Homework 2-Sols

MATH 300

Problem 1. Formalize each of the following statements using the predicate calculus.
(a) Every real solution of $x^{2}-5 x+6=0$ is positive.

Solution. $\forall x \in \mathbb{R}\left(x^{2}-5 x+6=0 \Rightarrow x>0\right)$
(b) Every prime number is greater than 1.

Solution. $\forall p \in \mathbb{N}((\forall n \in \mathbb{N}(n \mid p \Rightarrow n=1 \vee n=p)) \Rightarrow p>1)$

Homework 2-Sols

MATH 300

Problem 2. For each of the following statements, write the negation of the sentences without the negation symbol " \neg ", and prove the negation:

1. $\exists \epsilon((\epsilon>0) \wedge(\forall x(x>0 \Rightarrow x>\epsilon)))$. Solution.

$$
\exists \epsilon((\epsilon>0) \wedge(\forall x(x>0 \Rightarrow x>\epsilon))) \equiv \forall \epsilon((\epsilon \leq 0) \vee(\exists x((x>0) \wedge(x \leq \epsilon)))
$$

2. $\forall x((x>5) \Leftrightarrow(\forall y(y>-100)))$.
(Hint: Recall that $A \Leftrightarrow B \equiv(A \Rightarrow B) \wedge(B \Rightarrow A))$
Solution.

$$
\begin{gathered}
\forall x((x>5) \Leftrightarrow(\forall y(y>-100)) \equiv \\
\equiv \exists x(((x>5) \wedge(\exists y(y \leq-100))) \vee((x \leq 5) \wedge(\forall y(y>-100)))))
\end{gathered}
$$

Homework 2-Sols

MATH 300

Problem 3. Prove the following statement:
If both a and b are divisible by n, then $a-b$ is divisible by n.
Solution. Suppose that a and b are divisible by n. WTP $a-b$ is divisible by n. By assumption, there are integers k, l such that $a=k n$ and $b=\ln$. Define $t=k-l$, then $n t=n(k-l)=n k-n l=a-b$. Hence $a-b$ is divisible by n. Therefore if n divides a and b then n divides $a-b$.

Homework 2-Sols

MATH 300

Problem 4. Prove the following implication:
If n is even then $n+2$ is even.

Solution. Suppose that n is even. WTP $n+2$ is even. By assumption $2 \mid n$ and therefore there is k such that $n=2 k$. Define $t=k+1$, it follows that $2 t=2(k+1)=2 k+2=n+2$. Hence n is even. Therefore if n is even then $n+2$ is even.

