Problem 1. Prove that if $A \sim B$ and $B \sim C$ then $A \sim C$.

Solution. Let $f : A \to B$ and $g : B \to C$ be bijections witnessing that $A \sim B$ and $B \sim C$. WTP there is a bijection $h : A \to C$. Define $h = g \circ f$, we have proved that the composition of bijections is a bijection,

Problem 2. Prove the following items:

1. $\mathbb{N} \setminus \{2023, 2024\} \sim \mathbb{N}_{even}$.

Solution. Define $f : \mathbb{N}_{even} \to \mathbb{N} \setminus \{2023, 2024\}$ by $f(n) = \begin{cases} \frac{n}{2} & n < 4046\\ \frac{n+4}{2} & n \ge 4046 \end{cases}$

2. $P(\mathbb{N}) \setminus \{\emptyset\} \sim P(\mathbb{N})$.

Solution Define $f : P(\mathbb{N}) \setminus \{\emptyset\} \to P(\mathbb{N})$, by $f(X) = \begin{cases} \emptyset & X = \{0\} \\ \{\min(X) - 1\} & |X| = 1 \land \min(X) > 0 \\ X & otherwise \end{cases}$

3. $(0,1) \sim (0,\infty)$.

Solution. Define $f : (0, 1) \rightarrow (0, \infty)$ by $f(x) = \frac{1}{x} - 1$

4. $\mathbb{Z} \times [0,1) \sim \mathbb{R}$.

Solution. Define $f : \mathbb{Z} \times [0, 1) \to \mathbb{R}$ by f(z, r) = z + r.

In all the above solutions you need to prove that the functions defined are bijections.

	Homework 9	
MATH 300	(due April 12)	April 5, 2024

Problem 3. Prove that for every $\alpha < \beta$ real numbers $(\alpha, \beta) \approx (0, 1)$. [Hint: First stretch/shrink (0, 1) to have length $\beta - \alpha$, then shift it by +c as we did in class.]

Solution. Define $f : (0,1) \to (\alpha,\beta)$ by $f(x) = (\beta - \alpha)x + \alpha$. Then f is abijection and the inverse function is $g : (\alpha,\beta) \to (0,1)$ defined by $g(y) = \frac{y-\alpha}{\beta-\alpha}$.

Problem 4. Show that \mathbb{N} {0, 1} × \mathbb{N} {0, 1} ≈ \mathbb{N} {0, 1}.

[Hint: Use the interleaving function $F : (\mathbb{N}\{0,1\})^2 \to \mathbb{N}\{0,1\}$ defined by

$$F(\langle f, g \rangle)(n) = \begin{cases} f(\frac{n}{2}) & n \in \mathbb{N}_{even} \\ g(\frac{n-1}{2}) & n \in \mathbb{N}_{odd} \end{cases}$$

as the witnessing bijection.]

solution. Let us prove that it is one-to-one, Suppose that $F(\langle f, g \rangle) = F(\langle f', g' \rangle)$, this is a function equality and therefore for every n, $F(\langle f, g \rangle)(n) = F(\langle f', g' \rangle)(n)$. We want to prove that f = f' and g = g'. Let $n \in \mathbb{N}$,

$$f(n) = F(\langle f, g \rangle)(2n) = F(\langle f', g' \rangle)(2n) = f'(n)$$

and therefore f = f', similarly, let $n \in \mathbb{N}$ then

$$g(n) = F(\langle f, g \rangle)(2n+1) = F(\langle f', g' \rangle)(2n+1) = g(n)$$

Let us prove that *F* is onto. Let $h : \mathbb{N} \to \{0, 1\}$ be any function, we need to find $\langle f, g \rangle$ such that $F(\langle f, g \rangle) = h$. Define f(n) = h(2n) and g(n) = h(2n + 1), then it is not hard to show that $F(\langle f, g \rangle)(n) = h(n)$ for every *n* and therefore $F(\langle f, g \rangle) = h$.