Math 300 Intro Math Reasoning Worksheet 05: Set Theory

We define for every $A \subseteq \mathbb{R}$ and $r \in \mathbb{R}$

$$
A+r=\{a+r \mid a \in A\}
$$

(1) Compute (not proof):
(1) $\{1,5\}+0.5=\{1.5,5.5\}$.
(2) $\mathbb{N}+1=\mathbb{N}_{+}$.
(3) $\mathbb{Z}+1=\mathbb{Z}$.
(4) $\emptyset+r=\emptyset$.
(2) Prove or disprove:
(1) If $A \subseteq B$ then $A+r \subseteq B+r$.

Solution. Suppose that $A \subseteq B$. WTP $A+r \subseteq B+r$. Let $x \in A+r$. WTP $x \in B+r$. By the replacement principle, there is $a \in A$ such that $x=a+r$. Since $A \subseteq B, a \in B$. Therefore there is $b \in B$ such that $x=b+r$ which again by replacement implies that $x \in B+r$.
(2) If for some $r, s \in \mathbb{R}, A+r \subseteq B+s$ then $A \subseteq B$.

Solution. This is false, for every $A=\{1\}, B=\{2\}$ then $\{1\}+1 \subseteq\{2\}+0$, however $\{1\} \nsubseteq\{2\}$.
(3) $A+0=A$

Solution. Let us prove this set equality by a double inclusion.
$\supseteq:$ Let $a \in A$. WTP $a \in A+0$. We have that $a=a+0$, and therefore there is $x \in A$ such that $x+0=a$. By replacement, $a \in A+0$.
\subseteq For the other direction, suppose that $x \in A+0$, the by replacement, there is $a \in A$ such that $x=a+0=a$ and therefore $X \in A$.
Since we proved a double inclusion it follows that $A+0=A$
(3) Prove that for every $r \in \mathbb{R}, \mathbb{Q}+r=\mathbb{Q}$ if and only if $r \in \mathbb{Q}$.

Solution. Let $r \in \mathbb{R}$. Let us prove the equivalence by a double implication:
\Rightarrow Suppose that $\mathbb{Q}+r=\mathbb{Q}$. WTR $r \in \mathbb{Q}$. Note that by replacement, $r=0+r \in \mathbb{Q}+r$. By the set equality assumption $r \in \mathbb{Q}$.
\Leftarrow Suppose that $r \in \mathbb{Q}$ and let us prove that $\mathbb{Q}+r=\mathbb{Q}$ by a double inclusion.
\subseteq Let $x \in \mathbb{Q}+r$. WTP $x \in \mathbb{Q}$. By replacement, there is $q \in \mathbb{Q}$ such that $x=q+r$. Since both q and r are rationals, $x \in \mathbb{Q}$.
\supseteq Let $x \in \mathbb{Q}$ WTP $x \in \mathbb{Q}+r$. Define $q=x-r$, the again since x, r are rationals, $q \in \mathbb{Q}$. Also note that $x=q+r$ and therefore $x \in \mathbb{Q}+r$.
Since we proved a double inclusion it follows that $\mathbb{Q}=\mathbb{Q}+r$,

