Homework 9

MATH 300

Problem 1. Prove that if $A \sim B$ and $B \sim C$ then $A \sim C$.

Solution. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections witnessing that $A \sim B$ and $B \sim C$. WTP there is a bijection $h: A \rightarrow C$. Define $h=g \circ f$, we have proved that the composition of bijections is a bijection,

Homework 9

MATH 300

Problem 2. Prove the following items:

1. $\mathbb{N} \backslash\{2023,2024\} \sim \mathbb{N}_{\text {even }}$.

Solution. Define $f: \mathbb{N}_{\text {even }} \rightarrow \mathbb{N} \backslash\{2023,2024\}$ by $f(n)= \begin{cases}\frac{n}{2} & n<4046 \\ \frac{n+4}{2} & n \geq 4046\end{cases}$
2. $P(\mathbb{N}) \backslash\{\emptyset\} \sim P(\mathbb{N})$.

Solution Define $f: P(\mathbb{N}) \backslash\{\emptyset\} \rightarrow P(\mathbb{N})$, by $f(X)= \begin{cases}\emptyset & X=\{0\} \\ \{\min (X)-1\} & |X|=1 \wedge \min (X)>0 \\ X & \text { otherwise }\end{cases}$
3. $(0,1) \sim(0, \infty)$.

Solution. Define $f:(0,1) \rightarrow(0, \infty)$ by $f(x)=\frac{1}{x}-1$
4. $\mathbb{Z} \times[0,1) \sim \mathbb{R}$.

Solution. Define $f: \mathbb{Z} \times[0,1) \rightarrow \mathbb{R}$ by $f(z, r)=z+r$.

In all the above solutions you need to prove that the functions defined are bijections.

Homework 9

MATH 300

Problem 3. Prove that for every $\alpha<\beta$ real numbers $(\alpha, \beta) \approx(0,1)$. [Hint: First stretch/shrink $(0,1)$ to have length $\beta-\alpha$, then shift it by $+c$ as we did in class.]

Solution. Define $f:(0,1) \rightarrow(\alpha, \beta)$ by $f(x)=(\beta-\alpha) x+\alpha$. Then f is abijection and the inverse function is $g:(\alpha, \beta) \rightarrow(0,1)$ defined by $g(y)=\frac{y-\alpha}{\beta-\alpha}$.

Problem 4. Show that ${ }^{\mathbb{N}}\{0,1\} \times{ }^{\mathbb{N}}\{0,1\} \approx \mathbb{N}\{0,1\}$.
[Hint: Use the interleaving function $F:\left({ }^{\mathbb{N}}\{0,1\}\right)^{2} \rightarrow{ }^{\mathbb{N}}\{0,1\}$ defined by

$$
F(\langle f, g\rangle)(n)= \begin{cases}f\left(\frac{n}{2}\right) & n \in \mathbb{N}_{\text {even }} \\ g\left(\frac{n-1}{2}\right) & n \in \mathbb{N}_{\text {odd }}\end{cases}
$$

as the witnessing bijection.]
solution. Let us prove that it is one-to-one, Suppose that $F(\langle f, g\rangle)=$ $F\left(\left\langle f^{\prime}, g^{\prime}\right\rangle\right)$, this is a function equality and therefore for every $n, F(\langle f, g\rangle)(n)=$ $F\left(\left\langle f^{\prime}, g^{\prime}\right\rangle\right)(n)$. We want to prove that $f=f^{\prime}$ and $g=g^{\prime}$. Let $n \in \mathbb{N}$,

$$
f(n)=F(\langle f, g\rangle)(2 n)=F\left(\left\langle f^{\prime}, g^{\prime}\right\rangle\right)(2 n)=f^{\prime}(n)
$$

and therefore $f=f^{\prime}$, similarily, let $n \in \mathbb{N}$ then

$$
g(n)=F(\langle f, g\rangle)(2 n+1)=F\left(\left\langle f^{\prime}, g^{\prime}\right\rangle\right)(2 n+1)=g(n)
$$

Let us prove that F is onto. Let $h: \mathbb{N} \rightarrow\{0,1\}$ be any function, we need to find $\langle f, g\rangle$ such that $F(\langle f, g\rangle)=h$. Define $f(n)=h(2 n)$ and $g(n)=h(2 n+1)$, then it is not hard to show that $F(\langle f, g\rangle)(n)=h(n)$ for every n and therefore $F(\langle f, g\rangle)=h$.

