Math 300 Intro Math Reasoning Worksheet 02: Mathematical logic

(1) Consider the statement:
$\alpha=$ "Every real solution of $x^{2}+x-6=0$ is positive."
(1) Formalize it using the predicate calculus. Solution $\forall x \in \mathbb{R}\left(x^{2}+x-6=0 \Rightarrow x>\right.$ 0)
(2) Give examples of sets of discourse A, B such that α is true in A and α is false in B.

Solution: If $A=[0, \infty)$, then α is true in A since we only range on non-negative x 's and if $x^{2}+x-6=0$ then $x=3>0$. If $B=\mathbb{R}$ then α is false since for example $x=-2$ is a solution to the equation which is negative.
(2) Write the negation of the following sentence without the negation symbol " \neg " and determine whether it is true or false in the set \mathbb{R} :
$"(\exists x(x>5)) \Rightarrow(\forall y(y>-100)) . "$
Solution: $\sim((\exists x(x>5)) \Rightarrow(\forall y(y>-100))) \equiv \exists x(x>5) \wedge \exists y(y \leq-100)$. The negation is true.
(3) Compute $\operatorname{Tr}^{\mathbb{N}}(\exists y, x+y=4)$

Solution: $\operatorname{Tr}^{\mathbb{N}}(\exists y(x+y=4))=\{0,1,2,3,4\}$.
(4) Prove that if a divides b then a divides $b c+a d$.

Solution: Suppose that a divides b. WTP $a \mid b c+a d$. By the assumption, there is $k \in \mathbb{Z}$ such that $b=a k$. Therefore letting $k^{\prime}=k c+d$ we have

$$
a k^{\prime}=a(k c+d)=a k c+a d=b c+a d
$$

Since $k^{\prime} \in \mathbb{Z}$, we conclude that a divides $b c+a d$.

