Mathematical Reasoning 2nd Midterm Perparation-Solutions

March 22, 2024

Instruction

The midterm consists of 3 problems, each worth 34 points (The maximal grade is 100). For this you will have 1 hour during class. The solutions to the problems should be written in the designated areas.

Examples for problems

Problem 1. Prove that $(A \backslash B) \backslash C=(A \backslash C) \backslash(B \backslash C)$.
Proof. We need to prove a set equality. We will prove that by a double inclusion:

- $(A \backslash B) \backslash C \subseteq(A \backslash C) \backslash(B \backslash C)$: Let $a \in(A \backslash B) \backslash C$, we want to prove that $a \in(A \backslash C) \backslash(B \backslash C)$. By definition of difference we know that $a \in A \backslash B$ and $a \notin C$ and therefore $a \in A$ and $a \notin B$. Since $a \in A$ and $a \notin C$, it follows that $a \in A \backslash C$ and since $a \notin B$ it follows that $a \notin B \backslash C$. Thus $a \in(A \backslash C) \backslash(B \backslash C)$.
- $(A \backslash C) \backslash(B \backslash C) \subseteq(A \backslash B) \backslash C:$ Let $a \in(A \backslash C) \backslash(B \backslash C)$ we want to prove that $a \in(A \backslash B) \backslash C$. By definition $a \in A \backslash C$ and $a \notin B \backslash C$. By definition, $a \in A$ and $a \notin C$. Also, since $a \notin B \backslash C$, then $a \notin B$ or $a \in C$. Since $a \notin C$, it follows that $a \notin B$. Since $a \in A$ and $a \notin B, a \in A \backslash B$. Since $a \notin C$, it follows that $a \in(A \backslash B) \backslash C$.

Problem 2. Prove by induction that for every $n \in \mathbb{N}_{+}, 1+3+\ldots+(2 n-1)=n^{2}$.
Proof. - Base: For $n=1$, we want to prove that $1=1^{2}$ which is clear.

- Induction hypothesis: Suppose that

$$
1+3+5+\ldots+(2 n-1)=n^{2}
$$

for some general n.

- Induction step: We want to prove that

$$
1+3+5 \ldots+(2 n-1)+(2(n+1)-1)=(n+1)^{2}
$$

Indeed, by the induction hypothesis

$$
[1+3+. .+(2 n-1)]+(2 n+1)=\left[n^{2}\right]+(2 n+1)=(n+1)^{2}
$$

Problem 3. Prove that for every integer $n>0, n, n+1$ are coprime.
Proof. Let $n>0$ be any integer. We want to prove that $n, n+1$ are coprime. Note that

$$
1 \cdot(n+1)+(-1) \cdot n=n+1-n=1
$$

Thus 1 is a linear combination of $n+1$ and n. By the Beźout Identity, this implies that $n, n+1$ are coprime.

Problem 4. Prove that for all $n \in \mathbb{N}, 9^{n}-5^{n}$ is divisible by 4 .
Proof. By induction on n,

- Base: For $n=0$ we have that $9^{0}-5^{0}=1-1=0$ which is divisible by 4 (since $0=4 \cdot 0$).
- Induction hypothesis: Suppose that for some general $n, 9^{n}-5^{n}$ is divisible by 4.
- Induction step: We want to prove that $9^{n+1}-5^{n+1}$ is divisible by 4 . Indeed,
$9^{n+1}-5^{n+1}=9 \cdot 9^{n}-5 \cdot 5^{n}=9 \cdot 9^{n}-9 \cdot 5^{n}+4 \cdot 5^{n}=9\left(9^{n}-5^{n}\right)+4 \cdot 5^{n}$
By the induction hypothesis $9^{n}-5^{n}$ is divisible by 4 and therefore the term $9\left(9^{n}-5^{n}\right)$ divisible by 4 . Clearly, the $4 \cdot 5^{n}$ is divisible by 4 and therefore $9^{n+1}-5^{n+1}$ is divisible by 4 .

Problem 5. Express the following sets using the list principle. No proof required.

1. $(-5,5) \cap \mathbb{Z}=\{-4,-3,-2,-1,0,1,2,3,4\}$.
2. $\{\emptyset, 1\} \times\{n \in \mathbb{N}| | P(\{0, \ldots, n\}) \mid<4\}=\{\emptyset, 1\} \times\{0\}=\{\langle\emptyset, 0\rangle,\langle 1,0\rangle\}$.

Explanation: Note that $\left\{n \in \mathbb{N}\left||P(\{0, \ldots, n\})|<4=\left\{n \in \mathbb{N} \mid 2^{n+1}<\right.\right.\right.$ $4\}=\{0\}$
3. $\left\{\langle x, y\rangle \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} \cap\{\langle x, x\rangle \mid x \in \mathbb{R}\}=\left\{\left\langle-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right\rangle,\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle\right\}$. Explanation: a pair in the intersection is a pair of the form $\langle x, x\rangle$ such that $x^{2}+x^{2}=1$, namely $2 x^{2}=1$ and therefore $x^{2}=\frac{1}{2}$. It follows that there exactly two such $x^{\prime} \mathrm{s} x=\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}$. Note that this is the intersection of the unit circle or radius 1 around the origin with the line $y=x$.
Problem 6. Compute the following

1. Compute A_{3}, where A_{n} is defined recursively by $A_{0}=\emptyset$ and $A_{n+1}=$ $A_{n} \cup\left\{A_{n}\right\}$.
Solution: $A_{0}=\emptyset$
$A_{1}=A_{0} \cup\left\{A_{0}\right\}=\emptyset \cup\{\emptyset\}=\{\emptyset\}$
$A_{2}=A_{1} \cup\left\{A_{1}\right\}=\{\emptyset\} \cup\{\{\emptyset\}\}=\{\emptyset,\{\emptyset\}\}$
$A_{3}=A_{2} \cup\left\{A_{2}\right\}=\{\emptyset,\{\emptyset\}\} \cup\{\{\emptyset,\{\emptyset\}\}\}=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$
2. a_{4} where a_{n} is defined recursively by $a_{0}=0$ and $a_{n+1}=2^{a_{n}}$

Solution: $a_{0}=0$
$a_{1}=2^{a_{0}}=2^{2}=1$
$a_{2}=2^{a_{1}}=2^{1}=2$
$a_{3}=2^{a_{2}}=2^{2}=4$
$a_{4}=2^{a_{3}}=2^{4}=16$

