Math 300 Intro Math Reasoning Worksheet 03: Mathematical logic

(1) Prove the following statement: An integer is divisible by 5 if and only if its last digit is divisible by 5 .
[Hint: To formally refer to the unit number of an integer n, decompose $n=10 k+d$ where k is some integer and $0 \leq d \leq 9$. Then d is the unit digit of n.]

Solution Let n be an integer and suppose that $n=10 k+d$ where $k, d \in \mathbb{Z}$ and $0 \leq d \leq 9$. Let us prove the statement by a double implication.
$\Rightarrow:$ If 5 divides n, then $n=5 l$ for some $l \in \mathbb{Z}$ and therefore $d=n-10 k=5 l-10 k=$ $5(l-2 k)$. Since $l-2 k \in \mathbb{Z}, 5$ divides d.
\Leftarrow : If 5 divides d, then $d=5 l$ for some $l \in \mathbb{Z}$. Then $n=10 k+5 l=5(2 k+l)$ and since $2 k+l \in \mathbb{Z}, 5$ divides n.
(2) Prove that for all integers n and m, if n is multiple of 6 or m is multiple of 9 then $n^{2} m$ is a multiple of 9 .

Solution: Suppose that n is a multiple of 6 or m is a multiple of 9 . WTP $n^{2} m$ is a multiple of 9 . Let us split into cases:
(1) If 6 divides n, then $n=6 k$ for some $k \in \mathbb{Z}$ and therefor $n^{2} m=(6 k)^{2} m=9\left(4 k^{2} m\right)$. Since $4 k^{2} m \in \mathbb{Z}, 9$ divides $n^{2} m$.
(2) If 9 divides m, then since m divides $n^{2} m$, it follows from what we proved in class that 9 divides $n^{2} m$.

In any case 9 divides $n^{2} m$. (3) Let a, b be integers with $b \neq 0$. Prove that any integer solution to the quadratic equation $x^{2}+a x+b=0$ divides b.
Solution. Suppose z is an integer solution to $x^{2}+a x+b=0$. WTP z divides b. By our assumption, $z^{2}+z a+b=0$, hence $b=-z^{2}-z a=z(-z-a)$. Since $-z-a \in \mathbb{Z}$, it follows that z divides b.

