Homework 4-Sols

MATH 300 (due Feb 23) Feb 16, 2022

Problem 1. (1) Prove that for every rational number $q \in \mathbb{Q}$ $q \neq 0$, $\sqrt{2} \cdot q$ is irrational.

Soltuion. Suppose towards contradiction that $\sqrt{2}q = p \in \mathbb{Q}$. Then $\sqrt{2} = \frac{p}{q}$. The ration of two rationals is rationals and therefore $\sqrt{2} \in \mathbb{Q}$, contradicting the theorem we saw in class.

- (2) Prove or disprove: the sum or irrational numbers is irrational. **solution.** Counterexample, $\sqrt{2} + (1 \sqrt{2}) = 1$.
- (3) Prove that $\sqrt{5}$ is irrational.

Soltuion. Like in WS4.

(4) (optional) Formulate a conjecture for the rationality and irrationality of real numbers of the form \sqrt{n} .

Solution For any natural number n, either \sqrt{n} is an integer or irrational.

MATH 300

(due Feb 23)

Feb 16, 2022

Problem 2. Determine which of the following statements are true. Prove your answer:

1. $\{1, -1\} \in \{1, -1, \{1\}, \{-1\}\}.$

Solution. Not true. The element $\{1, -1\}$ is not any of the element $1, -1, \{1\}, \{-1\}$.

2. $7 \in \{n \in \mathbb{N} \mid |n^2 - n - 3| \le 5\}.$

Solution. Not true. $|7^2 - 7 - 3| = 39 > 5$ and by the separation principle, $7 \notin \{n \in \mathbb{N} \mid |n^2 - n - 3| \le 5\}$.

3. $1 \in \{\mathbb{N}, \mathbb{Z}, \mathbb{N}_{even}\}$.

Solution. Not true, proof like 1.

 $4. \ 16 \in \{x \in \mathbb{N} \mid \forall y \in \mathbb{N}. y < 4 \Rightarrow y^2 + 2y < x\}.$

Solution. True. By the separation principle, we want to prove that $16 \in \mathbb{N}$ and $\forall y \in \mathbb{N}. y < 4 \Rightarrow y^2 + 2y < 16$. Let $y \in \mathbb{N}$ and suppose that y < 4, then either y = 0, 1, 2, 3. Let us prove the universal statement one-by-one.

(1)
$$y = 0$$
, $0^2 + 2 \cdot 0 = 0 < 16$.

(2)
$$y = 1$$
, $1^2 + 2 = 3 < 16$.

(3)
$$y = 2, 2^2 + 4 = 8 < 16$$
.

(4)
$$y = 3$$
, $3^2 + 6 = 15 < 16$.

Therefore $16 \in \{x \in \mathbb{N} \mid \forall y \in \mathbb{N}. y < 4 \Rightarrow y^2 + 2y < x\}.$

Homework 4-Sols

MATH 300 (due Feb 23) Feb 16, 2022

Problem 3. Compute the following sets using the list principle and global symbols \mathbb{N} , \mathbb{N}_{even} , \mathbb{N}_{odd} and \mathbb{Z} . No proof in needed.

1.
$$\{x \in \mathbb{N} \mid \exists k \in \mathbb{N}.k + x \in \mathbb{N}_{even}\}.$$

Solution. $\{x \in \mathbb{N} \mid \exists k \in \mathbb{N}.k + x \in \mathbb{N}_{even}\} = \mathbb{N}.$

2.
$$\{x \in \mathbb{N} \mid x^2 + 2x - 3 = 0\}.$$

Solution. $\{x \in \mathbb{N} \mid x^2 + 2x - 3 = 0\} = \{1\}.$

3.
$$\{x \in \mathbb{Z} \mid \forall y \in \mathbb{N}. y < x \Rightarrow y^2 < x^2\}$$

Solution. $\{x \in \mathbb{Z} \mid \forall y \in \mathbb{N}. y < x \Rightarrow y^2 < x^2\} = \mathbb{Z}.$

Homework 4-Sols

MATH 300 (due Feb 23) Feb 16, 2022

Problem 4. Find a formal expression for the following sets:

1. The set of all integers below 100 which are are divisible by 3.

Solution.
$$\{x \in \mathbb{Z} \mid \exists k \in \mathbb{Z}(x = 3k)\}.$$

2. The set of all integers which are the successor of a power of 2.

Solution.
$$\{2^n + 1 \mid n \in \mathbb{N}\}.$$

3. The set of all (exactly) two element sets of real numbers.

Solution.
$$\{\{a,b\} \mid a,b \in \mathbb{R}, a \neq b\}.$$