Homework 4-Sols

MATH 300 (due Feb 23)

Problem 1. (1) Prove that for every rational number $q \in \mathbb{Q} q \neq 0, \sqrt{2} \cdot q$ is irrational.

Soltuion. Suppose towards contradiction that $\sqrt{2} q=p \in \mathbb{Q}$. Then $\sqrt{2}=\frac{p}{q}$. The ration of two rationals is rationals and therefore $\sqrt{2} \in \mathbb{Q}$, contradicting the theorem we saw in class.
(2) Prove or disprove: the sum or irrational numbers is irrational.
solution. Counterexample, $\sqrt{2}+(1-\sqrt{2})=1$.
(3) Prove that $\sqrt{5}$ is irrational.

Soltuion. Like in WS4.
(4) (optional) Formulate a conjecture for the rationality and irrationality of real numbers of the form \sqrt{n}.

Solution For any natural number n, either \sqrt{n} is an integer or irrational.

Homework 4-Sols

MATH 300

Problem 2. Determine which of the following statements are true. Prove your answer:

1. $\{1,-1\} \in\{1,-1,\{1\},\{-1\}\}$.

Solution. Not true. The element $\{1,-1\}$ is not any of the element $1,-1,\{1\},\{-1\}$.
2. $7 \in\left\{n \in \mathbb{N}\left|\left|n^{2}-n-3\right| \leq 5\right\}\right.$.

Solution. Not true. $\left|7^{2}-7-3\right|=39>5$ and by the separation principle, $7 \notin\left\{n \in \mathbb{N}\left|\left|n^{2}-n-3\right| \leq 5\right\}\right.$.
3. $1 \in\left\{\mathbb{N}, \mathbb{Z}, \mathbb{N}_{\text {even }}\right\}$.

Solution. Not true, proof like 1.
4. $16 \in\left\{x \in \mathbb{N} \mid \forall y \in \mathbb{N} . y<4 \Rightarrow y^{2}+2 y<x\right\}$.

Solution. True. By the separation principle, we want to prove that $16 \in \mathbb{N}$ and $\forall y \in \mathbb{N} . y<4 \Rightarrow y^{2}+2 y<16$. Let $y \in \mathbb{N}$ and suppose that $y<4$, then either $y=0,1,2,3$. Let us prove the universal statement one-by-one.
(1) $y=0,0^{2}+2 \cdot 0=0<16$.
(2) $y=1,1^{2}+2=3<16$.
(3) $y=2,2^{2}+4=8<16$.
(4) $y=3,3^{2}+6=15<16$.

Therefore $16 \in\left\{x \in \mathbb{N} \mid \forall y \in \mathbb{N} . y<4 \Rightarrow y^{2}+2 y<x\right\}$.

Homework 4-Sols

MATH 300 (due Feb 23)

Feb 16, 2022

Problem 3. Compute the following sets using the list principle and global symbols $\mathbb{N}, \mathbb{N}_{\text {even }}, \mathbb{N}_{\text {odd }}$ and \mathbb{Z}. No proof in needed.

1. $\left\{x \in \mathbb{N} \mid \exists k \in \mathbb{N} . k+x \in \mathbb{N}_{\text {even }}\right\}$.

Solution. $\left\{x \in \mathbb{N} \mid \exists k \in \mathbb{N} . k+x \in \mathbb{N}_{\text {even }}\right\}=\mathbb{N}$.
2. $\left\{x \in \mathbb{N} \mid x^{2}+2 x-3=0\right\}$.

Solution. $\left\{x \in \mathbb{N} \mid x^{2}+2 x-3=0\right\}=\{1\}$.
3. $\left\{x \in \mathbb{Z} \mid \forall y \in \mathbb{N} . y<x \Rightarrow y^{2}<x^{2}\right\}$

Solution. $\left\{x \in \mathbb{Z} \mid \forall y \in \mathbb{N} . y<x \Rightarrow y^{2}<x^{2}\right\}=\mathbb{Z}$.

Homework 4-Sols

MATH 300 (due Feb 23)

Problem 4. Find a formal expression for the following sets:

1. The set of all integers below 100 which are are divisible by 3 .

Solution. $\{x \in \mathbb{Z} \mid \exists k \in \mathbb{Z}(x=3 k)\}$.
2. The set of all integers which are the successor of a power of 2 .

Solution. $\left\{2^{n}+1 \mid n \in \mathbb{N}\right\}$.
3. The set of all (exactly) two element sets of real numbers.

Solution. $\{\{a, b\} \mid a, b \in \mathbb{R}, a \neq b\}$.

