Math 300 Intro Math Reasoning Worksheet 10: Equivalence relations

- (1) For each of the following relation check whether it is reflexive symmetric or transitive:
 - (1) $E = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a+b = 350 \}.$ Solution

Not reflexive (counterexample $0 + 0 \neq 350$), symmetric: suppose that aEb, then a + b = 350, since a + b = b + a then bEa. Not transitive (counterexample 0 + 350 = 350 and 350 + 0 = 350 but $0 + 0 \neq 350$)

(2) $E = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid |a - b| < 1 \}.$

Solution. Reflexive let $a \in \mathbb{R}$, then |a - a| = 0 < 1, and therefore aEa. Symmetric let $a, b \in \mathbb{R}$, suppose aEb, then |a - b| < 1. Since |a - b| = |b - a|, we have |b - a| < 1 and therefore bEa. Not transitive counterexample |1.5 - 1| < 1 and |1 - 0.5| < 1 but |1.5 - 0.5| = 1.

(3) $E = \{ \langle X, Y \rangle \in P(\mathbb{R})^2 \mid 3 \notin X \Delta Y \}.$

Solution. This is an equivalence relation.

Reflexive. Let $X \in P(\mathbb{R})$, then $3 \notin \emptyset X \Delta X$. Thus, $X \in X$.

Symmetric, let $X, Y \in P(\mathbb{R})$, suppose that $3 \notin X \Delta Y$. Since $X \Delta Y = Y \Delta X$, we have that $3 \notin T \Delta X$ and therefore Y E X.

Transitive, let $X, Y, Z \in P(\mathbb{R})$, suppose that XEY and YEZ WTP XEZ. By definition $3 \notin X\Delta Y$ and $3 \notin Y\Delta Z$. Note that $X\Delta Z \subseteq X\Delta Y \cup Y\Delta Z$ and therefore $3 \notin X\Delta Z$. It follows that XEZ.

(2) Let $E_n = \{ \langle z_1, z_2 \rangle \in \mathbb{Z}^2 \mid n \text{ divides } z_1 - z_2 \}$. For n > 1, Show that $z_1 E_n z_2$ if and only if $z_1 \mod n = z_2 \mod n$

[Hint: write $z_i = q_i n + r_i$ where $0 \le r_i < n$ for i = 1, 2, and recall that if n|m where 0 < n, m are natural numbers then $n \le m$.]

solution. write $z_i = q_i n + r_i$ where $0 \le r_i < n$ for i = 1, 2. Suppose that $z_1 E_n z_2$, then $n|z_1 - z_2$. WLOG suppose that $r_2 \le r_1$. We have that $z_1 - z_2 = (q_1 - q_2)n + (r_1 - r_2)$ and therefore $n|r_1 - r_2$. But if $r_1 - r_2 > 0$ this would imply that $n \le r_1 - r_2 \le r_1 < n$, contradiction. therefore $r_1 - r_2 = 0$ which implies that $r_1 = r_2$. In the other direction, suppose that $r_1 = r_2$, then $z_1 - z_2 = (q_1 - q_2)n$ which is divisible by n as wanted.