\left(x_{0}\right)=f\left(a_{0}\right)$. Because f is injective, $x_{0}=a_{0}$, and thus $a_{0} \in X$, which is a contradiction. Therefore, f is not injective.

Homework 8

Problem 4. For each of the following functions, determine if it is injective/ surjective and prove your answer.

1. $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$, defined by $f_{1}(x)=5 x-x^{2}$.
2. $f_{2}: \mathbb{R} \rightarrow P(\mathbb{R})$, defined by $f_{2}(x)=\left\{x^{2}\right\}$.
3. $f_{3}: P(\mathbb{R}) \rightarrow P(\mathbb{N})$, defined by $f_{3}(x)=x \cap \mathbb{N}$.
4. $f_{4}: P(\mathbb{N}) \rightarrow \mathbb{N}$, defined by $f_{4}(x)=\left\{\begin{array}{ll}\min (x) & 4 \in x \\ 0 & \text { else }\end{array}\right.$.
5. $f_{5}: P(\mathbb{R}) \rightarrow P(\mathbb{N}) \times P(\mathbb{Z}) \times P(\mathbb{Q})$, defined by

$$
f_{5}(X)=\langle X \cap \mathbb{N}, X \cap \mathbb{Z}, X \cap \mathbb{Q}\rangle
$$

6. $f_{6}: \mathbb{N} \times \mathbb{Z} \rightarrow P(\mathbb{N})$, defined by $f_{6}(\langle n, m\rangle)=\{x \in \mathbb{N} \mid n<x<m\}$.

Solution

1. f_{1} is not injective nor surjective. Proof:
(a) $f_{1}(0)=0=f_{1}(5)$. Clearly $0 \neq 5$, so f_{1} is not injective.
(b) There exists $y \in \mathbb{R}$ such that $\forall x \in \mathbb{R}, f(x) \neq y$. In particular, let $y=8$. The equation $8=5 x-x^{2}$ has no real solution. So, $\forall x \in \mathbb{R}, f(x) \neq 8$. Therefore, f_{1} is not surjective.
2. f_{2} is not injective or surjective. Proof:
(a) $f_{2}(1)=\{1\}=f_{2}(-1)$. Clearly $1 \neq-1$, so f_{2} is not injective.
(b) Consider the set $\{1,2\} \subseteq P\left(\mathbb{R}\right.$. Note that for all $x,\left|f_{2}(x)\right|=1$, but $|\{1,2\}|=2$. So $\forall x \in \mathbb{R}, f x^{2} \neq\{1,2\}$, and thus f_{2} is not surjective.

Homework 8

MATH 300
3. f_{3} is surjective but not injective. Proof:
(a) $f_{3}(\{1.5\})=\emptyset=f_{3}(\{1.1\})$, but $\{1.5\} \neq\{1.1\}$. Therefore, f_{3} is not injective.
(b) Let $Y \in P(\mathbb{N})$, and $X=Y$. Then $X \subseteq P(\mathbb{R})$, and $f_{3}(X)=X \cap \mathbb{N}=$ X. Therefore, f_{3} is surjective.
4. f_{4} is not injective or surjective. Proof:
(a) $f_{4}(\{1\})=0=f_{4}(\{2\})$, but $\{1\} \neq\{2\}$. Therefore, f_{4} is not injective.
(b) Let y be a natural number greater than 4 , and let $X \subseteq \mathbb{N}$. Cases:
i. $4 \in X$. Then $\min (X) \leq 4$, and so $f_{4}(X)<y$.
ii. $4 \notin X$. Then $f_{4}(X)=0 \neq y$.

Therefore, f_{4} is not surjective.
5. f_{5} is not injective or surjective. Proof:
(a) $f_{5}(\{\pi\})=<\emptyset, \emptyset, \emptyset>=f_{5}(\{\sqrt{2}\})$, but $\{\pi\} \neq\{\sqrt{2}\}$. Therefore, f_{5} is not injective.
(b) Let $Y=<\{1\},\{-1\},\left\{\frac{1}{2}\right\}>$. Towards a contradiction, suppose f_{5} is surjective. Then there exists some $X \in P(\mathbb{R})$ such that $f_{5}(X)=$ Y. By the definition of f, for some $N \subseteq \mathbb{N}, X \cap \mathbb{N}=\{1\}$. Thus, $1 \in X$. However, for some $Z \subseteq \mathbb{Z}, X \cap \mathbb{Z}=\{-1\}$. Thus, $1 \notin \mathbb{Z}$, which is a contradiction. Therefore, for all $X \in P(\mathbb{R}), f_{5}(X) \neq Y$, so f_{5} is not surjective.
6. f_{6} is not injective or surjective. Proof:
(a) $f_{6}(<1,-1>)=\emptyset=f_{6}(<1,-2>)$, but $\langle 1,-1\rangle \neq<1,-2>$. Therefore, f_{6} is not injective.
(b) Let $Y=\{0\}$ and $X \in \mathbb{N} \times \mathbb{Z}$. Towards a contradiction, suppose $f_{6}(X)=\{0\}$. Then by the separation principle, $n<0<m$, where $n \in \mathbb{N}, m \in \mathbb{Z}$. Then n is a natural number <0, which is a contradiction. Thus, $\forall X \in \mathbb{N} \times \mathbb{Z}, f_{6}(X) \neq Y$. Therefore, f_{6} is not surjective.

Problem 5. In the following items, no proof required (just a formal definition of the functions):

1. Find an injective function $f: \mathbb{N} \rightarrow P(\mathbb{N})$.

Solution. $f(n)=\{n\}$
2. Find a surjective function $f: \mathbb{Z}^{2} \rightarrow \mathbb{Q}$.

Solution. $f\left(\left\langle z_{1}, z_{2}\right\rangle\right)=\left\{\begin{array}{ll}0 & z_{2}=0 \\ \frac{z_{1}}{z_{2}} & 0 . w\end{array}\right.$.
3. (*Optional) Find an injective function $f: \mathbb{R} \rightarrow P(\mathbb{Q})$ [Hint: Use the density of the rationals inside the reals].

Solution. $f(r)=\{q \in \mathbb{Q} \mid q<r\}$.
4. Find a surjective function $f: \mathbb{N} \rightarrow \mathbb{Z}$.

Solution. $f(n)=(-1)^{n}\left\lfloor\frac{n}{2}\right\rfloor$

