Homework 3-Sols

MATH 300

Problem 1. Apply each of the following claims to two specific examples of your choice or find a counterexample. In your solution, you should provide the examples and what you have concluded from the statements:
a. Suppose that n is a integer, such that 6 divides $n(n+1)(n+2)$ then 24 divides $n(n+1)(n+2)(n+3)$.
b. Suppose that x, y, z are three integers such that $x^{2}+y^{2}=z^{2}$, then either 3 divides x or 3 divides y.

Solution. [a.] for example for $n=1,1 \cdot 2 \cdot 3=6$ is divisible by 6 and therefore $1 \cdot 2 \cdot 3 \cdot 4$ is divisible by 24 . also $2 \cdot 3 \cdot 4=24$ is divisivle by 6 and therefore $2 \cdot 3 \cdot 4 \cdot 5$ is divisible by 24 ,
[b.] Counter example $5^{2}+12^{2}=13^{2}$ but 5,12 are not divisible by 3 .

Homework 3-Sols

MATH 300

Problem 2. Prove the following equivalences (using a double implication):
An integer is divisible by 4 if and only if its last two digits form a number divisible by 4 .
[Hint: Decompose $n=100 l+d$ where k, l is some integers and $0 \leq d \leq$ 99. Then the number d is the last two digits.]

Solution Let $n=100 k+d$ where $0 \leq d \leq 99$. Let us prove this equivalence using a double implication
\rightarrow Suppose that n is divisible by 4. WTP d is divisible by 4 . indeed, $d=n-100 k$, and since both n and $100 k$ are divisible by $4, n$ is divisible by 4 , by a theorem we saw in class that the difference of two numbers divisible by m is divisible by m.
\leftarrow Suppose that d is divisible by 4 then $n=100 k+d$ is a sum of two numbers divisible by 4 , hence divisible by 4 .

Homework 3-Sols

MATH 300

Problem 3. Prove that if a and b are odd integers, then $a^{2}-b^{2}$ is a multiple of 8 .

Solution Suppose that a, b are odd. WTP that $a^{2}-b^{2}$ is divisible by 8 . By assumption, there are k, l integers such that $a=2 k+1$ and $b=2 l+1$. It follows that

$$
a^{2}-b^{2}=\left(4 k^{2}+4 k+1\right)-\left(4 l^{2}+4 l+1\right)=4\left(k^{2}+k-\left(l^{2}+l\right)\right)
$$

In class we proved that for every $n, n^{2}+n$ is even and therefore $k^{2}+k-\left(l^{2}+l\right)$ is the difference if two even number hence even. Hence there is an integer r such that $k^{2}+k-\left(l^{2}+l\right)=2 r$ and therefore

$$
a^{2}-b^{2}=4\left(k^{2}+k-\left(l^{2}+l\right)\right)=8 r
$$

Therefore $a^{2}-b^{2}$ is divisible by 8 .

Homework 3-Sols

MATH 300 (due Feb 16)

Feb 9, 2022

Problem 4. Let a, b, c be integers. Prove that if $a^{2}+b^{2}=c^{2}$, then $a b c$ is even.

Solution. Let us prove the contrapositive. WTP $a^{2}+b^{2}=c^{2}$ Suppose that $a b c$ is odd. Then a, b, c must all be odd. But then a^{2}, b^{2}, c^{2}. Now $a^{2}+b^{2}$ is even as the sum of two odds. We conclude that $a^{2}+b^{2} \neq c^{2}$, since a number cannot be both even and odd.

