Math 300 Intro Math Reasoning Worksheet 10: Equivalence relations

(1) For each of the following relation check whether it is reflexive symmetric or transitive:
(1) $E=\left\{\langle a, b\rangle \in \mathbb{R}^{2} \mid a+b=350\right\}$.

Solution

Not reflexive (counterexample $0+0 \neq 350$), symmetric: suppose that $a E b$, then $a+b=350$, since $a+b=b+a$ then $b E a$. Not transitive (counterexample $0+350=350$ and $350+0=350$ but $0+0 \neq 350$)
(2) $E=\left\{\langle a, b\rangle \in \mathbb{R}^{2}| | a-b \mid<1\right\}$.

Solution. Reflexive let $a \in \mathbb{R}$, then $|a-a|=0<1$, and therefore $a E a$. Symmetric let $a, b \in \mathbb{R}$, suppose $a E b$, then $|a-b|<1$. Since $|a-b|=|b-a|$, we have $|b-a|<1$ and therefore $b E a$. Not transitive counterexample $|1.5-1|<1$ and $|1-0.5|<1$ but $|1.5-0.5|=1$.
(3) $E=\left\{\langle X, Y\rangle \in P(\mathbb{R})^{2} \mid 3 \notin X \Delta Y\right\}$.

Solution. This is an equivalence relation.
Reflexive. Let $X \in P(\mathbb{R})$, then $3 \notin \emptyset X \Delta X$. Thus, $X E X$.
Symmetric, let $X, Y \in P(\mathbb{R})$, suppose that $3 \notin X \Delta Y$. Since $X \Delta Y=Y \Delta X$, we have that $3 \notin T \Delta X$ and therefore $Y E X$.

Transitive, let $X, Y, Z \in P(\mathbb{R})$, suppose that $X E Y$ and $Y E Z$ WTP $X E Z$. By definition $3 \notin X \Delta Y$ and $3 \notin Y \Delta Z$. Note that $X \Delta Z \subseteq X \Delta Y \cup Y \Delta Z$ and therefore $3 \notin X \Delta Z$. It follows that $X E Z$.
(2) Let $E_{n}=\left\{\left\langle z_{1}, z_{2}\right\rangle \in \mathbb{Z}^{2} \mid n\right.$ divides $\left.z_{1}-z_{2}\right\}$. For $n>1$, Show that $z_{1} E_{n} z_{2}$ if and only if $z_{1} \bmod n=z_{2} \bmod n$
[Hint: write $z_{i}=q_{i} n+r_{i}$ where $0 \leq r_{i}<n$ for $i=1,2$, and recall that if $n \mid m$ where $0<n, m$ are natural numbers then $n \leq m$.]
solution. write $z_{i}=q_{i} n+r_{i}$ where $0 \leq r_{i}<n$ for $i=1,2$. Suppose that $z_{1} E_{n} z_{2}$, then $n \mid z_{1}-z_{2}$. WLOG suppose that $r_{2} \leq r_{1}$. We have that $z_{1}-z_{2}=\left(q_{1}-q_{2}\right) n+\left(r_{1}-r_{2}\right)$ and therefore $n \mid r_{1}-r_{2}$. But if $r_{1}-r_{2}>0$ this would imply that $n \leq r_{1}-r_{2} \leq r_{1}<n$, contradiction. therefore $r_{1}-r_{2}=0$ which implies that $r_{1}=r_{2}$. In the other direction, suppose that $r_{1}=r_{2}$, then $z_{1}-z_{2}=\left(q_{1}-q_{2}\right) n$ which is divisible by n as wanted.

