Homework 8		
MATH 300	(due April 5)	March 29, 2024

Problem 1. Prove that if $f : A \to B$, $g : B \to C$ are surjections then $g \circ f$ is a surjection.

Solution. Suppose that f, g are surjective WTP $g \circ f$ is subjective. Let $c \in C$, since g is subjective there is $b \in B$ such that g(b) = c and since f is subjective there is $a \in A$ such that f(a) = b. Hence $c = g(b) = g(f(a)) = g \circ f(a)$.

Problem 2. Prove or disprove the following items:

- 1. If $f : A \to B$ is injective, then for every $X \subseteq A$, $f \upharpoonright X$ is injective.
- 2. If $f : A \to B$ is surjective, then for every $X \subseteq A$, $f \upharpoonright X$ is surjective.

Solution.

MATH 300

- 1. The statement is true. Proof: Let $f : A \to B$ be an injective function, and $X \subseteq A$. We want to prove that $f \upharpoonright X$ is injective. So, let $x_1, x_2 \in X$ such that $(f \upharpoonright X)(x_1) = (f \upharpoonright X)(x_2)$ WTP $x_1 = x_2$. As $\forall x \in X, (f \upharpoonright X)(x) = f(x)$, it follows that $f(x_1) = f(x_2)$. By our assumption, f is injective, so $f(x_1) = f(x_2)$, implies that $x_1 = x_2$. Therefore, $(f \upharpoonright X)$ is injective.
- 2. The statement is false. Proof: Let $A = \{1,2\} B = \{1,2\} f = id_{\{1,2\}}$ now let $X = \{1\}$, then $f \upharpoonright \{1\}$ is not onto B since 2 is not the image of 1.

Problem 3. Prove that if $f : A \to B$ is a function such that for some $X \subsetneq A$, $f \upharpoonright X : X \to B$ is onto *B*, then *f* is not injective.

Solution. Let $f : A \to B$ be a function and $X \subsetneq A$ such that $f \upharpoonright X : X \to B$ is surjective. We want to prove that f is not injective. Towards a contradiction, suppose f is injective. Because X is a proper subset of A, there exists some element $a_0 \in A$ such that $a_0 \notin X$. Let $b_0 = f(a_0)$. As $f \upharpoonright X$ is surjective, then for all $b \in B$, there exists some $x \in X$ such that $x = (f \upharpoonright X)(b)$. So let $x_0 \in X$ such that $b_0 = (f \upharpoonright X)(x_0)$. Then $b_0 = f(x_0) = f(a_0)$. Because f is injective, $x_0 = a_0$, and thus $a_0 \in X$, which is a contradiction. Therefore, f is not injective.

Problem 4. For each of the following functions, determine if it is injective/ surjective and prove your answer.

- 1. $f_1 : \mathbb{R} \to \mathbb{R}$, defined by $f_1(x) = 5x x^2$.
- 2. $f_2 : \mathbb{R} \to P(\mathbb{R})$, defined by $f_2(x) = \{x^2\}$.
- 3. $f_3 : P(\mathbb{R}) \to P(\mathbb{N})$, defined by $f_3(x) = x \cap \mathbb{N}$.
- 4. $f_4: P(\mathbb{N}) \to \mathbb{N}$, defined by $f_4(x) = \begin{cases} \min(x) & 4 \in x \\ 0 & else \end{cases}$.
- 5. $f_5: P(\mathbb{R}) \to P(\mathbb{N}) \times P(\mathbb{Z}) \times P(\mathbb{Q})$, defined by

$$f_5(X) = \langle X \cap \mathbb{N}, X \cap \mathbb{Z}, X \cap \mathbb{Q} \rangle$$

6. $f_6 : \mathbb{N} \times \mathbb{Z} \to P(\mathbb{N})$, defined by $f_6(\langle n, m \rangle) = \{x \in \mathbb{N} \mid n < x < m\}$.

Solution

- 1. f_1 is not injective nor surjective. Proof:
 - (a) $f_1(0) = 0 = f_1(5)$. Clearly $0 \neq 5$, so f_1 is not injective.
 - (b) There exists $y \in \mathbb{R}$ such that $\forall x \in \mathbb{R}$, $f(x) \neq y$. In particular, let y = 8. The equation $8 = 5x x^2$ has no real solution. So, $\forall x \in \mathbb{R}$, $f(x) \neq 8$. Therefore, f_1 is not surjective.
- 2. f_2 is not injective or surjective. Proof:
 - (a) $f_2(1) = \{1\} = f_2(-1)$. Clearly $1 \neq -1$, so f_2 is not injective.
 - (b) Consider the set $\{1,2\} \subseteq P(\mathbb{R})$. Note that for all x, $|f_2(x)| = 1$, but $|\{1,2\}| = 2$. So $\forall x \in \mathbb{R}$, $fx^2 \neq \{1,2\}$, and thus f_2 is not surjective.

MATH 300

- 3. f_3 is surjective but not injective. Proof:
 - (a) f₃({1.5}) = Ø = f₃({1.1}), but {1.5} ≠ {1.1}. Therefore, f₃ is not injective.
 - (b) Let $Y \in P(\mathbb{N})$, and X = Y. Then $X \subseteq P(\mathbb{R})$, and $f_3(X) = X \cap \mathbb{N} = X$. Therefore, f_3 is surjective.
- 4. f_4 is not injective or surjective. Proof:
 - (a) $f_4(\{1\}) = 0 = f_4(\{2\})$, but $\{1\} \neq \{2\}$. Therefore, f_4 is not injective.
 - (b) Let *y* be a natural number greater than 4, and let $X \subseteq \mathbb{N}$. Cases:

i. $4 \in X$. Then min(X) ≤ 4 , and so $f_4(X) < y$.

ii. $4 \notin X$. Then $f_4(X) = 0 \neq y$.

Therefore, f_4 is not surjective.

- 5. f_5 is not injective or surjective. Proof:
 - (a) $f_5({\pi}) = \langle \emptyset, \emptyset, \emptyset \rangle = f_5({\sqrt{2}})$, but ${\pi} \neq {\sqrt{2}}$. Therefore, f_5 is not injective.
 - (b) Let Y =< {1}, {-1}, {1/2} >. Towards a contradiction, suppose f₅ is surjective. Then there exists some X ∈ P(ℝ) such that f₅(X) = Y. By the definition of f, for some N ⊆ ℕ, X ∩ ℕ = {1}. Thus, 1 ∈ X. However, for some Z ⊆ ℤ, X ∩ ℤ = {-1}. Thus, 1 ∉ ℤ, which is a contradiction. Therefore, for all X ∈ P(ℝ), f₅(X) ≠ Y, so f₅ is not surjective.
- 6. f_6 is not injective or surjective. Proof:

- (a) $f_6(<1,-1>) = \emptyset = f_6(<1,-2>)$, but $<1,-1>\neq<1,-2>$. Therefore, f_6 is not injective.
- (b) Let $Y = \{0\}$ and $X \in \mathbb{N} \times \mathbb{Z}$. Towards a contradiction, suppose $f_6(X) = \{0\}$. Then by the separation principle, n < 0 < m, where $n \in \mathbb{N}, m \in \mathbb{Z}$. Then *n* is a natural number < 0, which is a contradiction. Thus, $\forall X \in \mathbb{N} \times \mathbb{Z}, f_6(X) \neq Y$. Therefore, f_6 is not surjective.

Problem 5. In the following items, no proof required (just a formal definition of the functions):

1. Find an injective function $f : \mathbb{N} \to P(\mathbb{N})$.

Solution. $f(n) = \{n\}$

- 2. Find a surjective function $f : \mathbb{Z}^2 \to \mathbb{Q}$. Solution. $f(\langle z_1, z_2 \rangle) = \begin{cases} 0 & z_2 = 0 \\ \frac{z_1}{z_2} & o.w \end{cases}$.
- 3. (*Optional) Find an injective function $f : \mathbb{R} \to P(\mathbb{Q})$ [Hint: Use the density of the rationals inside the reals].

Solution. $f(r) = \{q \in \mathbb{Q} \mid q < r\}.$

4. Find a surjective function $f : \mathbb{N} \to \mathbb{Z}$.

Solution. $f(n) = (-1)^n \lfloor \frac{n}{2} \rfloor$